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Abstract 

The SARS-CoV-2 infections are still imposing a great public health challenge despite 

the recent developments in vaccines and therapy. Searching for diagnostic and 

prognostic methods that are fast, low-cost and accurate is essential for disease control 

and patient recovery. The MALDI-TOF mass spectrometry technique is rapid, low cost 

and accurate when compared to other MS methods, thus its use is already reported in 

the literature for various applications, including microorganism identification, diagnosis 

and prognosis of diseases. Here we developed a prognostic method for COVID-19 using 

the proteomic profile of saliva samples submitted to MALDI-TOF and machine learning 

algorithms to train models for COVID-19 severity assessment. We achieved an 

accuracy of 88.5%, specificity of 85% and sensitivity of 91.5% for classification 

between mild/moderate and severe conditions. Then, we tested the model performance 

in an independent dataset, we achieved an accuracy, sensitivity and specificity of 67.18, 

52.17 and 75.60% respectively. Saliva is already reported to have high inter-sample 

variation; however, our results demonstrates that this approach has the potential to be a 

prognostic method for COVID-19. Additionally, the technology used is already 

available in several clinics, facilitating the implementation of the method. Further 

investigation using a bigger dataset is necessary to consolidate the technique. 
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Introduction 

Since its emergence in Wuhan in December 2019, the virus responsible for the 

Coronavirus Disease-2019 (COVID-19), SARS-CoV-2, has spread worldwide and 

become a world-threatening disease1. According to the World Health Organization 

(WHO), by 17 of August of 2021 the COVID-19 pandemic reached a total of 

cumulative cases of 206,714,291 and cumulative deaths of 4,353,434 people world-

wide2. Although many advances have been made in COVID-19 research, especially 

with the vaccines which initial data indicating its use was efficient and safe3–5, the 

emergence of SARS-CoV-2 variants with the increased transmission is concerning6. 

Thus, searching for new diagnosis and prognosis methods is still needed for increasing 

patient survival. 

Regarding prognosis and diagnosis methods, simplicity, speed, low cost and 

accuracy are desirable qualities. Diagnosis methods for COVID-19 are present 

commonly in two forms, immunological assays or RT-qPCR; the former is a fast and 

cheap method, but can be very limited for early diagnosis since the immune response is 

still forming; the latter is considered the “gold standard” method and is the most used 

technique for COVID-19 diagnosis and disease tracking. However, the results are 

dependent of many factors, including proper sampling procedures and high-quality 

extraction kits 7,8. Variations on these methods have been implemented to achieve more 

accurate, affordable, easy to use and scalable diagnostic platforms 9,10. For being a 

relatively cheap and fast technique, MALDI-MS and machine learning algorithms have 

been implemented in many protocols, such as diagnosis and prognosis of several types 

of cancer 11–13, fungi and bacterial identification 14,15, detection of resistant fungi and 

bacteria 16–18, and COVID-19 diagnosis and prognosis 19–23. However, these works used 

mainly plasma, serum or nasal swab samples, while saliva samples are still poorly 

explored. The process for collecting saliva is simple, fast, and painless and require 

minimum supervision 24 saliva also contains high amounts of SARS-CoV-2 during the 

early stages of viral infection 1 and a recent study demonstrated that the salivary glands 

serve as a viral reservoir 25; thus, this biofluid can be useful as source material for 

diagnosis and prognosis of COVID-19. Taken together, the rapid turnaround time 

(typically 10 min), high accuracy (>95%) for detection of extremely low concentration 

of biomolecules, low cost in supplies and technical processing indicates MALDI-MS as 

an attractive option of choice in COVID-19 diagnosis and prognosis. 
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In this work, we propose a new method for COVID-19 diagnosis and prognosis 

using MALDI-TOF proteomic profile of salivary samples and machine learning. 

Samples from patients in a mild/moderate or severe conditions were used to train 

several machine learning algorithms and build a model to classify the samples into 

mild/moderate or severe COVID-19 cases. Moreover, another model was built to 

classify between infected and control samples. Thus, two models were trained one for 

diagnosis and one for prognosis, using a rapid and widespread technique, MALDI-TOF, 

which is common in clinical laboratories. Further investigations and a larger cohort are 

necessary to consolidate this technique as an alternative test for COVID-19 diagnosis or 

prognosis. 

Materials and Methods 

Materials: 

All reagents used were from Sigma Aldrich unless otherwise stated. 

Ethical statement: 

This study was conducted in accordance with the Declaration of Helsinki, and 

the protocol was approved by Research Ethics Committee of the “Instituto de 

Infectologia Emílio Ribas”, São Paulo, Brazil, protocol number CAAE 

35589320.6.0000.0061. The invited volunteers were informed about the objectives, 

propositions and conditions of this project, in which those who agreed to participate in 

the research signed the free and informed consent term. Demographics, clinical data and 

samples were collected uniquely after the understanding of the study protocol and 

consent acknowledgement by the participants. A questionnaire on the health status of 

each participant was carried out. All participant information and samples were 

anonymized before use. Sample handling was carried out in a BSL2 laboratory. 

Individuals’ recruitment: 

COVID-19 infected-patients were classified in three groups according to the 

severity of the disease: 1) Mild form, characterized by the presence of flu-like 

symptoms, with the absence of dyspnoea and normal radiological examination. 2) 

Moderate, characterized by the presence of flu-like symptoms associated with 

pulmonary impairment < 50%, measured by computed tomography and O2 saturation 

>93% in room air. 3) Severe characterized by respiratory frequency greater than 30 

breaths per minute, O2 saturation <93% in room air and pulmonary impairment >50% 
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measured by computed tomography. During the period from January 13 to May 28, 

2021 patients attending at the Instituto de Infectologia Emílio Ribas, Sao Paulo, Brazil, 

that tested molecularly positive for SARS-CoV-2 by nasopharyngeal swab were invited 

to enroll in the research study and provide saliva samples on the day of inclusion. 

Individuals under 18 years old and pregnant women were excluded. 

Healthcare workers group (controls). Asymptomatic healthcare workers 

potentially exposed to patients or SARS-CoV-2 positive samples were invited to enrol 

into the study. Saliva collection was performed on the day of individual inclusion and 

tested negative for SARS-CoV-2 by RT-PCR. 

COVID-19 routine diagnostic method (RT-PCR): 

A standard protocol was used for nasopharyngeal swab. Routine diagnosis 

protocol was applied for SARS-CoV-2 detection by RT-qPCR. 

Saliva sample preparation: 

Saliva samples were obtained from SARS-CoV-2 infected and healthy 

individuals by using a cotton pad device – Salivette™ (Sarstedt AG & CO. KG, 

Nümbrecht, Germany). The patients were asked to maintain the cotton in the mouth for 

90 seconds; then, it was centrifuged at 1000 g for 5 minutes. After centrifugation, saliva 

samples were aliquoted and stored at -80 ºC. For viral inactivation, a solution of TFA 

10% was added to the samples to obtain a final concentration of 1% of TFA in a BSL3 

laboratory under all the safety measures needed. Then, protein quantification was 

performed using a Qubit assay (Thermo Fischer). 

Different protein concentrations were evaluated before submitting the samples to 

MALDI-TOF analysis. Saliva samples were diluted with TFA 0.1% in the proportions 

of 1:1, 1:2, 1:5, 1:10 and 1:100; then, the samples were spotted directly in the MALDI 

target plate (Bruker Daltonics) using 1 μL of sample followed by 1 μL of matrix 

solution. Three different matrixes were also tested (sinapinic acid [SA], 

dihydroxybenzoic acid [DHB], and α-cyano-hydroxycinnamic acid [HCCA]) and the 

matrix solution was prepared by dissolving in acetonitrile/water 50:50 vol/vol 

containing 2.5 % TFA to obtain a concentration of 10 mg/mL. 

Additionally, we tested if adding the same concentration of proteins for each 

sample in the MALDI plate would be better for group separation. For that, the protein 

quantification of all saliva samples was performed and a total of 0.2 μg of proteins 
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(protein normalization) were added to the MALDI plate, this was compared with the 

direct spotting of the samples without taking into consideration the protein 

quantification. 

MALDI acquisition 

Samples were analyzed in a MALDI-TOF Autoflex speed smartbeam mass 

spectrometer (Bruker Daltonics, Bremen, Germany) using FlexControl software 

(version 3.3, Bruker Daltonics). Spectra were recorded in the positive linear mode (laser 

frequency, 500 Hz; extraction delay time, 390 ns; ion source 1 voltage, 19.5 kV; ion 

source 2 voltage, 18.4 kV; lens voltage, 8.5 kV; mass range, 2400 to 20000 Da). Spectra 

were acquired using the automatic run mode to avoid subjective interference with the 

data acquisition. For each sample, 2500 shots, in 500-shot steps, were summed. All 

spectra were calibrated by using Protein Calibration Standard I (Insulin [M+H]+ = 

5734.52, Cytochrome C [M+ 2H]2+ = 6181.05, Myoglobin [M+ 2H]2+= 8476.66, 

Ubiquitin I [M+H]+ = 8565.76, Cytochrome C [M+H]+ = 12 360.97, Myoglobin 

[M+H]+ = 16 952.31) (Bruker Daltonics, Bremen, Germany). 

Spectra processing 

Data preprocessing and spectra evaluation were conducted using R packages. 

First, fid files were converted to mzML using MSconvert available in ProteoWizard 

(version: 3.0.20220) 26. The mzML files were loaded to R using MALDiquantForeign 

and processed using MALDIquant 27. The spectra for each sample were transformed 

(square root), smoothed (Savitzky-Golay and halfWindowSize of 10) 28 and the base 

line corrected using the TopHat algorithm 29. Then, the intensities were normalized 

using the total ion current and the peaks were selected with a signal-to-noise ratio of 2 

and halfWindowSize of 10 22. Peaks binning (tolerance of 0.003) and peak filtering 

(minimum frequency of 0.6) were performed for each group separately; then, a final 

binning (tolerance of 0.003) was performed with the groups merged. The resultant 

peaks were used to build an intensity matrix, which was further used for normality 

assessment (Shapiro-Wilk) and for a two-tailed Wilcoxon rank sum test corrected for 

multiple hypothesis testing using Benjamini-Hochberg. The peaks with a P-value < 0.05 

were selected. The dataset was permuted 100 times and the global false discovery rate 

was calculated. For feature selection, the information gain method was used (FSelector 
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package), since it is faster than wrapper methods and is classifier independent 30. 

Features with weight higher than 0 were selected. 

Machine learning 

Six different algorithms were tested (SVM-P, GBM, SVM-R, NNET, NB, and 

RF) to classify samples in severe or mild/moderate and infected or control conditions. 

The training was carried through fourfold nested repeated ten times four-fold cross-

validation using the Caret package, the data was split randomly. A random search was 

performed for hyperparameter tunning in the inner loop. The MLeval package was used 

to plot the ROC and PR curves. The AUC of ROC curves, accuracy, sensitivity and 

specificity were reported. Since the infected and control groups are not balanced, the 

balanced accuracy was used. 

For the classification between severe and mild/moderate, the model with the best 

performance was selected for a validation step using another set of samples (test set) 

prepared and acquired separately from the training samples. The same preprocessing 

was carried out for the test set samples separately from the training samples. However, 

train and test sets were binned together to generate comparable features. SVM-R 

demonstrated the best performance in the algorithm comparison step; thus, it was 

selected for model training in the validation step. The parameters were fixed at sigma = 

0.003329177 and C = 0.8915975, since they were the parameters that achieved the best 

accuracy for SVM-R. The model training was conducted in two ways; (1) The training 

set was used directly for model training, then, the test set was applied to the model and 

the metrics were calculated; (2) an extra pre-processing step was performed in the 

training set prior to model training, we conducted a feature selection using the 

information gain algorithm (FSelector) to select the features with higher importance 

(weights higher than zero). After feature selection, the model was trained using only the 

selected features, then the test set was applied to evaluate the model performance. A 

schematic workflow is presented in Figure 1. 
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Figure 1: General workflow of the saliva sample preparation and MALDI-TOF analysis. (A) 

Method optimization. Initially, a range of different protein concentrations was evaluated to 

determine the optimal protein concentration. Subsequently, three MALDI matrices with better 

performances were evaluated and HCCA was selected as the optimal one. (B) The sample 

cohort consisted of four groups: severe (ICU), mild (emergency room), moderate (department) 

and control. The COVID-19 patients were confirmed by RT-qPCR of nasopharyngeal swab. 

Saliva samples were obtained using a salivette and virus inactivation was performed in an BSL-

3 laboratory. Direct spotting of saliva on the MALDI plate was performed and the proteomic 

profile was acquired using a MALDI-TOF MS instrument. The MALDI-TOF spectra were pre-

processed and analyzed in R environment, where statistically significant protein peaks were 

used to train multiple machine learning algorithms for group classification (training phase). The 

model with the best performances was used to analyze independent samples and calculate the 

accuracy, sensitivity and specificity of the model (validation phase). 
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Results 

In this study, we evaluated the potential of MALDI-TOF to identify prognostic 

biomarkers using saliva of COVID-19 patients. Initially, we tested a combination of 

analytical parameters to find the optimal conditions to obtain reliable and reproducible 

MS profiles (Figure 1). These conditions were optimized using a subset of samples 

belonging to the COVID-19 cohort. The entire cohort contained a total of 196 patients 

diagnosed with COVID-19, being 42 (21,4%) evaluated in emergency rooms, 81 (41,3 

%) hospitalized and 73 (37,3%) in ICU and 36 controls. Within the COVID-19 patients, 

we classified the emergency room (outpatient and inpatient) patients as 

MILD/MODERATE condition and ICU patients as a SEVERE condition. Most patients 

were male with an average age of 52,4 years old, being 153 (78%) patients more than 40 

years old. Most of them were not vaccinated (172, 87,7%) and used non-invasive 

oxygen support (106, 54%), 23 patients (11,7%) deceased due to COVID-19 

complications. Most ICU patients were male and more than 40 years old, all patients 

with invasive oxygen support and 20 of the 23 death outcome patients were admitted to 

ICU. Sex (p=0.003), oxygen support type (p<0.001) and outcome (p<0.001) had 

statistical significance between emergency room/department and ICU. The most 

prevalent clinical symptoms were cough (67,9%), fever (61,7%), breathing difficulty 

(58,2%), fatigue (40,8%) and body or muscular aches (37,8%). We observed that sex 

(p=0.003), mechanical ventilation (p<0.001), body or muscular aches (p=0.046) and 

breathing difficulty (p=0.004) were statistically significant different between emergency 

room/department and ICU, being the latter the most prevalent in the patients treated in 

emergency rooms or hospitalized, and breathing difficulty most prevalent in ICU 

patients (Table 1). No statistical difference in sex and lower age for the controls was 

detected between COVID-19 patients and control subjects (Supplementary Table 1). 
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Table 1: Clinical characteristics of the 192 COVID-19 patients investigated 

   MILD/MODERATE SEVERE Total 
p(1) 

Patients Characteristics  N % N % N % 

              

Sex              

Male 59 53.6% 51 46.5% 110 100% 
0.003* 

Female 64 74.4% 22 25.6% 86 100% 

        

Age        

<40 30 69.8% 13 30.2% 43 100% 
0.282 

≥40 93 60.8% 60 39.2% 153 100% 

        

Elderly        

<60 88 65.7% 46 34.3% 134 100% 
0.214 

≥60 35 56.5% 27 43.5% 62 100% 

        

Clinical Features              

Mechanical ventilation              

None 59 96,7% 2 3,3% 61 100% 

<0.001* Non-invasive1 64 60,4% 42 39,6% 106 100% 

Invasive2 0 0,0% 29 100,0% 29 100% 

Vaccination Status              

Unvaccinated 106 61.6% 66 38.4% 172 100% 

0.588 First dose only 10 66.7% 5 33.3% 15 100% 

Fully vaccinated 7 77.8% 2 22.2% 9 100% 

Outcome              

Discharge 120 69.4% 53 30.6% 173 100% 
<0.001* 

Death 3 13.0% 20 87.0% 23 100% 

        

        

Prevalence of symptoms according to disease severity   

Fever 80/123 65.0% 41/73 56.2% 121/196 61.7% 0.216 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.10.21267596doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.10.21267596


Cough 80/123 65.0% 53/73 72.6% 133/196 67.9% 0.273 

Headache 51/123 41.5% 21/73 28.8% 72/196 36.7% 0.075 

Sore throat 28/123 22.8% 11/73 15.1% 39/196 19.9% 0.192 

Muscle or Body Aches 53/123 43.1% 21/73 28.8% 74/196 37.8% 0.046* 

Fatigue 52/123 42.3% 28/73 38.4% 80/196 40.8% 0.589 

Congestion or runny nose 23/123 18.7% 9/73 12.3% 32/196 16.3% 0.243 

Difficulty breathing 62/123 50.4% 52/73 71.2% 114/196 58.2% 0.004* 

Loss of smell 19/123 15.4% 9/73 12.3% 28/196 14.3% 0.546 

Loss of taste 21/123 17.1% 17/73 23.3% 38/196 19.4% 0.287 

Nausea or vomiting 22/123 17.9% 13/73 17.8% 35/196 17.9% 0.989 

Diarrhea 21/123 17.1% 8/73 11.0% 29/196 14.8% 0.244 

ICU – Intensive Care Unit; *Statistical significance; (1) Pearson Chi-Square 

1 nasal cannula, facial mask ventilation or high flow nasal cannula. 

2 Invasive mechanical ventilation 

 

The optimization step consisted in testing several approaches for spectra 

acquisition. Initially, we tested the direct spotting method using several dilutions of the 

saliva. Three saliva samples were randomly selected from the cohort and analyzed in 

technical triplicates. We observed that direct spotting of samples diluted in a proportion 

of 1:1, 1:2, 1:5 and 1:10 presented similar number of peaks and maximum intensity, as 

well as a similar spectra profile (Figure 2). Thus, we selected the dilution of 1:10 that 

corresponded a protein concentration of approximately 0.2 μg/μL to conduct the 

following optimization step. The selection of optimal MALDI matrix was performed 

using the same saliva sample in technical triplicate. Three MALDI matrices, sinapinic 

acid [SA], dihydroxybenzoic acid [DHB], and α-cyano-hydroxycinnamic acid [HCCA] 

were tested and their MS profile compared. Different spectra profiles were obtained, 

being HCCA with higher maximum intensity, and DHB with more peaks identified 

(Figure 2). Although DHB had more peaks, we selected HCCA for the next analyses 

since it had lower variation in terms of number of peaks and maximum intensity. From 

these data it was possible to notice that analyses of technical replicates of the same 

saliva sample lead to less variation compared to different saliva samples (Figure 2B-C 

vs 2E-F).  
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Figure 2: (A) Mean spectra profile obtained from three different samples in triplicate at 

different concentrations (1:1, 1:2, 1:5, 1:10 and 1:100 sample to TFA 0.1% ratio). (B) 

Maximum intensity of the spectra for each concentration. (C) The number of peaks 

identified for each concentration. (D) Mean spectra profile of one sample in triplicate 

for each matrix tested. (E) Maximum intensity of the spectra for each matrix. (F) 

Number of peaks detected for each matrix. (G) PCA of the samples that were analyzed 

with 0.2 μg of proteins. (H) PCA of the samples using 1ul of saliva irrespective of the 

protein concentration. In Figure 2G and 2H, MILD refers to MILD/MODERATE 

condition. 
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A small portion of the dataset (87 samples) was used to test whether loading the 

same amount of proteins in the MALDI plate would be better for group separation. We 

observed that loading 0.2 μg of proteins for each sample reduced the variation in the 

PCAs (Figure 2G and H). Thus, for the machine learning analysis we decided to 

conduct sample spotting of the entire dataset using 0.2 μg of proteins. The variation 

obtained between MILD/MODERATE and SEVERE was higher compared to the 

variation obtained within the same condition. 

This study was divided into two parts comparing the saliva samples of: 1) 

control versus COVID-19 infected patients and 2) MILD/MODERATE versus 

SEVERE cases of COVID-19 patients. Average spectra for the Control (36 samples), 

MILD/MODERATE (51 samples), SEVERE (81 samples) and 

MILD/MODERATE+SEVERE (132 samples) are reported in Figure 3A-D.  

Initially, we aimed to comparing the MALDI-TOF MS profiles of control 

versus infected patients. A total of 132 samples of COVID-19 patients combining 

MILD, MODERATE and SEVERE were used as the infected group and 36 control 

samples were used as the control group. After peak filtration using the MALDIquant 

package, a total of 183 peaks were identified, which were reduced to 99 peaks after 

normality assessment and Wilcoxon rank sum test. The remaining peaks were used to 

plot the PCAs (Figure 3E) and train six machine learning models to classify between 

the conditions. The values for balanced accuracy and specificity were high for all 

models (Supplementary Table 2), with NB model having lower values. Sensitivity was 

high for SVM-P, SVM-R and RF, and balanced accuracy measures were similar for 

SVM-P and SVM-R, both with the highest value amongst the models tested, the 

complete list of all metrics obtained and all optimized hyperparameters for each fold is 

available at Supplementary Table 3 and 4. Overall, the best model was SVM-P, which 

scored a balanced accuracy, sensitivity and specificity of 92.9%, 92.2% and 93.6% The 

99 statistically significant features (q value less than 0.05) were used to train the model 

(Figure 3 H-I and Supplementary Table 5). Additionally, we performed an 

Information Gain filtering of the most relevant peaks and selected the 10 most ranked 

ones (Figure 3 F) and plotted the region of the most ranked peak (Figure 3 G). 

These data showed a pronounced difference between the two conditions. This 

prompted us to investigate the MS profile of saliva samples from COVID-19 patients 

harboring different clinical characteristics. 
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Figure 3: (A) MALDI-TOF MS mean spectrum of the saliva of the 

MILD/MODERATE group. (B) MALDI-TOF MS mean spectrum of the saliva of the 

SEVERE group. (C) MALDI-TOF MS mean spectrum of the saliva of the control 

group. (D) MALDI-TOF MS mean spectrum of the saliva of the infected group 

(MILD/MODERATE+SEVERE). (E) PCA for the control and infected groups. (F) The 

most ranked peaks after information gain filtering. (G) Spectra from the region of the 

highest ranked peak (1633). (H) Best ROC curves obtained from model training with 

control and infected samples. (I) Best PR curves obtained from model training with 

control and infected samples. 

  

Due to that, we analyzed 132 samples of COVID-19 patients (67% of the total 

samples) divided in 81 MILD/MODERATE and 51 SEVERE to identify MS-based 

saliva features. After peak filtration using MALDIquant package, a total of 139 peaks 

were identified, which were reduced to 44 peaks after normality assessment and 

Wilcoxon rank sum test. The remaining peaks were used to plot the PCA (Figure 4A) 

and train six machine learning models to classify between the conditions. The 

performance metrics for each model indicated that they differ, being the SVM-R the 

model with best mean accuracy (88.5%), mean sensitivity (91.5%) and mean specificity 

(85%) (Figure 4F and Supplementary Table 6). Also, specificity presented a high 

variation on every model tested, which was expected, since the saliva samples already 

presented a high variation in the PCA (Figure 4A). This was not observed in our 

previous study using the same platform but plasma as biofluid 23. The performance 

metrics in each fold for all six models and the optimized hyperparameters are available 

at the Supplementary Table 7 and 8. The best ROC and PR curves for each model are 

presented in the Figure 4D-E. The 44 statistically significant features (q value less than 

0.05) were used to train the model Figure 4D and Supplementary Table 9. 

Additionally, we performed a feature selection by information gained to observe which 

were the most relevant peaks, the 10 most important peaks are reported in Figure 4B 

and the most rated peak is plotted in Figure 4C. 
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Figure 4: (A) PCA obtained through the analysis of the MILD/MODERATE and 

SEVERE conditions. (B) The 10 most relevant peaks were obtained through 

information gain filtering. (C) Comparison between MILD/MODERATE and SEVERE 

of the most discriminant peak. (D) Best ROC curves obtained from the model training. 

(E) Best PR curves obtained from the model training. (F) Mean accuracy, mean 

sensitivity, mean specificity and mean kappa were obtained in the model training step. 

 

For SEVERE and MILD/MODERATE classification model validation, we 

prepared extra 64 samples (33% of the total samples) to test if the model could classify 
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them correctly. We trained the SVR-R algorithm using optimized parameters (sigma = 

0.003329177 and C = 0.8915975) retrieved from model selection step. First, we applied 

the test set to the trained model without feature selection, this approach yielded in an 

accuracy of 67.18%, a sensitivity of 52.17% and specificity of 75.60%. Then, we tested 

whether training the model using features that were selected by the information gain 

method could generate a better result; however, the metrics obtained were slightly 

lower, with an accuracy of 65.62%, sensitivity of 50% and specificity of 70.83%. The 

values obtained are expected since we used an independent dataset to validate the model 

generated during the training step. Moreover, being the MALDI-TOF MS features 

extracted from saliva samples highly variable, it is expected to retrieve lower accuracy, 

sensitivity and specificity values. 

 

Discussion 

The use of machine learning to build models for COVID-19 diagnosis has been 

already reported in the literature. Several approaches have been tested, including the use 

of X-ray imaging data 31, emergency care admission exams 32 and routine blood tests 33. 

Also, mass spectrometry data have been used to train machine learning algorithms. 

Among the biofluids used and the mass spectrometry techniques performed we can list 

the analysis of nasopharyngeal swabs in MALDI-TOF spectrometer to build models for 

COVID-19 diagnosis 22,34, the analysis of proteomic profile of plasma samples by LC-

MS/MS to build models for severity assessment and drug repurposing analysis 35, the 

use of the metabolomic profile obtained from plasma samples submitted to direct 

injection on high resolution MS system to build models for COVID-19 diagnosis and 

risk assessment 21, and the use of the proteomic profile of plasma samples submitted to 

MALDI-TOF to build models for COVID-19 risk assessment 23. Many of the studies are 

performed using biofluids that are invasive, such as plasma and nasopharyngeal swabs, 

and uses data acquisition techniques that are relatively expensive and time demanding. 

In order to slow down the disease spread, rapid and accurate identification of SARS-

CoV-2 is necessary 36; thus, we describe here the use of a minimal invasive biofluid 

associated with MALDI-TOF, which is a relatively cheap and fast technique, for the 

diagnosis and prognosis of COVID-19 using machine learning algorithms. Our models 

attained a high performance, with the best model achieving an accuracy, sensitivity and 

specificity of 88.5%, 91.5% and 85% respectively for classifying between 
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mild/moderate and severe cases of COVID-19; also, we achieved a balanced accuracy, 

sensitivity and specificity of 96.5%, 100% and 93.2% respectively for classifying 

between infected and control samples.  

Although the models demonstrated a good performance in the training steps, the 

validation with independent data presented a lower performance than expected. It is 

known that the salivary proteome is a complex biofluid, with reports indicating an 

identification of 5500 proteins 37. Also, there are several factors that contribute to inter-

individual variability of protein composition, such as taste stimulation, collection at 

different times of the day, age of infants, genetic polymorphism, and systemic 

pathologies 38. Saliva collection was conducted in a standardized manner; however, it is 

extremely difficult to control the behavior of each individual prior to sample collection. 

The direct spotting of the saliva samples might be another factor that contributed to the 

variability observed. Generally, direct spotting is more common in the literature, but 

other sample preparation methods might be applied prior spotting, such as protein 

digestion, glycoproteins enrichment, protein separation by electrophoretic gels, and 

peptide purification by C18 resins 38–41. Since our proposal was to develop the simplest 

yet accurate method for COVID-19 diagnosis, we did not evaluate the effect of more 

elaborate sample preparation methods; thus, further investigation is required in order to 

evaluate if the variability issue would be solved in the machine learning analysis. 

We achieved a good accuracy for classifying between control and infected 

samples; however, it is important to note that our controls do not comprise samples 

obtained from patients that presented flu symptoms, meaning that it is still necessary to 

evaluate if the models trained are specific for COVID-19. Comparing infected patients 

with controls that presented similar symptoms is commonly done in the literature 19,20,22; 

however, since our study was aimed to prognosis, there were few control samples 

available in our cohort and all of them were from healthy patients. A study by Costa et 

al. (2021) demonstrated the potential of MALDI-TOF analysis of saliva samples and 

machine learning for COVID-19 diagnosis, they also reported high inter-individual 

variability and their models did not achieve sensitivity, specificity and accuracy values 

higher than 85% 42; our approach demonstrated a potential application for prognosis, 

and our models achieved similar performances, meaning that our results corroborates 

with what is expected for saliva samples.  
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This study demonstrates that MALDI-TOF MS and machine learning algorithms 

can be used to analyze saliva samples for prognosis purposes. This strategy is 

reproducible, easy to perform, fast, and low-cost. Since MALDI-TOF MS is already 

present in several clinical laboratories, this approach can be easily established in 

hospitals. However, it is important to note the limitations of this technique. We 

observed high inter-sample variation, which can reduce the performance of the models 

trained and reduce even more the performance during model generalization (validation 

with unseen data). This could be minimized by adding more samples to the cohort or by 

using more elaborate sample preparation methods. Therefore, a larger cohort should be 

analyzed to develop more robust models and inter-laboratory samples should be used to 

validate the findings. Moreover, improvements in the analytical part should be able to 

discriminate better between MILD and MODERATE groups. 
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