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 2

Abstract 17 

 18 

Background and objectives: Health disparities are due to a range of socioeconomic 19 

and biological causes, and many common diseases have a genetic basis. Divergent 20 

evolutionary histories cause allele frequencies at disease-associated loci to differ across 21 

global populations. To what extent are differences in disease risks due to natural 22 

selection? 23 

 24 

Methodology: Examining a panel of nine global populations, we identified which of the 25 

20 most common causes of death have the largest health disparities. Polygenic risk 26 

scores were computed and compared for 11 common diseases for the same nine 27 

populations. We then used PolyGraph to test whether differences in disease risk can be 28 

attributed to polygenic adaptation. Finally, we compared human development index 29 

statistics and polygenic risk scores to mortality rates for each population.  30 

 31 

Results: Among common causes of death, HIV/AIDS and tuberculosis exhibited the 32 

greatest disparities in mortality rates. Focusing on common polygenic diseases, we 33 

found that genetic predictions of disease risk varied across global populations (including 34 

elevated risks of lung cancer in Europeans). However, polygenic adaptation tests 35 

largely yielded negative results when applied to common diseases. Our analyses 36 

revealed that natural selection was not a major cause of differences in disease risks 37 

across global populations. We also found that correlations between mortality rates and 38 

human development index statistics were stronger than correlations between mortality 39 

rates and polygenic predictions of disease risks. 40 

 41 

Conclusions and implications: Although evolutionary history contributes to 42 

differences in disease risks, health disparities are largely due to socioeconomic and 43 

other environmental factors.  44 
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 3

Background and Objectives 45 

Epidemiological analyses have reported major disparities in disease prevalence, 46 

incidence, and mortality rates across global populations and ethnic groups (1-3). 47 

Environment and lifestyle changes have been known to drive disease risks across 48 

populations since the Neolithic revolution when societies shifted from foraging to 49 

cultivating food. Increases in population size and changes in eating habits following the 50 

agricultural revolution led to an increase in nutritional and infectious diseases and a 51 

decline in the overall health of populations (4). While mortality rates from infectious 52 

diseases have decreased significantly in the 20th century (5), the “transition to 53 

modernity” (6) now puts the global population at a greater risk of non-communicable 54 

diseases. A recent study of Sub-Saharan African populations has shown that the 55 

leading causes of death have changed between 1990 and 2010 from communicable 56 

diseases in children to non-communicable diseases in adults, with stroke, depression, 57 

diabetes, and ischemic heart disease dominating among upper-middle-income countries 58 

(7). However, the increased prevalence and mortality rates of non-communicable 59 

diseases are not uniform worldwide. Disease burdens of stroke and ischemic heart 60 

disease vary greatly across global populations (8). Other studies have reported that 61 

men of African descent suffer the highest mortality from prostate cancer globally, 62 

indicating geographic and ethnic disparities (9). 63 

 64 

Disparities in disease prevalence and mortality rates are due to a complex combination 65 

of socioeconomic, demographic, environmental, and genetic causes.  Socioeconomic 66 

factors like poverty and lack of access to quality treatment have increased chronic 67 

kidney disease risks, in addition, to an already established racial and ethnic disparities 68 

(10). Similarly, environmental factors like exposure to abandoned uranium mines have 69 

increased risks of hypertension, kidney disease, and cancer in some Native American 70 

populations (11). It should be noted that such disease-causing factors are often 71 

interdependent and act synergistically to influence disease risk. A population’s genetic 72 

makeup can also make them susceptible to certain diseases. For example, people of 73 
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Ashkenazi descent have a higher frequency of the BRCA1/2 mutations, subjecting them 74 

to higher risks of breast cancer (12).  75 

 76 

Unlike monogenic diseases like sickle cell anemia or cystic fibrosis, most high mortality 77 

non-communicable diseases (e.g., stroke, chronic kidney disease, and diabetes) are 78 

polygenic in nature, i.e., the risks of many complex diseases are due to multiple genetic 79 

variations or single nucleotide polymorphisms (SNPs). Evolutionary history, including 80 

natural selection and founder effects (13-15), can cause allele frequencies of disease-81 

associated SNPs to vary among populations. These allele frequency differences can, in 82 

turn, cause hereditary disease risks to vary across the globe. With the advent of 83 

genome-wide association studies (GWAS), large numbers of disease-associated SNPs 84 

are now known (16), and these SNPs can be used to generate polygenic predictions of 85 

disease risk (17, 18). Importantly, shifts in allele frequencies at trait-associated SNPs 86 

can be used to detect natural selection acting on polygenic diseases (19).  87 

 88 

In this paper, we integrate country-level epidemiological data, genetic data from nine 89 

global populations, and GWAS findings to address the following questions: Which 90 

common causes of death exhibit the greatest disparities in mortality rates? To what 91 

extent do polygenic predictions of disease risk vary across global populations? Has 92 

natural selection been a major cause of differences in the risks of common hereditary 93 

diseases? Are disparities in mortality rates better attributed to socioeconomic or genetic 94 

factors? 95 

 96 

 97 

Methodology 98 

Public Health Data: Disparities in Development and Mortality Rate 99 

We collated the top 20 global causes of death (Table 1) and mortality rate data from the 100 

World Health Organization (WHO) report for 2019 (20), filtering and removing the non-101 

diseased traits like road injury, falls, and self-harm. Of the 17 disease traits, we 102 

removed neonatal conditions, infectious diseases (diarrhea, tuberculosis, lower 103 

respiratory infection, and HIV/AIDS), cirrhosis of the liver, and stomach cancer due to 104 
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the lack of large numbers of publicly available GWAS SNPs. This left us with a final list 105 

of 10 diseases out of the 20 most common global causes of death. Diabetes mellitus 106 

was split into type 1 and type 2 diabetes, to accommodate different GWAS for each type 107 

of disease, resulting in a total of 11 diseases analyzed here.  108 

 109 

Country-specific mortality rates vary for the top 20 causes of death reported by WHO. 110 

To study the disparities in these mortality rates, we focused on nine populations from 111 

the 1000 Genomes Project (1KGP), which have well-defined country-level disease 112 

mortality data and cover each of the major continental super populations. The nine 113 

representative countries and populations in this study are the United Kingdom (GBR), 114 

Spain (IBS), Nigeria (YRI), Sierra Leone (MSL), Bangladesh (BEB), Sri Lanka (STU), 115 

China (CHB), Japan (JPT), and Peru (PEL).  116 

 117 

To quantify the extent of health disparities, coefficients of variation (CV) of age-118 

standardized mortality rates were calculated among countries for each of the 20 most 119 

common global causes of death:  120 

     CV = σ/μ 121 

where σ is the standard deviation and μ is the mean of mortality rates in the nine 122 

populations (Table 1). We also obtained 2019 Human Development Index (HDI) 123 

statistics from the United Nations Development Programme, Human Development 124 

Reports (21) to study whether a country’s socioeconomic and development status play a 125 

role in determining mortality from certain diseases. Linear regression methods were 126 

applied to examine correlations between the HDI and mortality rates for the top 20 127 

causes of death over the nine representative populations.  128 

 129 

Genetic Data: Population Admixture and Disease Associations 130 

Phase 3 data from the 1KGP was used as a reference for building admixture graphs 131 

and calculating polygenic risk scores. To study polygenic adaptation, publicly available 132 

summary statistics of 11 genome-wide association studies (22-32) were collated (Table 133 

2), with diabetes mellitus having representative GWAS for type 1 and type 2 diabetes. 134 

We only considered GWAS SNPs with a p-value < 5x10-8 (Table 2). LiftOver  (33) was 135 
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used to convert the coordinates of all GWAS SNPs to the hg19 build for integration with 136 

the Phase 3 data from the 1KGP. 137 

 138 

Predicting differences in disease risks  139 

Predicted polygenic disease risks were calculated via polygenic risk scores (PRS). Risk 140 

scores were calculated for the 11 GWAS statistics in the nine representative 141 

populations using the Phase 3 data from the 1KGP. As per standard practice (18), PRS 142 

for each individual were calculated as: 143 

��� ������

�

 

where �� is an individual’s dosage of the effect allele (N = 0, 1 or 2) of the ith SNP and �� 144 

is the effect size of each SNP. PRS was then converted to a standardized normal (i.e., 145 

z-score) scale, with a global mean of zero and standard deviation of one. 146 

 147 

Differences in predicted polygenic disease risk distribution between European (GBR 148 

and IBS) and non-European (BEB, STU, CHB, JPT, YRI, MSL) populations were 149 

compared using Mann-Whitney U-tests. The Mann-Whitney U-test assumes that the two 150 

groups being compared (European vs. non-European in this case) are independent. 151 

Since PEL is an admixed population, we exclude it from the Mann-Whitney U-Test to 152 

keep the two groups independent. Correlations of mortality rates with predicted 153 

polygenic disease risk scores were studied for the 11 diseases over the nine 154 

representative populations. 155 

 156 

Examining Polygenic Adaptation 157 

To investigate signals of polygenic adaptation, we used PolyGraph (34), A Markov 158 

Chain Monte Carlo (MCMC) algorithm that utilizes admixture graph information to 159 

deduce traces of polygenic adaptation in populations. To detect selection on a trait 160 

PolyGraph requires a set of summary statistics from GWAS, neutral control SNPs that 161 

are not associated with the trait, and an admixture graph of the representative 162 

populations. Since PolyGraph estimates adaptation based on ancestral and derived 163 

states of SNPs, it is required to have the knowledge of ancestral alleles of all the GWAS 164 
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hits and polarize the effect sizes of SNPs based on the derived allele. Thus, only GWAS 165 

hits for which ancestral allele information was available from the 1KGP dataset were 166 

used in our study. Odds-ratios (OR) reported by some GWASs were converted to effect 167 

sizes, where β = ln(OR).   168 

 169 

Next, we used SNPsnap  (35) to obtain frequency-matched neutral SNPs for the GWAS 170 

hits. We frequency matched the GWAS SNPs with European, East Asian, and West 171 

African populations from the 1KGP, and pooled from these three sets to make a 172 

universal set of neutral/control SNPs for each trait. The same set of neutral SNPs was 173 

used to build an admixture graph using MixMapper (36). We made scaffold trees with 174 

eight continental populations and putatively added the population from Peru (PEL) as an 175 

admixed population (note that the one branch leading to PEL represents Native 176 

American ancestry). For each disease, PolyGraph reports a positive selection 177 

parameter alpha, which is a product of the selection coefficient for the advantageous 178 

allele and the duration of the selective process (34), and a p-value for selection on the 179 

entire admixture graph. To correct for multiple testing, we calculated FDR-adjusted q-180 

values from the overall p-values of selection from PolyGraph.  181 

 182 

 183 

Results 184 

Disparities in Mortality Rates and Development Index  185 

The top 20 causes of death as of 2019 show considerable variation in mortality rates 186 

worldwide (Table 1). The largest disparities were observed for lower respiratory 187 

infections (CV = 1.05), neonatal disease (CV = 1.177), diarrhea (CV = 1.575), 188 

tuberculosis (CV = 1.638), and HIV/AIDS (CV = 1.784), with the African countries 189 

(Nigeria and Sierra Leone) having higher mortality rates than Europe and East Asia. 190 

According to the WHO report for 2019, Japan has a negligible mortality rate for 191 

HIV/AIDS compared to 32.4 deaths per age-standardized 100,000 people in Sierra 192 

Leone. Stroke and ischemic heart disease cause the highest deaths in all the nine 193 

populations, with the United Kingdom and Spain having the lowest mortality rates 194 
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among the nine countries. Mortality rates from self-harm have the lowest variation 195 

among the nine countries studied here.   196 

 197 

Differences in Predicted Polygenic Disease Risk 198 

Genetic prediction of disease risk varies across the nine populations (Fig. 1) for all 11 199 

diseases. The predicted polygenic disease risk distributions are standardized, with a 200 

global mean (z-score = 0). Here, positive z-scores indicate predicted polygenic disease 201 

risks higher than the mean global predicted risk, and negative z-scores indicate risks 202 

lower than the mean (Table S1 lists the mean z-score of risk of each of the nine 203 

populations for the 11 diseases). Predicted polygenic disease risks are similar for 204 

populations within the same continent but differ among continental groups. For 205 

example, predicted polygenic risks for chronic kidney diseases vary by continent: 206 

African, East Asian, and American populations have higher predicted risks than South 207 

Asians and Europeans. Polygenic disease risk for lung cancer shows a wide distribution 208 

in European populations, with quite a few individuals with very high predicted risk 209 

scores, along with a high mean predicted risk for GBR and IBS populations. Europeans 210 

exhibit a higher predicted polygenic disease risk for lung cancer on a continental scale 211 

than non-Europeans (p-value = 3.43 x 10-14, Mann-Whitney U Test). Similarly, ischemic 212 

heart disease, colorectal cancer, and Alzheimer's disease also show higher predicted 213 

polygenic disease risks in Europeans than non-Europeans (p-values for the Mann-214 

Whitney U Test of each disease are available in Table S2). Chronic obstructive 215 

pulmonary disease narrowly passes the significance threshold to show higher risks in 216 

Europe with a p-value of 0.048 (Mann-Whitney U Test). Breast cancer, stroke, and 217 

chronic kidney disease have similar predicted polygenic risk score distributions in 218 

European, South Asian, and East Asian populations (Table S1). Europeans have lower 219 

predicted polygenic risks for type 1 diabetes (p-value = 5.3 x 10-3, Mann-Whitney U 220 

Test) and type 2 diabetes (p-value = 2.74 x 10-9, Mann-Whitney U Test) than all non-221 

Europeans, combined. Of the diseases studied here, only hypertensive heart disease 222 

does not show significant differences in predicted polygenic disease risks between 223 

Europeans and non-Europeans (p-value = 0.556, Mann-Whitney U Test). Overall, we 224 
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see considerable variation in genetic predictions of disease risks within individual 225 

populations and among different continental groups. 226 

 227 

Evidence for Polygenic Adaptation 228 

MixMapper was used to generate the admixture graph for the nine populations (Fig. 2). 229 

The graph indicated that the 1KGP population from Peru (PEL) is admixed. The graph 230 

topology showed an early split of African and non-African populations, with the non-231 

Africans further branching into European and Asian groups. According to the admixture 232 

graph produced by MixMapper, the Asian branch further divides into East and South 233 

Asian sub-branches. 234 

 235 

The strength of selection in each branch of the admixture graph was obtained from 236 

PolyGraph for all 11 disease traits (Fig. 2). PolyGraph detects adaptation of polygenic 237 

traits due to shifts in allele frequency of multiple loci using an admixture graph 238 

framework that considers historical divergence of populations. Although PolyGraph 239 

identifies weak signals of polygenic adaptation in all 11 traits, the FDR adjusted q-240 

values do not pass the threshold of significance (q-value < 0.05) for any of the diseases 241 

studied here. We note that the raw p-value for ischemic heart disease is 0.01 over the 242 

entire admixture graph, but that it does not reach statistical significance once we correct 243 

for multiple testing (FDR-adjusted q-value = 0.11). Polygraph's overall p-values and the 244 

FDR adjusted q-values for each disease are listed in Table 2.  245 

 246 

While overall signals of polygenic adaptation are weak, certain branches of the 247 

admixture graph show detectable signals of adaptation for some diseases (branch-248 

specific statistics from PolyGraph for each disease are listed in Table S3). Of the two 249 

major heart diseases we analyzed, both ischemic heart disease and hypertensive heart 250 

disease show a negative signal of adaptation for branches that ultimately lead to PEL. 251 

The branches leading to GBR and IBS for lung cancer show positive selection signals, 252 

consistent with the increased predicted polygenic risk for lung cancer in Europeans. 253 

Adaptation signals for breast cancer are negligible in all the branches of the admixture 254 

graph. Similarly, type 1 diabetes is also found to have evolved neutrally, although 255 
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predictive risks show Europeans are at a slightly higher risk of getting the disease. 256 

Thus, although PolyGraph reports weak branch-specific selection signals for individual 257 

diseases, the overall pattern is that polygenic adaptation is not a driver of disease 258 

disparities among populations. 259 

 260 

Drivers of Disparity in Mortality Rates 261 

Disparities in disease mortality rates arise from multiple socioeconomic and genetic 262 

factors. To test how socioeconomic status influences mortality rates, correlations of HDI 263 

to mortality rates were calculated. The mortality rates of the top 20 causes of death in 264 

the nine representative populations can mostly be explained by the countries’ HDI (Fig. 265 

3A). Mortality rates of colorectal cancer have the highest positive correlation to HDI (r = 266 

0.74), while mortality rates of road injuries have the highest negative correlation to HDI 267 

(r = -0.957). The negative correlation of road injury with HDI should be interpreted with 268 

caution, keeping in mind that mortality rates do not reflect incidence rates. 269 

Underdeveloped countries can have higher mortality rates from road injuries due to the 270 

lack of emergency medical treatment in general, despite having a lower incidence of 271 

road injuries than developed countries. Alzheimer's disease, lung cancer, and stomach 272 

cancer show a positive correlation with HDI, where highly developed countries have 273 

higher mortality rates from these diseases (Table S4). Apart from these four, all other 274 

causes of death show a negative correlation with HDI, indicating countries with lower 275 

development index have higher mortality rates. An interesting observation is that 276 

mortality rates of self-harm are largely independent of HDI. Highly negative correlations 277 

of mortality and HDI for diseases like tuberculosis (r = -0.781) and HIV (r = -0.842) are 278 

consistent with the knowledge that under-developed and developing countries bear a 279 

higher burden of mortality from infectious diseases.  Similarly, neonatal diseases (r = -280 

0.935) and diarrhea (r = -0.914) are major causes of infant death in under-developed 281 

countries and are consistent with correlations with HDI. Thus, socioeconomic factors 282 

alone play a major role in determining mortality disparities among populations. 283 

 284 

We also examine the correlations of predicted polygenic disease risks and mortality 285 

rates (Fig. 3B). Overall, the magnitudes of these correlations are lower than that of HDI 286 
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and mortality rates. Eight out of the ten diseases, including COPD, breast cancer, 287 

diabetes, chronic kidney disease, and hypertensive heart disease, show positive 288 

correlations between predicted polygenic disease risks and mortality rates, although 289 

they are not statistically significant. Stroke and ischemic heart disease are interesting 290 

cases with negative correlations of predicted polygenic disease risk and mortality rates. 291 

Thus, although eight diseases show a weak genetic contribution to disparities in 292 

mortality, genetic predictions are inconsistent with epidemiological trends when it comes 293 

to stroke and ischemic heart disease. Overall, our results indicate that both 294 

socioeconomic and genetic factors play a role in determining country-level mortality 295 

rates. 296 

 297 

 298 

Discussion 299 

Drivers of disparities in disease incidence and mortality rates worldwide are 300 

multifactorial with socioeconomic, demographic, environmental, and genetic aspects 301 

(37). Contributions of genetics to disease disparities are driven by a complex 302 

combination of natural selection, genetic drift, founder effect, and more (38). Here, we 303 

demonstrate the role of polygenic adaptation in shaping disparities in disease mortality 304 

worldwide, and the study has provided four key results. First, in analyzing the top 20 305 

causes of death, mortality rates present considerable differences among countries. 306 

Mortalities from infectious diseases like diarrhea and tuberculosis vary greatly between 307 

continents. On the other hand, self-harm exhibited the lowest variation in mortality rates 308 

worldwide. Second, predicted polygenic risk scores for the 11 common diseases depict 309 

significant differences between European and non-European populations. The 310 

distributions of predicted polygenic risks are consistent within continents but differ 311 

among continental populations. Third, although there exist weak branch-specific 312 

signatures of selection for some diseases, the overall pattern is that polygenic 313 

adaptation is not a major driver of differences in disease risk across populations. And 314 

finally, we show that disparities in mortality rates are highly correlated with a country's 315 

HDI, indicating socioeconomic and environmental factors are strong drivers of 316 

disparities. 317 
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 318 

Predicted polygenic disease risks of complex diseases like diabetes and lung cancer 319 

often vary among populations (Fig. 1) (39). This arises from differences in allele 320 

frequencies of disease-associated loci in different populations. For example, the C allele 321 

(rs7901695) at the TCF7L2 locus for type 2 diabetes has an almost 40-fold increase in 322 

its allele frequency from 0.013 in the Chinese populations (CHB) to 0.488 in the African 323 

population (13), which contributes to the general pattern of higher predicted risks of type 324 

2 diabetes in African than in East Asian populations (Fig. 1). Although we focus on 325 

differences between populations, considerable variation in predicted polygenic disease 326 

risk exists within each population, most notable in the wide distribution of predicted risks 327 

for lung cancer in Europeans (GBR and IBS) (Fig. 1). Consequently, while polygenic 328 

risk prediction has been shown to identify individuals at high risk of a disease (40),  329 

caution should be taken when trying to extend these results to broader populations (this 330 

is known as the “Ecological Fallacy” of inferring individual data from an aggregate (41)). 331 

Nevertheless, polygenic predictions of disease risks tend to be positively correlated with 332 

mortality rates (Fig. 3B).  333 

 334 

Differences in polygenic disease risk can be due to multiple evolutionary forces, 335 

polygenic adaptation being one of them. While our results suggest weak selection for 336 

certain diseases in specific evolutionary branches, the overall lack of statistical 337 

significance leads us to rule out polygenic adaptation as a significant evolutionary cause 338 

of disease disparities. Selection of polygenic traits is distributed across multiple loci. 339 

While some loci have a greater influence on the trait with strong selection acting on 340 

them, the total selection of a polygenic trait is often mitigated by the alleles with weaker 341 

selection, making it difficult to identify overall signals of selection. This contrasts with 342 

some well-known Mendelian diseases like sickle cell anemia, where strong selection on 343 

a single locus has increased its prevalence in the African populations due to natural 344 

selection on genetic resistance to malaria (42).  345 

 346 

Although we obtain compelling results on the drivers of disease disparity, we are aware 347 

of certain caveats in our methods. First, we study differences in mortality rates in 348 
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populations instead of disparities in incidence rates. The reader should be mindful that 349 

while countries have disparities in mortality rates from diseases, there might not be 350 

equivalent disparities in incidence rates. Second, for all the common disease studies, 351 

well-powered GWASs across multiple populations were not available, and thus we 352 

focused on GWASs performed in European populations. Finally, the choice of our nine 353 

representative populations is highly dependent on the availability of genetic data from 354 

these populations. As more GWAS are performed in varied populations worldwide, 355 

future studies will be able to take a more detailed look at polygenic adaptation patterns 356 

and genetic influences of disease disparities.  357 

 358 

Conclusion and Implications: 359 

Disparities in disease mortality rates worldwide arise from multiple factors, and here we 360 

show that natural selection and polygenic adaptation are not primary contributors to 361 

such disparities. We expect to form a more refined idea of how genetics and polygenic 362 

adaptation influence disease disparities as newer data sets become available in the 363 

future. But until then, socioeconomic and developmental factors should be thoroughly 364 

studied to understand the roots of such disparities. To conclude, even though 365 

populations have experienced unique evolutionary histories and many common causes 366 

of diseases are heritable, our results indicate that most health disparities are driven by 367 

factors other than polygenic adaptation. 368 

 369 
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Tables 505 

Table 1 506 

  507 

Causes of death 
United 

Kingdom 

Spain 

 
Nigeria 

Sierra 

Leone 
Bangladesh 

Sri 

Lanka 
China Japan Peru CV 

HIV/AIDS 0.2 0.8 26.8 34.2 0.4 0.2 1.6 0 2.6 1.784 

Tuberculosis 0.2 0.2 99.1 43.6 25.9 3.5 1.9 0.5 7.1 1.638 

Diarrheal diseases 0.9 0.6 79 91.1 29.6 2.5 0.7 0.5 3.3 1.575 

Neonatal conditions 3 2.2 36 34.2 19 4 3.8 0.7 5.2 1.177 

Lower respiratory 

infections 
20.4 8 98.1 131.4 23 20.4 11.3 16.6 44.2 1.05 

Cirrhosis of the liver 7.9 4.8 42 33.3 16.6 5 7.6 4.8 19.3 0.87 

Diabetes mellitus 3.6 5 33.5 38 25.5 47.3 8.6 1.4 13.3 0.865 

Road injury 2.8 3.1 27.3 41.6 16.7 18.1 15.1 2.2 13.4 0.826 

Hypertensive heart 

disease 
3 4.7 16.1 20.3 13.3 4.1 16.8 1.1 3.1 0.802 

Trachea, bronchus, 

lung cancers 
24.7 22.8 1.4 2.4 10.2 6.6 36.6 18.1 9.5 0.796 

Stroke 20.2 18.4 88.7 120.1 119.2 26.6 110.8 23.2 22.6 0.77 

Stomach cancer 3.3 5.2 2.5 7 5.5 4.9 20.5 11.5 15.1 0.723 

Kidney diseases 2.9 5.5 23.9 30.2 9.1 26.2 10.4 7.6 21.3 0.666 

Chronic obstructive 

pulmonary disease 
19.8 12.3 20.8 27.4 41.7 37 54.2 12.7 7.2 0.603 

Falls 4.3 2.5 8.5 9 2.6 3.9 8 2 3.8 0.559 

Colon and rectum 

cancers 
12.1 14.3 4.3 5.4 3.6 3.4 13 13.6 7.9 0.535 

Ischemic heart 

disease 
43.1 34.9 100.9 139.4 94.3 101.3 97.6 30.6 40 0.515 

Self-harm 6.9 5.3 6.9 11.3 3.9 12.9 6.7 12.2 2.7 0.48 

Alzheimer disease 

and other dementias 
42.7 21.5 19.4 19.3 13.9 27.6 17.4 7.9 16.2 0.477 

Breast cancer 9.4 6.9 10.4 14.9 5.3 5.3 4.7 5.4 6 0.445 
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Table 1. Disparities in mortality rates for the top 20 worldwide causes of death. The top 508 

20 causes of death from the World Health Organization Report of 2019 are reported 509 

here. Population-specific mortality rates for each disease are age-standardized per 510 

100,000 individuals. The 1000 Genomes Project population codes for each country are 511 

United Kingdom (GBR), Spain (IBS), Nigeria (YRI), Sierra Leone (MSL), Bangladesh 512 

(BEB), Sri Lanka (STU), China (CHB), Japan (JPT) and Peru (PEL). CV stands for the 513 

coefficient of variation of mortality rates. Note that mortality for type 1 diabetes and type 514 

2 diabetes are reported jointly as diabetes mellitus.  515 
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Table 2 516 

Disease GWAS source # of SNPs 
Overall 

p-value 

FDR adjusted 

q-value 

Ischemic heart disease van der Harst et al. (2018) (25) 148 0.01 0.11 

Stroke Malik et al. (2018) (24) 26 0.176 0.323 

Chronic obstructive 

pulmonary disease 
Sakornsakolpat et al. (2019) (30) 82 0.829 0.829 

Trachea, bronchus, lung 

cancers 
McKay et al. (2017) (23) 115 0.065 0.297 

Alzheimer disease and 

other dementias 
Lambert et al. (2013) (22) 19 0.64 0.782 

Type 1 Diabetes mellitus Chiou et al. (2021) (32) 33 0.741 0.815 

Type 2 Diabetes mellitus Xue et al. (2018) (26) 139 0.331 0.52 

Kidney diseases Wuttke et al. (2019) (31) 308 0.152 0.323 

Hypertensive heart 

disease 
Giri et al. (2019) (27) 258 0.081 0.297 

Colon and rectum 

cancers 
Law et al. (2019) (28) 40 0.175 0.323 

Breast cancer Mavaddat et al. (2019) (29) 313 0.485 0.667 

 517 

Table 2. Tests of polygenic adaptation for 11 common diseases. The number of 518 

disease-associated loci reported and the reference GWAS are listed for each disease. 519 

Polygraph reports the overall p-value as a measure of the significance of polygenic 520 

adaptation in the entire admixture graph. FDR adjusted q-values correct for multiple 521 

testing.  522 
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Figures 523 

 524 

Figure 1 525 

526 

 527 

Figure 1. Predicted polygenic risks for 11 common diseases over the nine528 

representative populations. Z-score distributions of predicted polygenic disease risks529 

are shown here. Each dot in the distribution represents an individual. Distributions530 

above the global mean (z-score = 0) indicate higher risks, whereas those below zero531 

indicate lower disease risks. Different colors indicate continental superpopulations. 532 
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Figure 2 533 

534 

 535 

Figure 2. Minimal evidence of natural selection acting on common polygenic diseases.536 

MixMapper was used to generate the admixture graph and PolyGraph was used to test537 

for polygenic signatures of adaptation. FDR adjusted q-values are above 0.05 for all538 

nine diseases. The selection parameter alpha reports a product of the selection539 

coefficient for the advantageous allele and the duration of the selective process.540 

Positive values of alpha indicate positive selection in the branch while negative values541 

are indicative of negative selection acting on a trait. 542 

  543 

 

s. 

st 

all 

on 

s. 

s 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.10.21267630doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.10.21267630
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

Figure 3 544 

545 

 546 

Figure 3. Correlations of mortality rates with Human Development Index (HDI) statistics547 

and predicted genetic disease risks. (A) 14 out of the top 20 causes of death from the548 

2019 World Health Organization report show a statistically significant correlation549 

between country-specific mortality rates and HDI. (B) Correlations of mortality with HDI550 

and polygenic risk scores. Filled circles indicate correlations between mortality rates551 

and HDI, and open circles indicate correlations between mortality rates and PRS552 

(positive correlations in blue, negative correlations in red). * indicates p-value < 0.05, **553 

indicates p-value < 0.01 and *** indicates p-value < 0.001. 554 
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