
 1 

Osteosarcoma: novel prognostic biomarkers using circulating and cell-free tumour DNA  1 

 2 

Iben Lyskjær1,2, Neesha Kara2, Solange De Noon1,3, Christopher Davies1,3, Ana Maia Rocha1,3, 3 

Anna-Christina Strobl3, Inga Usher1, Craig Gerrand4, Sandra J Strauss5, Daniel Schrimpf6, 4 

Andreas von Deimling6, Stephan Beck2* & Adrienne M Flanagan1,3* 5 

 6 

1: Research Department of Pathology, University College London, London, UK 7 

2: Medical Genomics Research Group, University College London, London, UK 8 

3: Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP 9 

UK 10 

4: Bone Tumour Unit, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK 11 

5: Department of Oncology, University College London, London, UK 12 

6: Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, and 13 

CCU Neuropathology, German Cancer Institute, Heidelberg, Germany 14 

 15 

*These authors contributed equally 16 
Corresponding author 17 

 18 

Keywords: osteosarcoma, DNA methylation, epigenetics, epigenetic biomarkers, liquid 19 

biopsy, prognosis, circulating tumour DNA 20 

 21 

Abstract 22 

Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents. 23 

Despite treatment with curative-intent, many patients die of this disease. Biomarkers for 24 

assessment of disease burden and prognoses for osteosarcoma are not available. Circulating-25 

free (cfDNA) and -tumour DNA (ctDNA) are promising biomarkers for disease surveillance in 26 

several major cancer types, however only two such studies are reported for OS. In this 27 

combined discovery and validation study, we identified four novel methylation-based 28 

biomarkers in 171 OS tumours (test set) and comprehensively validated our findings in silico 29 

in two independent osteosarcoma sample datasets (n= 162, n=107) and experimentally using 30 

digital droplet PCR (ddPCR, n=20 OS tumours). Custom ddPCR assays for these biomarkers 31 

were able to detect ctDNA in 40% of pre-operative plasma samples (n=72). ctDNA was 32 

detected in 5/17 (29%) post-operative plasma samples from patients who experienced a 33 

subsequent relapse post-operatively. Both cfDNA levels and ctDNA detection independently 34 

correlated with overall survival, p=0.0015, p=0.0096, respectively. Combining both assays 35 

increased the prognostic value of the data. Our findings illustrate the utility of mutation-36 

independent methylation-based markers, broadly applicable ctDNA assays for tumour 37 

surveillance and prognostication. This study lays the foundation for multi-institutional 38 

collaborative studies to explore the utility of plasma-derived biomarkers for predicting clinical 39 

outcome of OS. 40 

 41 

  42 
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1. Introduction 43 

Osteosarcoma (OS) is the most common primary malignant bone tumour in childhood and 44 

adolescents, generally arising in the metaphysis of long bones1. Approximately 80-90% of all 45 

OS tumours are high grade, and despite toxic multimodal therapies, survival for the majority 46 

of patients with OS has not improved over the last 40 years2, with 30-40% of patients with OS 47 

dying of their disease3. Although, response to chemotherapy is an indicator of survival4, it is 48 

currently not possible to predict which patients are likely to respond to chemotherapy. 49 

 50 

Studies have demonstrated the value of minimally invasive surveillance assays in cancer 51 

management including assessment of the efficacy of treatment through detection of residual 52 

tumour following surgery, and predicting response to chemotherapy or disease relapse5. 53 

Measurement of total circulating free and tumour DNA (cfDNA and ctDNA, respectively), 54 

representing DNA shed into the bloodstream by tumour cells, has been shown to correlate 55 

with important clinical endpoints (e.g. progression-free survival and or overall survival) in 56 

several cancer types, as reviewed in6–8.  Barris et al. published the first ctDNA study in OS 57 

patients (10 patients, 28 samples) using targeted sequencing of genetic alterations detected 58 

in the tumours9, and found that ctDNA was detected in approximately half of the plasma 59 

samples (46%)9. Shulman et al. used ultra-low-pass whole-genome sequencing (WGS) and 60 

detected ctDNA in 57% (41/72 OS patients) of localised OS prior to treatment, and reported 61 

that detection of ctDNA was associated with inferior survival but the results were not 62 

statistically significant10.  63 

 64 

In the human genome, DNA methylation predominantly occurs at CpG dinucleotides, the site 65 

where a cytosine residue precedes a guanine residue in the 5’-3’ direction. In the healthy 66 
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human genome the majority of CpGs are methylated except at CpG islands11. Conversely, a 67 

cancer genome is often characterised by global hypomethylation and focal hypermethylation 68 

at CpG islands, leading to both genomic instability and transcriptional repression12. This 69 

feature of cancer has been exploited by studies, which demonstrate ctDNA methylation 70 

profiles as a highly sensitive and specific means of detecting cancers13. To date, only a few 71 

studies have investigated methylation of OS14–16. The use of DNA methylation as a marker of 72 

ctDNA in OS is attractive because this tumour is characterised by complex genomes and high 73 

inter-tumour heterogeneity rather than recurrent genetic alterations17–19, making selection 74 

of a universal genetic ctDNA marker challenging. Furthermore, as changes in methylation 75 

represent an early event in cancer and are considered to be retained through tumour 76 

evolution20, they could be exploited as powerful biomarkers and would be expected to be 77 

only moderately confounded by tumour genetic heterogeneity21. For this reason, this 78 

approach potentially has advantages over the two previous ctDNA studies in patients with 79 

osteosarcoma in which genomic alterations were targeted9,10.  80 

 81 

It has been previously established that high levels of DNA in the circulation (cfDNA) have been 82 

linked to inferior outcome22–24. However, in contrast to ctDNA which represents a tumour-83 

specific assay, cfDNA levels can be influenced by other factors including physical activity, age 84 

and rate of clearance. For these reasons cfDNA is considered a less reliable biomarker, 85 

particularly when measured shortly after surgery6. Despite this, the clinical utility of cfDNA as 86 

a prognostic marker has been proven in a wide range of cancers6. 87 

 88 

The aim of this study was to identify plasma-derived biomarkers in patients with OS that could 89 

be used for predicting outcomes.  90 
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2. Materials and methods  91 

2.1. Ethical Approval 92 

The Royal National Orthopaedic Hospital (RNOH) Biobank is approved by the National 93 

Research Ethics Committee of the Health Research Committee (reference: Integrated 94 

Research Application System (IRAS) project identifier: 272816). This study was approved by 95 

the National Research Ethics Committee approved UCL/UCLH Biobank Ethics Committee 96 

(project no: EC17.14).  97 

 98 

2.2. Training methylation cohort 99 

Our in-house dataset consisted of 750 samples of various sarcoma subtypes (Supplementary 100 

Table 1) (EMBL-EBI, under accession number E-MTAB-9875) previously published25. Infinium 101 

450K methylation data was downloaded from TCGA (https://www.cancer.gov/tcg) using 102 

TCGAbiolinks26 and from Marmal-aid27 (kindly provided by Dr Robert Lowe, UCL, QMUL, UK) 103 

(Supplementary Table 2).  104 

 105 

2.3. External validation cohorts for identified methylation markers 106 

Validation Set I consisted of 450K and EPIC methylation raw IDAT files from 162 OS from 107 

Heidelberg, Germany (provided by DS and AVD28, GSE140686) and 699 peripheral blood 108 

leucocytes (PBLs) from non-cancer patients (GSE12510529). Validation Set II consisted of 21 109 

publicly available OS samples (GSE5877030),  86 OS samples from the TARGET-OS (Children's 110 

Oncology Group and The Hospital for Sick Children in Toronto, Canada, dbGaP accession 111 

phs000218.v21.p7, http://ocg.cancer.gov/programs/target and 732 healthy blood samples 112 

(GSE8757131).  113 

 114 
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2.4. Biomarker discovery and digital droplet PCR assay design 115 

To avoid false positive results in the plasma samples, we first excluded all CpG sites that 116 

showed signs of DNA methylation (-value > 0.2) in more than 1% of all peripheral blood 117 

leucocytes (PBLs) samples (TCGA/Marmal-aid cohorts). Next, we excluded a) CpGs that were 118 

hypomethylated ( < 0.5) in more than 20% of all OS cases, b) hypermethylated CpGs ( > 0.5) 119 

that were detected in more than 50% of other cancers and c) hypermethylated CpGs ( > 0.2) 120 

detected in more than >30% of healthy tissues (Supplementary Figure 1B).  121 

 122 

The 17 identified candidate methylation markers (CpGs) were annotated using the COHCAP32 123 

R package (using the hg19 genome build). Methylation-specific digital droplet PCR (ddPCR) 124 

assays were designed using Primer3Plus33 and MethPrimer34, and checked using BiSearch35. 125 

Receiver operating characteristics (ROC) analyses were performed using the pROC R 126 

package36 to determine the sensitivity and specificity of the probes both individually and in 127 

combination (where at least two of the markers were positive). A -value of 0.5 was chosen 128 

as the threshold for determining if a sample should be classified as positive.  To be able to use 129 

a droplet digital PCR assay with the available plasma (1-2 mL), we reduced the number of 130 

markers from 17 to four. This was achieved by first calculating the sensitivities and 131 

specificities in the Training and Validation sets (Supplementary Table 8) and then identifying 132 

regions for which ddPCR assays could be designed. This led us to selecting the  following CpGs 133 

for experimental validation; cg02169391, cg22082800, cg25680486, and cg26100986.   134 

 135 

2.5. Clinical samples for experimental validation 136 

Three clinical sample sets were available for experimental validation: 1) high grade OS tumour 137 

samples from 20 patients (Supplementary Table 3),  2) control plasma samples obtained from 138 
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47 healthy volunteers (2.5 mL plasma) and 69 individuals with benign bone disease (see below 139 

for list) and degenerative joint disease (referred to hereafter as non-cancer patients; 4.5 mL 140 

plasma, Supplementary Table 4), and 3) samples from 72 patients with OS; these included 141 

blood for germline DNA and their pre-operative, pre-treatment plasma samples, in addition 142 

to 17 post-OP plasma samples (a total of 89 plasma samples with a median of 4.5 mL, range 143 

3-4.5 mL (1-2 mL were used for ddPCR analysis), overview in Supplementary Table 6). The 144 

samples of benign bone disease mentioned above included simple bone cysts, osteoarthritis, 145 

osteoblastoma, fibrous dysplasia, osteoid osteoma, osteochondroma, tenosynovial giant cell 146 

tumour, synovial chondromatosis; the degenerative joint disease represented patients 147 

undergoing hip or knee replacements (Supplementary Table 7).  148 

 149 

Clinical correlates 150 

Osteosarcoma patients were identified from a research database of patients diagnosed and 151 

managed within the London Sarcoma Service and included patients of all ages with 152 

demographic data incorporating primary site of disease, tumour grade and size, treatment 153 

parameters (chemotherapy, surgery and radiotherapy) as well as pathological response to 154 

chemotherapy and outcome (Supplementary Table 5).  155 

 156 

2.6. Statistical analysis 157 

All statistical analysis was performed in R (version 3.6.1)37. A p-value <5% was deemed 158 

statistically significant. A ctDNA-positive sample was defined as a sample with a least two of 159 

the four methylation markers above the limit of detection (LOD). Survival analysis was 160 

performed using the Kaplan-Meier estimator with death as the end point. The multivariate 161 
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analyssiis wass a Cox proportional hazards regression model with time from diagnosis to 162 

death or censorship (time to last follow-up) as an end point. 163 

 164 

2.7. Data availability 165 

In-house raw methylation array data have previously been published25 and are available from 166 

the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress), accession number E-167 

MTAB-9875. 168 

 169 

3. Results 170 

3.1. In silico identification and validation of methylation markers through large scale 171 

bioinformatic analyses 172 

Our first step in the identification of novel CpG sites as candidates for ctDNA assays involved 173 

downloading and interrogating the publicly available methylation data from 8,730 and 2,885 174 

human tissue samples from the TCGA38 and Marmal-Aid27, respectively (Supplementary Table 175 

2, and  Figure 1 for study outline). 10,766 samples were eligible for further analysis after 176 

filtering for incomplete data (Methods, Supplementary Figure 1A), and were analysed 177 

alongside 750 in-house sarcoma methylation profiles (Supplementary Figure 1A). Data from 178 

the remaining 10,766 samples were used for bioinformatic analysis together with 750 of our 179 

in-house sarcoma samples25. Hence, the final discovery group included methylome data from 180 

11,516 samples, including 1,578 blood samples, 202 normal tissues, 9,565 non-OS cancer 181 

samples and 171 OS tumour samples (Supplementary Figure 1, Supplementary Tables 1 and 182 

2).  183 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.12.21267579doi: medRxiv preprint 

http://www.ebi.ac.uk/arrayexpress
https://doi.org/10.1101/2021.12.12.21267579
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

 184 

Figure 1: Overview of the combined biomarker and validation study. 17 osteosarcoma-185 

specific candidate methylation markers were identified through a stepwise approach for 186 

selecting CpG sites uniquely methylated in OS (see Methods). Four markers were chosen for 187 

methylation-specific digital droplet PCR (ddPCR) analysis. The markers were subsequently 188 

validated both in silico and experimentally in tissue, before being used for circulating tumour 189 

DNA assessment of plasma samples from osteosarcoma patients. ‘Other sarcoma’ denotes 190 

various other non-OS soft tissue and bone sarcoma subtypes. FF: fresh frozen tumour tissue.  191 

 192 

3.1.1. Osteosarcoma-specific DNA methylation markers  193 

We next took a stepwise approach to identify DNA methylation markers (CpG sites), which 194 

were uniquely methylated in OS (Supplementary Figure 1B). Using our screening pipeline 195 

(Supplementary Figure 1B), we identified 17 candidate hypermethylated markers for OS 196 

(Supplementary Figure 2). To obtain an estimate of their combined sensitivity and specificity, 197 

we performed receiver operating characteristic (ROC) curve analysis on 171 OS and 1,578 198 
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non-cancer PBLs (Training Set). The mean area under the curve (AUC) was 0.994 and included 199 

all 171 OS and only 11/1578 (0.7%) non-cancer PBLs samples (Supplementary Figure 3A). 200 

 201 

3.1.2. Candidate DNA methylation markers show robust performance in independent 202 

OS datasets  203 

Two independent rounds of in silico validation of these candidate methylation markers were 204 

performed using Validation Set 1 comprising 162 OS tumour and 699 non-cancer PBLs, and 205 

Validation Set II consisting of 107 OS tumour and 732 PBL samples (Materials and Methods). 206 

By including all 17 candidate markers with a -value cut-off  0.5, all OS in both validation 207 

sample sets were correctly classified. None of the 699 PBLs were hypermethylated (  0.5) 208 

at any of the 17 candidate markers in Validation Set 1, and only two of 732 PBLs (0.27%) from 209 

non-cancer patients were misclassified as OS in Validation Set 2. ROC analyses gave an AUC = 210 

1.00 for Validation Set 1 and AUC = 0.99 for Validation Set 2 (Supplementary Figure 3B and 211 

3C). 212 

 213 

3.1.3. Four candidate DNA methylation markers were selected for experimental 214 

validation 215 

Digital droplet PCR-based assays were chosen as the method for ctDNA measurement as this 216 

represents a widely employed and highly sensitive, specific, and cost-effective methodology. 217 

The amount of plasma available from patients and the number of markers that can be multi-218 

plexed represent limitations of this approach and therefore from the 17 candidate markers, 219 

we selected four CpGs (cg02169391, cg22082800, cg25680486, and cg26100986) to take 220 

forward (Methods). Hypermethylation of all four markers correctly identified 421/440 of all 221 

OS samples studied (95.7%) and misclassified only 6/3009 (false positives = 0.2%) non-cancer 222 
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PBLs as OS in silico (Training and the two Validation Sets) (Supplementary Table 8, 223 

Supplementary Figure 4).  224 

 225 

3.2. Experimental validation of methylation markers in clinical OS cohorts 226 

3.2.1. Candidate markers are highly sensitive and specific 227 

To validate further the sensitivity and specificity of the four markers, we tested these as two 228 

duplex ddPCR assays experimentally on samples from another set of 20 high-grade OS and 229 

matching germline blood DNA (Supplementary Table 3). Hypermethylation at these CpG sites 230 

was confirmed in each of the tumours and in none of the germline samples (Supplementary 231 

Figure 5).  232 

 233 

To refine the limit of detection (LOD, Materials and Methods and Supplementary Methods), 234 

we also applied the four assays (two duplexed assays) to 47 control plasma samples from 235 

patients with non-neoplastic conditions (Supplementary Table 6, Supplementary Figure 5) 236 

and plasma from 69 individuals with benign bone disease (Methods, Supplementary Table 7). 237 

3/116 samples gave a false positive result (cases 57920 and 59831 (osteochondromas) and 238 

63637 (healthy volunteer), with an overall specificity of 97.4%.  239 

3.2.2. Circulating tumour DNA detection correlates with disease progression 240 

Finally, we measured the four methylation markers in matched tumour, PBLs and pre-241 

treatment plasma samples from 72 patients with OS (Supplementary Table 4 and 5). Based 242 

on the probes with the highest methylation levels observed in the tumour tissue, we ran one 243 

duplexed assay on the matched plasma sample. If neither or only one of the methylation 244 

markers was detected, we ran the other duplex assay. Although we observed methylation of 245 
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at least one marker in 50/72 (69%) samples, we set a minimum of at least two markers to be 246 

detected above the LOD for a sample to be classified as ‘ctDNA positive’ and employed this 247 

criterion hereafter.  248 

 249 

Clinical outcome data was then assessed against our pre-operative ctDNA assay results (Table 250 

1). Multivariate analysis confirmed that the presence of metastases at diagnosis is an 251 

independent prognostic factor in our cohort (Table 2), a finding consistent with the 252 

literature39. ctDNA assays were positive in 29/72 (40%) pre-operative samples (ctDNApre+, 253 

Table 1, Supplementary table 4). Within this ctDNApre+ group, 12/29 patients had metastatic 254 

disease at diagnosis. Of the 17 ctDNApre+ patients with localised disease at diagnosis, 10 255 

suffered a disease related event (death, n= 8; or metastasis, n=2). The remaining seven 256 

ctDNApre+ patients were alive without disease at last follow up (median follow-up = 5.3 years, 257 

range 0.9-11.3 years, Supplementary Table 5). Overall, the detection of pre-treatment ctDNA 258 

correlated with inferior survival outcomes (p<0.01, Figure 2A, Table1) and with a disease-259 

related event (p=0.01, chi-square test), but not with tumour size (p=0.14, Student’s t-test), 260 

gender (0.53) or age at presentation (p=0.92). ctDNA positivity did not have a significant 261 

association with outcome on multivariate analysis, however it should be noted that this 262 

model also included metastatic disease status at diagnosis which is known to be linked to 263 

increased tumour burden40,41, and thus higher probability of ctDNA detection. 264 

 265 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.12.21267579doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.12.21267579
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 266 

Figure 2: Detection of ctDNA or high levels of cfDNA pre-operatively correlates with survival  267 

A)  Detection of ctDNA and B) cfDNA pre-operatively correlate with overall survival (disease-268 

related mortality or censorship). Survival analysis utilised a standard Cox proportional 269 

hazard model. The plots are censored after 12 years. 270 

 271 

We also analysed post-operative plasma available from 17 of the 72 patients with OS in whom 272 

ctDNA was detected pre-treatment. ctDNA was detected in 5/17 (29%, median days from 273 

surgery 18, range: 7-30 days), 4/5 of whom developed recurrent disease (local recurrence or 274 

metastasis) and or died of disease (Supplementary Table 5), the remaining patient (OS_66) is 275 

alive and well nine years post-surgery. The ctDNA biomarkers were detected in 2/4 patients 276 

before the clinical relapse was identified. Detection of ctDNA post-operatively was not 277 

associated with the presence of metastasis at diagnosis (p=0.45, Student’s t-test). Of the 278 

patients for whom post-operative samples were available, four and 12 resection specimens 279 

were reported as having a good and poor response to chemotherapy, respectively (one 280 

unknown), and all cases were reported as having been fully excised.   281 

  282 
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3.2.3. Total circulating free DNA levels correlate with outcome 283 

Finally, we measured the total amount of cfDNA in the patients’ plasma samples, the median 284 

level of which was 1,848 copies/mL plasma (range 231-15,180 copies/mL plasma). This 285 

correlated with survival (cutoff=75th centile, cfDNAhigh, p=0.003, Figure 2B), but not with 286 

tumour size (rho=0.63, spearman rank test), metastasis at diagnosis (p=0.18, Kruskal-Wallis 287 

rank sum test) or anatomical site (femur versus tibia; p=0.63, Kruskal-Wallis rank sum test). 288 

12/19 (63%) of those patients classified as cfDNAhigh were also ctDNApre+; of the remaining 289 

7/19 cfDNAhigh cases without ctDNApre+, two had metastasis at diagnosis and another two 290 

relapsed (Supplementary Table 5). Including cfDNAhigh as a risk factor for adverse outcomes 291 

alongside ctDNApre+ and metastases at diagnosis resulted in 41/72 (57%) patients classed as 292 

high risk at the time of diagnosis. This three risk factor approach correlated with a poor 293 

prognosis for this group (p=0.01, Supplementary Figure 6, Supplementary Table 5). 294 

  295 

4. Discussion  296 

The standard of care for patients with osteosarcoma2 results in an approximate 70% five-year 297 

overall survival, thus despite aggressive multi-drug treatment 30-40% die of their disease. The 298 

identification of metastases at diagnosis is the most reliable indication that a patient with 299 

osteosarcoma has an unfavourable prognosis. However, other factors also contribute to 300 

outcome, including tumour size and site, and response to chemotherapy, site42,43. 301 

Nevertheless, even when combining all these clinical variables, clinicians lack sufficient 302 

information to stratify patients adequately for treatment and to offer patients with OS a 303 

reliable prognosis.  304 

 305 
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Here, we report a pipeline for the development and application of DNA methylation markers 306 

in OS and demonstrate their utility in detecting ctDNA and show that their detection in plasma 307 

correlates with inferior clinical outcome. Importantly, these methylation markers were 308 

detected in the pre-treatment ctDNA of 32% of patients who did not have metastases at 309 

presentation, indicating that this assay has the potential to complement and add value to 310 

current criteria for guiding treatment and providing more accurate prognoses to patients. 311 

However, 24% of patients with a positive pre-operative ctDNA test remain disease-free, which 312 

may in some cases be linked to a follow-up period of less than five years. The cfDNA results 313 

confirmed the ctDNA findings in most cases with 63% of patients with a high level of cfDNA 314 

also being ctDNApre+.  315 

 316 

The four selected methylation markers appear to be highly specific and sensitive for OS, being 317 

detected in 421/440 (96%, Discovery and Validated Sets) cases analysed in silico, and 318 

therefore have the potential to be an applicable test for up to 90% of patients with high grade 319 

OS. False positive ctDNA results in patients without OS using our methylation markers were 320 

rare (2.6%) and should not lead to misdiagnoses or inappropriate management provided 321 

results are interpreted in the context of the full clinical picture including medical imaging 322 

typically in the form of a multidisciplinary meeting.  In this context, our study represents a 323 

first step towards the goal of turning cancer including OS into a chronic but manageable 324 

disease44. 325 

 326 

The reason for failing to detect ctDNA in 60% of patients, particularly in those presenting with 327 

metastases or whose disease progressed, is unexplained. Nevertheless, it is noteworthy that 328 

relatively similar results (54%9 and 43%10 not detected) were reported in two other studies, 329 
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which involved different study designs and which employed different technologies for the 330 

detection of ctDNA. The study of Barras et al. only included ten patients, and that of Shulman 331 

et al. only studied patients without metastasis at presentation9,10. Furthermore, our study 332 

included patients aged between five and 95 years, whereas the other two studies were 333 

conducted in patients younger than 35 years9,10.  It is possible that the sensitivity of all assays 334 

undertaken in the different studies could be improved if larger blood volumes were available 335 

for analysis. However, the similar findings across the three studies suggest that the 336 

pathobiology of tumours that shed detectable levels of ctDNA may be different from those 337 

where this does not occur. This finding is not comparable to the results from other cancers, 338 

where ctDNA is detectable in the vast majority of high grade cases in cancers such as lung45, 339 

ovary 46 and bladder47. Indeed, ctDNA is even detected in small colorectal cancer lesions and 340 

is being considered as a screening test for early detection of this disease48. ctDNA is also 341 

detected in virtually all high grade chondrosarcomas, another bone cancer, but not in low 342 

grade cases49.  343 

 344 

It would be interesting to test head-to-head the various technologies which have been 345 

employed to assess ctDNA in OS patients, but this is difficult to undertake because each assay 346 

requires a considerable volume of blood. Nevertheless, a greater understanding of why ctDNA 347 

is only detected in some patients may be revealed by interpreting the findings in the context 348 

of other features such as the pathology, the medical imaging, as well as multi-omic tumour 349 

profiles. 350 

 351 

The limitations of the study are related to the application of the methylation markers to 352 

clinical outcome and are largely attributable to the rarity of osteosarcoma, the incidence of 353 
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which is 0.27/100,000 per year in England50. The consequence of this includes the relatively 354 

small number of samples analysed within a heterogenous cohort of patients across all age 355 

groups, and a relatively short median follow-up of approximately 3.5 years.  The small number 356 

of post-operative samples, and the absence of an independent cohort in which our findings 357 

could be validated are also limitations. The small numbers of samples that were available for 358 

analysis post-treatment was disappointing but the finding that ctDNA is detectable prior to 359 

presentation of clinical relapse is encouraging and requires further investigation.  360 

  361 

The study highlights the need for multi-centre collaboration, to enable the prospective 362 

systematic collection and sharing of patient samples with annotated clinical data, to recruit 363 

sufficient patient numbers for validation of these biomarkers and determination of their 364 

clinical utility in osteosarcomas, or any other rare disease. Multi-centre studies are fraught 365 

with challenges; they are expensive, time-consuming to establish, and it can be difficult to 366 

agree and prioritise research aims and studies. Nevertheless, results generated by different 367 

groups can add value and provide an opportunity for cross-validation. To this end, the ICONIC 368 

study (Improving Outcomes through collaboration in Osteosarcoma)51, brought together the 369 

osteosarcoma clinical and research communities across the UK and provides the 370 

infrastructure to prospectively evaluate clinical and biological questions, such as this, to 371 

better stratify patients for treatments and improve outcome. It is currently recruiting newly 372 

diagnosed OS patients across the UK52.  373 
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Tables 537 

Table 1.  Correlation of clinical outcome with pre-treatment ctDNA. PR: poor responder; GR: 538 

good responder, NCG: No chemo given, ctDNA: circulating tumour DNA. 539 

  
ctDNA pre 
neg (n=43) 

ctDNA pre pos 
(n=29) 

Metastasis at 
diagnosis 
(n=19) 7 (16%) 12 (41%) 

No 
metastases at 
diagnosis 
(n=53) 36 (68%) 17 (32%) 

Die of disease 
(n=32) 14 (33%) 18 (62%) 

Disease-
related event 
(n=39) 18 (42%) 21 (72%) 

Response to 
chemotherapy  

PR: 28  
(65%)    
GR: 9 
(21%) 
NCG:6 
(14%) 

PR: 11  (38%)            
GR: 8 (28%)          
NCG:4 (14%) 
Unknown/NA: 5 

 540 

Table 2: Uni-and multivariate analysis of clinical factors and their relation to survival. cfDNA: 541 

circulating free DNA; ctDNA: circulating tumour DNA; pre-OP: pre-operatively. 542 

SURVIVAL Univariate analysis Multivariate analysis 

  HR 95% CI P-value HR 95% CI P-value 

Pre-OP cfDNA (n=72)             

<75th centile (n=53) 0.34 0.38 0.005 0.56 0.43 0.18 

>75th centile (n=19) REFERENCE           

Pre-OP ctDNA (n=72)             

Neg (n=43) REFERENCE           

Pos (n=29) 2.51 0.36 0.01 1.48 0.42 0.36 

Metastasis at 
presentation (n=72)             

 Yes (n=19) 5 0.37 1.2*10-5 3.78 0..40 0.0096 

No (n=53) REFERENCE           

Gender (n=72)             
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Male (n=38) REFERENCE           

Female (n=34) 1.16 0.36 0.68       

Age (n=72)             

<30 years (n=62) REFERENCE           

=>30 years (n=10) 1.14 0.54 0.81       

Max tumour size (n=64)             

<=80 mm (n=14) REFERENCE           

>80 mm (n=50) 1.38 0.5 0.51       

 543 
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