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Abstract 

We present shaPRS, a novel method that leverages widespread pleiotropy between traits, or 

shared genetic effects across ancestries, to improve the accuracy of polygenic scores. The 

method uses genome-wide summary statistics from two diseases or ancestries to improve 

the genetic effect estimate and standard error at SNPs where there is homogeneity of effect 

between the two datasets. When there is significant evidence of heterogeneity, the genetic 

effect from the disease or population closest to the target population is maintained. We show 

via simulation and a series of real-world examples that shaPRS substantially enhances the 

accuracy of PRS for complex diseases and greatly improves PRS performance across 

ancestries. shaPRS is a PRS pre-processing method that is agnostic to the actual PRS 

generation method and, as a result, it can be integrated into existing PRS generation 

pipelines and continue to be applied as more performant PRS methods are developed over 

time.  

 

Introduction 

 

Genome-wide association studies (GWAS) provide a routine means of quantifying the 

effects of genetic variation on human diseases and traits. One possible use of these genetic 

effect estimates is the creation of polygenic risk scores (PRSs), an approximation of an 

individual’s genome-wide genetic propensity for a given trait or disease. Recent studies have 
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shown that individuals in the upper extreme tail of polygenic risk for some common diseases 

have equivalent risk to those carrying monogenic mutations for these phenotypes1,2. Driven 

by these observations there is hope that polygenic scores can be used alongside traditional 

clinical and demographic predictors of disease to diagnose disease earlier and with greater 

accuracy3,4.  

  

Unfortunately, the clinical utility of polygenic scores is currently limited by the GWAS on 

which they are based. The precision with which GWAS can estimate genetic effects on 

disease risk increases with sample size. Recent studies have suggested that most complex 

diseases will require somewhere between a few hundred thousand to several million cases 

to accurately capture genome-wide genetic effects on disease risk5,6. As a result, the 

information content of all current GWAS is imperfect, reducing the accuracy of the polygenic 

scores generated from them. There is an expectation that GWAS meta-analyses across vast 

population biobanks will get us closer to quantifying SNP effects that fully capture heritability 

for some common complex diseases. However, many debilitating and life-threatening 

complex diseases have lower population prevalence, preventing even meta-analyses across 

large biobanks from ascertaining sufficient cases to facilitate the construction of accurate 

polygenic scores. 

 

It is not only less common complex diseases that are set to be precluded from any clinical 

advantages brought about by polygenic scores. Genomics is failing on diversity7. On 

February 14th, 2024 the GWAS Diversity Monitor8 showed that 94.51% of individuals 

included in GWAS were from European ancestries. Recent studies have demonstrated the 

poor portability of polygenic risk scores across populations due to differences in effect sizes 

and LD structure9. Migration events and population bottlenecks can lead to large differences 

in allele frequencies between ancestries and, as a result of the biased application of GWAS, 

we are missing accurate disease risk estimates for the many variants that are only common 

outside of European ancestry groups10,11. Thankfully, the clarion call for major improvements 

in the ancestral diversity of GWAS, and genomics studies more generally, is now loud7,12,13. 

Recent studies in non-Europeans have highlighted the advantages of increased diversity of 

GWAS, delivering both novel genetic associations and biological insights that were missed 

even in the larger European ancestry GWAS studies9,14–16. If polygenic risk scores do start to 

deliver on their hype then further diversification cannot come soon enough – otherwise we 

run the risk of widening existing health inequalities. 

 

While genetic effects on disease certainly do differ between populations, many risk variants 

are believed to be shared across divergent ancestry groups17,18. There is also a growing 
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appreciation of the extent to which genetic effects are shared across different disorders. For 

clinically and biologically related diseases such as Crohn’s disease and ulcerative colitis, the 

two common forms of inflammatory bowel disease, genetic effects are often shared. Across 

immune-mediated disease more generally the number of known pleiotropic effects continues 

to grow, a phenomenon that is mirrored in other disease groups such as metabolic and 

psychiatric disorders. A principled pooling of information across traits19,20 and ancestries21–23 

has already been shown to improve prediction accuracy of PRS. A common assumption of 

these methods is that weights given to each dataset are constant across SNPs. In reality, 

this assumption is frequently violated as the extent of sharing, either between two diseases 

or two populations, varies across SNPs24,25.  

 

We introduce a novel method, shaPRS (pronounced Shapers), a PRS pre-processing step 

that can be integrated into existing PRS generation pipelines that allows integration of 

imperfectly shared information between two GWAS datasets. We assume one dataset is 

representative of the target population, hereafter referred to as the proximal dataset, and 

that a second adjunct dataset may provide relevant information but that the degree of 

relevance varies across the genome. Our approach, which only requires summary statistics 

for each dataset, estimates weights that summarise how relevant the adjunct dataset is at 

each SNP to perform a weighted meta-analysis of the two datasets. We also generate a new 

pairwise SNP correlation matrix that captures the effect of this weighting, and allows for 

partial sharing of controls and/or the use of distinct SNP correlation matrices for the two 

input studies (eg in the case of different ancestries).  This matrix may be used together with 

the weighted SNP effect estimates in any downstream PRS software. We show in large-

scale simulations in the UK Biobank (UKBB)26 that shaPRS outperforms similar methods. 

We then apply shaPRS to nine real GWAS datasets to illustrate the improvements it brings 

to PRS accuracy, both across diseases and across ancestral populations. 

 

Overview of method. shaPRS, which uses GWAS summary statistics, is a PRS pre-

processing step based on a weighted meta-analysis of two partially related GWAS studies. 

We begin by testing, at each SNP, evidence against homogeneity of effect between the two 

studies using Cochran’s test. From these test statistics, we calculate the local false 

discovery rate (lFDR)27 as an estimate of the probability that the estimates reflect the same 

“common truth”. Where the lFDR is high, it is likely that the datasets can be combined and 

we favour ���, which is the standard inverse variance weighted average of the effect 

estimates in the proximal study, ��, and the adjunct study, ��. Our aim is to minimise 

variance of estimated effect sizes by including information from the adjunct study, where 

doing so is unlikely to cause bias. Where the lFDR is low, we are conservative, and favour 
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�� from the proximal study, aiming to minimise bias at the expense of higher variance. We 

thus calculate a final shaPRS SNP effect estimate as 

 

 ������� �  �1 � �	��  
  � ���, 

 

where � denotes the lFDR. As the use-case of our method is a seamless integration into 

existing PRS generation pipelines, a full set of summary statistics are derived, including 

standard errors, p-values and sample size, as described in the Materials and Methods 

section. An illustrative example is provided in the Supplementary Information.  

 

The current generation of most performant PRS generation methods28–30 also require an 

appropriate LD-matrix, often obtained from a reference panel. Therefore, to obtain an LD-

reference panel appropriate for the derived summary statistics that represent information 

from the weighting and possibly LD from different ancestries, we provide a method to derive 

a new matrix describing the correlation between �������  across different SNPs 

(Supplementary Note). 

 

Materials and methods 

ShaPRS genetic association summary statistics blending. Our approach is based on a 

weighted averaging of each SNP’s estimated effect between a single proximal dataset and 

an inverse variance meta-analysis of the proximal and adjunct datasets. The full derivations 

are set out in the Supplementary Note, and summarised here. Our method favours the 

proximal dataset effect estimate β1 where the effect estimates appear to differ between 

proximal and adjunct datasets, and the combined effect estimate β12 (the standard fixed 

effects meta-analysis estimate obtained from β1 and the adjunct study coefficient β2) when 

the effect estimates for the two datasets are similar.  In other words, we choose the more 

precise proximal phenotype with lower bias where SNP effects are heterogeneous, but 

prefer the larger sample size with lower variance where the SNP effects are congruent 

between single datasets. 

 

To make this decision, we use Cochran's Q-test to assess heterogeneity of effects between 

the two datasets at each variant, modified to allow for shared controls between the cohorts. 

� �
	
��
���



�

��

�

� � �  � 
� 
�
, � �  
�

	��
, 

where �1 / �2 are the standard errors for the proximal and adjunct datasets, respectively, 

and � is an estimate of the correlation between  β1  and β2 obtained as a simple function of 

sample sizes31. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 21, 2024. ; https://doi.org/10.1101/2021.12.10.21267272doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.10.21267272
http://creativecommons.org/licenses/by/4.0/


5 
 

 

To estimate the probability that effects are heterogeneous, we used a local FDR approach, 

estimating  

� � �� ��� | �	,  

where H0 is the null hypothesis for the SNP, and p is the (adjusted) Q-test p-value obtained 

from the Chi-squared distribution with one degree of freedom as defined above. The lFDR 

values were then estimated from these p-values by the qvalue R package32.  

The blended effect estimate is then 

�������  �  � ���  
 �1 � �	��. 

The goal of our method is to generate a new, complete set of summary statistics that may be 

used by any downstream PRS generation tool. These statistics include a new set of SNP 

coefficients, their standard errors and the correlation between coefficients. The 

Supplementary Note sets out derivations for the standard errors and correlation matrix, and 

functions to calculate these are provided in the R package https://github.com/mkelcb/shaprs. 

 

Simulation analyses. Our simulations relied on the UK Biobank (UKBB) cohort, which has 

been previously described in detail elsewhere26. We excluded individuals who were sex-

discordant, not 'white British' or had third-degree relatives or closer in the cohort, as defined 

in the UK Biobank documentation. Genotype data were filtered to an intersection of the 

HapMap3 panel (a common practice for PRS generation, but not a requirement for shaPRS) 

and a subset that excluded variants with an INFO score <0.8, MAF <0.1%, missing genotype 

rate >2% or deviated from Hardy-Weinberg equilibrium  (P<10-7). From this subset, we 

randomly chose 3,158 individuals to serve as a test set (approximately 20% of the size of 

our IBD dataset). 

 

We evaluated the effect of cohort size by considering three studies with approximately half 

(N=7,022), equal to (N=14,044) or double (N=28,088) the number of samples in our 

genotyped IBD cohort, after withholding 3,158 individuals as a test set that were not used for 

model training. We also considered three different ratios to split our source samples into the 

two phenotypes (proximal and adjunct). These ratios were 20/80, 40/60 and 50/50 for 

phenotype 1 and 2, respectively. Additionally, we varied the range of pleiotropic 

architectures considered by evaluating three genetic correlations (0.1, 0.25 and 0.5) made 

up from three combinations of shared and non-shared SNP effects. The motivation for the 
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latter was to examine the key ability of our method to adapt to different compositions of 

shared and non-shared genetic effects that comprise a given level of genetic correlation. We 

considered three different scenarios (low, medium and high, as defined in Table S1) of 

shared effects per genetic correlation, making up a total of nine arrangements. We also 

considered an additional scenario, where five SNPs contribute 5% of the total non-shared 

heritability for each trait. We evaluated all possible parameter combinations at a heritability 

of 0.5 arising from 1,000 causal variants for a set of 162 genetic architecture scenarios. We 

also evaluated the performance of all methods in the four additional scenarios where we 

have held all parameters at their base value except for one (the number of causal SNPs of 

3,000 or 5,000, and a heritability of 0.25 or 0.75). The results of these additional 36 

simulation scenarios can be found Fig S4.  We used LDAK 5.033 to simulate 20 replicates for 

bivariate quantitative phenotypes whose SNP effect sizes we generated via our custom R 

scripts according to the schema described above. We evaluated shaPRS’s performance by 

comparing its predictive accuracy on the test set against four baselines: the single proximal 

dataset on its own, the meta-analysis of the proximal and adjunct datasets and the SMTPred 

and MTAG methods. Both SMTPred and MTAG were trained directly on the PLINK summary 

statistics using their own python functions 'ldsc_wrapper.py' and 'mtag.py' for SMTPred and 

MTAG, respectively. To accommodate the scale of our simulations, the final PRS were 

generated via RapidoPGS, a computationally efficient PRS generation method34. To 

evaluate if using RapidoPGS had introduced any bias into our analyses, we re-generated the 

PRS of 50 randomly selected replicates (10 for each method) with LDpred2-auto. For this, 

we chose the scenario involving 14,044 individuals, phenotypes divided 50/50, with an rG of 

0.5 made up from half of the causal variants shared with a correlation of 1.0, without any 

highly penetrant variants. We found the relative performance of the methods did not change 

and that the results were strongly congruent between LDpred2 and RapidoPGS (Spearman 

rank correlation of 0.781).  

 

Generating genome-wide summary statistics for Crohn's disease and ulcerative colitis. The 

availability of all IBD datasets are described in the Data and code availability section. The 

sample collection protocols are described in the original publications of each study35–37. Initial 

quality control procedures for the studies where the IBD PRS performance was tested are 

described in the original publications26,36,37.   For the IBD training dataset, and prior to 

genotype imputation, we excluded (1) A/T and C/G genotyped variants with MAF ≥0.45 in 

1000GP EUR subset38; (2) variants with a call rate < 0.95 (or 0.98 call rate for variants with 

MAF < 0.01); (3) variants with a significant difference in genotype call rate between cases 
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and controls (p-value <1x10-4); (4) variants with allele frequency differences versus those  

reported in Gnomad non-finish Europeans or TOPMed39 global MAF (using the criterion ((p1 

− p0)^2/((p1+p0)*(2-p1-p0)) > 0.025 and >.125, respectively), where p0 is the MAF in the 

reference panel and p1 the observed MAF in the study); (5) variants with a HWE p-value < 

10-5 among controls and 10-12 among cases; and (6) monomorphic variants. We also 

excluded samples with a missing genotype rate >0.5; a heterozygosity estimate +/- 4 

standard deviations from the mean (per continental population), a mismatch between 

recorded gender and inferred genotypic sex, with a kinship coefficient ≥ 0.345 (defined using 

KING40 (v2.2.4)) with another sample within the study, or ≥0.177 with another sample in 

other UK IBD study; or with evidence of non-European ancestry, defined by projecting the 

samples onto principal components estimated from 1000 genomes project reference 

samples38. 

The datasets were imputed using the multi-ancestry TOPMed reference panel (r2@1.0.0) via  

the TOPMed imputation server39,41 (imputationserver@1.5.7) . After the first round of 

imputation, variants with an empirical R2 < 0.5 were excluded from analysis. Imputation was 

repeated after correcting strand issues at SNPs with an empirical R2 < -0.5. Post imputation, 

variants with HWE p-value ≤ 1x10
-5, MAF < 0.001, or imputation R2< 0.4 were excluded. 

The GWAS training datasets included 4,647 and 5,400 UC and CD cases, respectively, and 

10,308 shared controls. 

Association tests for UC and CD were performed using Regenie42 (v1.0), including European 

populations principal components and sex as covariates. This produced GWAS summary 

statistics for 14,056,620 variants. 

 

Building polygenic risk scores from Crohn's disease and ulcerative colitis GWAS summary statistics 

Summary statistics for CD and UC were initially filtered to remove those SNPs with an 

imputation INFO (or MARCH R2) < 0.8 or those failing the following quality-control 

thresholds: 

 
 ��� � 0.5  ��  ��  ��� 	 �� 
 0.1 ��  ��� � 0.1 �� ��  �  0.05  , 
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where ��� is defined as  

��� 
 �
�� ��� 

,  

and � � as 

 � � 
 �2 ��  �1 � ���, 

where AF, N and ��� are the minor allele frequency, the sample size and standard error of 

the SNP coefficients, respectively. The above threshold criteria used for this filtering step 

were sourced from the LDpred2 recommended settings. We then applied shaPRS across 

the remaining set of SNPs, which were then filtered to only keep SNPs that were either in 

the HapMap3 panel (a common practice for PRS generation) or had a trait heterogeneity 

lFDR < 1. We chose to expand beyond HapMap3 in the case of IBD, as many of the variants 

that differentiated CD from UC were not captured on the standard HapMap3 panel. 

However, we note that shaPRS is completely agnostic to the set of SNPs it is applied to, as 

it can be applied to any summary data from genome-wide SNPs to the typical HapMap3-

based PRS panel. To accommodate the non-HapMap3 SNPs in the LD-reference panel, we 

generated SNP-SNP correlation matrices for 1,703 LD blocks43 using PLINK’s ‘ --r’ function. 

The resulting files were then compressed and packaged via a custom python script into the 

same hdf5 format as used by PRS-CS. This procedure left 856,877 SNPs that were used to 

generate the PRS by all the evaluated methods. The final PRSs for the IBD datasets were 

built using PRS-CS and the profile scores for our test set individuals were generated using 

PLINK's '--score' function. 

Cross-ancestry datasets and PRS model evaluation. The Japanese association summary 

data for the five traits (asthma, height, BRCA, CAD and T2D) were all retrieved from the 

Biobank Japan repository44,45. The European association data for the same five traits were 

sourced from different studies identified through the GWAS catalogue selected based on the 

criteria that they were of comparable sample size, and that they did not overlap with the 

(non-interim) UK Biobank (UKBB) release. For the scenario involving the African proximal 

population, we obtained African ancestry GWAS summary statistics from the Uganda 

Genome Resource46 for three traits (BMI, height and LDL cholesterol levels), with European 

adjunct association summary statistics from other published sources47–49. The full set of 

sources are shown in Table 1. 

To produce the final LD-reference data, we used a custom R script ('LDRefGen_wrapper.R', 

included in the project github) to estimate the pairwise correlations between shaPRS SNP 

effect estimates. This functionality is now available in our R package via the 
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shaPRS_LDGen function, which requires the proximal and adjunct LD-reference panels in 

LDpred2 format and the shaPRS pre-processed summary data. For more information on the 

mathematical details on the LD derivation see the Supplementary Note. To maximise the 

fraction of variants available across ancestries and summary datasets, HapMap3 SNPs were 

chosen that were shared between the adjunct and proximal summary statistics that were 

also present in the UKBB imputed dataset with an INFO score > 0.8. The final PRS were 

built after the removal of ambiguous alleles (A/T and G/C). All PRS generation methods, 

LDpred2, PRS-CS and PRS-CSx, were applied via their respective ‘auto’ options to estimate 

overall shrinkage, keeping with our use-case of no additional genotype data being available 

to fine tune hyper-parameters. PRS profiles were generated in PLINK50 and evaluated using 

individual genotypes from the UK Biobank cohort. For all traits we excluded related 

individuals and restricted the analysis to individuals of the proximal ancestry. For the 

generation of the proximal African population we identified 6,414 individuals using the 

population centroids published by Prive et al51, and for the European adjunct dataset we 

relied on the flag “white British” ethnicity (UKBB field 21000, code 1001) in the UKBB 

documentation51. We also excluded ~30,000 individuals from the initial release that were 

genotyped with the UK BiLEVE array. We identified those individuals using field “22000” 

batches coded -1 to -11. For BRCA, CAD and T2D we applied the same selection criteria for 

cases and controls as previously described52, using the same UKBB codes for each of the 

relevant traits as in https://github.com/privefl/simus-PRS/tree/master/paper3-

SCT/code_real). Briefly, we included as cases those individuals who self-reported the 

condition or were diagnosed by a medical doctor or the condition was included in their death 

record. For breast cancer we excluded individuals with other cancer diagnosis and restricted 

the analysis to females (108,21 cases, 147.134 controls). For T2D we excluded individuals 

with type 1 diabetes (12,288 cases, 301,822 controls) and for CAD we excluded individuals 

with other heart conditions (10,611 cases, 209,480 controls). For the asthma phenotype we 

identified individuals with the condition who had a positive response for self-reported code 

20002_1111 (28,576 cases and  222,649 controls). For height we used 251,262 individuals 

in total with phenotype code 50. 

To quantify the performance of the PRS for binary traits we calculated the area under the 

curve (AUC) (for binary traits) between the predicted and observed phenotypes using the R 

package "pROC". Similarly, for quantitative traits we calculated the squared correlation 

between the PRS and the measured trait (r2). Table 1 summarises the cross-ancestry PRS 

evaluation parameters. 

 

Results 
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Simulations of different trait, same-ancestry datasets. We performed simulations utilising 

common SNPs (MAF>1%) genotyped in the UK Biobank26 (UKBB) cohort. We compared 

shaPRS to two baseline approaches: single dataset analysis (�	 at all SNPs) and inverse 

variance weighted meta-analysis (�	� at all SNPs). The meta-analysis is equivalent to 

running shaPRS if there was no heterogeneity of effect anywhere across the genome, 

allowing us to quantify the extent to which incorporating the measure of heterogeneity (lFDR) 

learned via the Cochran test improves PRSs. In recent years, several methods that exploit 

genetic correlation between related traits to improve association or prediction accuracies 

have been proposed, including SMTPred20, MTAG19 and CTPR53. We choose SMTPred and 

MTAG as comparison methods because they also rely on genome-wide summary statistics 

and thus have a similar use-case to shaPRS. However, like other previously developed 

methods, both SMTPred and MTAG assume a constant shared genetic aetiology across the 

genome. A detailed description of the simulation can be found in the Materials and Methods 

section.  

 

Genetic correlation (rG), which is a scalar metric, does not fully capture the overall structure 

of shared genetic aetiology. For example, a genetic correlation of 0.5 can be the result of all 

causal SNPs shared with a per-SNP effect correlation of 0.5 or, alternatively, only half of the 

causal SNPs may be shared but with an effect correlation of 1.0. By fixing the genetic 

correlation at 0.5, but varying the fraction of shared and non-shared genetic effects we 

investigated and demonstrated the key ability of our method to adapt to such different 

compositions of overlapping genetic aetiologies. We also considered an additional scenario, 

where five SNPs contribute 5% of the total non-shared heritability for each trait. The 

rationale for including such SNPs was to model highly penetrant variants such as NOD2 in 

CD25 or FLT3 in autoimmune thyroid disease24,54, which play an important role in 

differentiating these diseases from otherwise genetically related conditions. Our main 

simulation analyses examined 162 different genetic architectures that arose from the 

examined parameters. The full set of parameters are summarised in Table S1, and Fig 1 

presents a subset of our simulation results with a heritability of 0.5, 1,000 causal variants 

and an rG of 0.5 between the proximal and adjunct datasets. The full set of results from all 

simulation scenarios can be found in Figs S3 and S4. 

 

shaPRS outperformed alternative methods in 93% of the simulated scenarios, and frequently 

by large margins. Fig S6 visualises the formal evaluation (via r2redux’ r2_diff function) 

between shaPRS and other methods as a heatmap for the scenarios depicted in Fig 1. 
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ShaPRS' capacity to accommodate genetic heterogeneity at a per-SNP level was 

particularly demonstrated by by an increasingly larger performance advantage over other 

methods in scenarios (Fig S1) where a given genetic correlation between two traits was 

concentrated amongst a subset of causal SNPs with stronger effect size correlations (See 

rG composition in Table S1). Reassuringly, shaPRS performed similarly to other methods in 

scenarios with a constant shared genetic aetiology (all causal SNPs shared between traits 

with weaker correlation in effect sizes). The relative ordering of the performance of the 

methods did not change with the introduction of extra heterogeneity created by SNPs of 

large effect (Fig 1b and Fig S1b). However, such high penetrance variants further enhanced 

the advantage of shaPRS against all evaluated alternatives. In conclusion, shaPRS 

compared favourably to all other approaches, particularly in scenarios when the underlying 

assumption of no non-shared SNPs with non-null effects was violated.  

 

 

  

Fig 1:  Heatmap of the squared correlation between simulated and predicted phenotypes for 

selected cross-trait genetic relationships. Warmer colours indicate better performance. a. A 

genome-wide genetic correlation between proximal and adjunct traits of 0.5 with a heritability of 0.5 

from a 1,000 causal variants and no extra heterogeneity created by SNPs of large effect. Sample 

size N = 14,044, with a proximal/adjunct sample ratio of 50/50, 40/60 or 20/80, and where cor is the 

correlation of effect sizes between SNPs and P (or causalS) is the fraction of causal SNPs shared 

between the proximal and adjunct datasets,. split is the ratio of the proximal to adjunct dataset 

sizes. b. The same scenario as a, with the addition of extra heterogeneity created by five SNPs of 

large effect that contributed 5% non-shared heritability. Results across the complete set of 

simulated scenarios are shown in Fig S3. 
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Application to inflammatory bowel disease subtypes. Inflammatory bowel disease (IBD) 

is a complex inflammatory disease of the gastrointestinal tract with a prevalence of 0.5% in 

Western countries55. Its two main clinical subtypes, Crohn's disease (CD) and ulcerative 

colitis (UC) have a substantial but imperfect overlap in their genetic aetiologies, with a 

genome-wide genetic correlation of ~0.5656. We performed a shaPRS analysis of ulcerative 

colitis (UC) and Crohn's disease (CD) using a GWAS dataset35 that included 4,647 and 

5,400 UC and CD cases, respectively, and 10,308 shared controls. The Manhattan plot in 

Fig 2a illustrates how the estimated lFDR values capture the landscape of heterogeneity 

between UC and CD, with areas of highly incongruent effects (such as the NOD2 region on 

chromosome 16) featuring prominently among the peaks.  

 

A set of three baseline PRS were built, trained either on summary statistics from a 

case/control GWAS  of a  single disease subtype (CD or UC alone), or alternatively from a 

fixed-effect meta analysis of the CD and UC GWAS summary statistics to create a GWAS 

for the IBD phenotype). Three additional PRS were built based on more advanced models 

implemented in SMTPred, MTAG and shaPRS. All PRS were built using PRS-CS . We 

evaluated PRS performance on independent CD26,37 and UC36 cohorts, with 1,181/2,896 and 

1,909/2,764 cases/controls, respectively, by estimating the squared correlation between the 

predicted and observed phenotypes (Fig 2 and Table S3).  

 

We found that the PRS estimated from either the GWAS of CD or UC predicted the 

corresponding subtype with similar accuracy to the PRS generated from the IBD fixed-effect 

meta-analysis. Considering the variance-bias trade-off latent in these experiments, these 

results make intuitive sense; we approximately doubled the sample size of the cases for 

traits that share approximately half their genetic aetiology (rG=0.56). Therefore, given this 

level of shared genetic aetiology, combining phenotypes to train PRS did not consistently 

improve the accuracy. However, we found that shaPRS substantially outperformed these 

baseline PRS. Evaluated against the proximal dataset alone, shaPRS improved results by 

~4% and by ~22%, for CD and UC, respectively. Compared to combining the CD and UC 

phenotypes in a fixed-effect meta analysis, shaPRS increased performance by ~12% and by 

~6% , for CD and UC, respectively. Additionally, shaPRS also outperformed SMTPred by 

~7% and ~10% and MTAG by ~11% and 39%, for CD and UC, respectively. ShaPRS was 

significantly better than both SMTPred and MTAG, by at least either the r2redux r2_var 

or the Delong tests (Table S4). We also found that adding shaPRS into a nested model 

of the other method always improved the overall model fit, whereas the other way 
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around, adding the other method into a nested shaPRS-only model, only improved the 

model fit once (in the case of MTAG for CD). 

 

 

Fig 2: Comparison of PRS estimation methods for predicting inflammatory bowel disease 

subtypes. a. Manhattan plot depicting the genome-wide heterogeneity between Crohn’s disease 

and ulcerative colitis measured by Cochran’s Q test (Y-axis). Blue line represents SNPs with an 

lFDR < 0.5 and the red line represents SNPs with an lFDR < 0.01, which are also highlighted in 

green. b. Barplot of PRS performance evaluated by the area under the receiver operating 

characteristic curve (AUC) of the predicted and observed phenotypes in independent cohorts of 

1,181/2,896 and 1,909/2,764 cases/controls, for Crohn’s disease (CD) and ulcerative colitis (UC), 

respectively. Each coloured bar represents a different PRS estimation method: IBD subtype alone 

(proximal: cyan), fixed-effect meta analysis (meta: orange), SMTPred (dark blue), MTAG (pink) and 

shaPRS (yellow). The error bars represent the 95% confidence intervals which were computed with 

2,000 stratified bootstrap replicates and the values above  each bar show the AUC  for the given 

method. 

  

Leveraging datasets from different ancestries. To date, GWAS have been predominantly 

focussed on European populations. The accuracy of PRS generated from GWAS summary 

statistics in one ancestry is decreased in individuals of other ancestries due to a combination 

of differences in LD, MAF, and causal variant effects between populations. We hypothesised 

that shaPRS could better leverage information from GWAS in different ancestries to 

construct more performant PRS. To test this hypothesis, we obtained GWAS summary 

statistics across a range of traits from diverse population pairs (Table 1, Materials and 
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Methods), and quantified the extent to which shaPRS’ use of the adjunct data improved the 

performance of two PRS methods (PRS-CS and LDpred2) that only make use of GWAS 

summary statistics from the proximal ancestry. These methods require LD matrices 

representative of the study population, and are therefore restricted to single population 

analysis. We present their standard results as baselines, as well as the results with shaPRS 

pre-processing to leverage information from the adjunct datasets. Both methods can either 

use an additional validation dataset to optimise parameters, or estimate these internally 

using an “auto” mode. We used the auto mode to focus on the situation where an 

independent set of summary statistics is unavailable for the proximal population (which we 

believe will predominantly be the case for understudied populations). We also compared 

shaPRS against PRS-CSx23, a recently developed method that integrates GWAS summary 

statistics across different ancestries while accounting for MAF and LD differences. PRS-CSx 

is performed in two stages. Stage 1 infers posterior SNP effect sizes under continuous 

shrinkage (CS) priors, learnt either directly from the proximal dataset (auto mode) or 

optimised using a second independent set of GWAS summary statistics from the same 

proximal population. We again chose to use the auto approach, and refer to this as PRS-

CSx-stage1. Note that this is not the recommended way to run PRS-CSx, and we include 

stage1 only to assess the performance without any additional dataset. Finally, to quantify the 

added value an independent proximal dataset brings to PRS performance, over and above 

any provided by shaPRS, we provided PRS-CSx with an independent dataset over which to 

optimise the weighted averaging of effects between the proximal and adjunct ancestries, 

which we refer to as PRS-CSx. The performance of each PRS method was evaluated by 

estimating the r2 and area under the curve (AUC) (for binary traits) between the predicted 

and observed phenotypes (Fig 3 and Table S2). We have also performed formal significance 

tests and likelihood-ratio tests that compared shaPRS and the other method baselines, 

relative to a complex model that had both (Table S5). 

 

ShaPRS improved the accuracy of PRS estimates from LDpred2 and PRS-CS in six of the 

eight traits studied, with the greatest improvement seen for traits where the power of the 

adjunct dataset far outweighed that of the proximal study (e.g. BMI and height in the 

Africanproximal and Europeanadjunct studies). shaPRS also consistently outperformed PRS-CSx-

stage1 in these same six studies, in four instances also reaching statistical significance 

(Table S4), demonstrating its superiority in situations where only a single set of GWAS 

summary statistics are available for a given proximal population. Furthermore, the shaPRS 

improved PRSs were more performant than those from PRS-CSx for four of the eight traits 

studied, despite the fact that PRS-CSx exclusively made use of an independent dataset from 

the proximal population. PRS-CSx only outperformed shaPRS improved scores by a 
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noticeable margin for two of the eight tested traits (height and LDL in the Africanproximal and 

Europeanadjunct studies), highlighting the extent to which shaPRS can improve PRS without 

the need for a second independent set of GWAS summary statistics from the proximal 

population. 

 

 
Fig 3: shaPRS maximises the accuracy of polygenic risk scores across divergent ancestry 

groups when only GWAS summary statistics are available. LDpred2 and PRS-CS trained on only 

the proximal ancestry datasets. shaPRS+LDpred2 and shaPRS+PRS-CS add preprocessing by 

shaPRS to leverage the adjunct datasets whilst generating a proximal ancestry PRS. PRS-CSx-

stage1 combines the proximal and adjunct summary data without the reliance on additional genotype 

validation data. PRS-CSx  follows on from PRS-CSx-stage1 by performing an additional step of 

finding the best linear combination of the proximal and adjunct PRS files by using additional genotype 

validation data. As PRS-CSx assumes a different use-case than our paper, it is only included as a 

point of reference. a. Barplot of PRS performance for the EUR proximal and EAS adjunct analyses, 

evaluated by the squared Pearson correlation coefficient (r2) between predicted and observed 

phenotypes. Confidence intervals were generated via the r2redux’ r2_var function. T2D = type 2 

diabetes, BRCA = breast cancer, CAD = coronary artery disease.  b. Barplot of PRS performance for 

the AFR proximal and EUR adjunct analyses, evaluated by the squared Pearson correlation 

coefficient (r2) between predicted and observed phenotypes. BMI = body mass index, LDL = low-

density lipoprotein cholesterol level. 
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To better understand how shaPRS gains performance, we examined two analyses in detail. 

Taking the Asthma analysis in EUR/EAS individuals, and the CD/UC analysis as examples, 

we can see that very few SNPs are detected to have genuinely different effects (i.e. low 

lFDR) in the different ancestries or traits (Figure 4a-b). Amongst SNPs with low 

heterogeneity (Figure 4c), shaPRS tends to shrink the effect size, beta, towards zero for 

SNPs ultimately declared non-significant, while leaving beta on average unchanged for 

significant SNPs. For all low heterogeneity SNPs, the standard error shrinks as would be 

expected in any meta analysis. For high heterogeneity SNPs (Figure 4d), on the other hand, 

both beta and the standard error remain relatively unchanged regardless of significance. 

shaPRS thus allows effects specific to individual traits or populations to be leveraged when 

appropriate, and does not attempt to leverage that information when inappropriate. Given the 

predominance of low heterogeneity, non-significant SNPs, the greatest effect of shaPRS is 

to shrink estimates of null SNPs towards zero.  
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Fig 4.  shaPRS maximises accuracy of polygenic risk scores by more completely capturing 

between SNP variation in shared effects across ancestry groups or related traits. . The top row 

contrasts the distribution of effect heterogeneity measured by lFDR in a) a cross-ancestry analysis of 

asthma that uses European GWAS summary statistics as the proximal dataset and East Asian GWAS 

summary statistics as the adjunct dataset (left), and b) a cross-trait analysis of Crohn’s disease, 

leveraging a GWAS of ulcerative colitis (UC) as an adjunct dataset. The distributions of lFDR values 

are shown, where low lFDR corresponds to higher heterogeneity in estimated effects. The bottom row 

compares the proximal study’s beta (Beta_1) and standard error (SE_1) to its shaPRS-adjusted 

output (Beta_shaPRS, SE_shaPRS respectively) for the asthma analysis. SNP have been partitioned 

into those with little evidence of heterogeneity (lFDR > 0.5) between the two populations (c, d) and 

this with evidence of heterogeneity (lFDR <= 0.5) between the two populations(e, f). Colours indicate 

whether a SNP was detected to have a significantly non-zero effect (p < 5x10-8) in the shaPRS 

analysis. 
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Discussion 

 

We introduce shaPRS, a novel method that integrates genetic association information from 

heterogeneous sources to improve accuracy of PRS for related traits and across ancestral 

populations. 

 

A major strength of shaPRS is the ability to exploit the differential genetic architecture of 

related traits by considering the evidence for heterogeneity at each variant and weighting 

towards the estimate with the more beneficial properties: smaller variance in case of low 

heterogeneity or, alternatively, smaller bias in case of high heterogeneity. shaPRS can thus 

particularly improve the accuracy of a PRS when the genetic correlation structure between 

the proximal and adjunct datasets varies between SNPs. This is in contrast with previously 

developed methods, such as SMTPred and MTAG, both of which assume a constant sharing 

of genetic aetiology. SMTPred assumes that all SNP effects are shared equally (it integrates 

predictions on the PRS-level), whereas MTAG learns different per-SNP weights, however, 

unlike shaPRS, the combined SNP effects are a function of parameters that are constant 

across all variants. The per-SNP weighting approach adopted by shaPRS requires a given 

SNP to be genotyped in both the proximal and adjunct studies, otherwise the effect from the 

proximal study alone is used to generate the PRS. The advantage of applying shaPRS pre-

processing is therefore positively correlated with the number of SNPs genotyped in both the 

proximal and adjunct datasets. Given the widespread use of a small number of genotyping 

arrays and genotype imputation, we expect most traits or ancestries to have sufficient 

overlapping SNPs to make shaPRS pre-processing a useful strategy.   

 

In our example of Crohn’s disease and ulcerative colitis, the pervasive sharing of genetic 

effects between the two diseases is well established57, and the genetic correlation between 

the two diseases has been estimated to be 0.5656. However, there are some SNPs with 

large differences in effect between Crohn’s and UC57; for example, in the NOD2 locus 

genetic variants explain around 1.5% of variance in liability of Crohn’s disease58, but there is 

no evidence of association to ulcerative colitis. More fully accounting for this inconsistent 

correlation in genetic effects between traits enables shaPRS to outperform competing cross-

trait methods. In the case of Crohn’s disease risk prediction, shaPRS outperformed fixed-

effect meta analysis, SMTPred and MTAG by ~12%, ~7% and ~11%, respectively (see 

Table S3 for detailed results).  .  
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When applying our method to cross-ancestry prediction based solely on GWAS summary 

statistics, shaPRS with either LDpred2 or PRS-CS, outperformed the cross-ancestry method 

PRS-CSx for six of the eight traits considered. Even when we exclusively provided PRS-CSx 

with this additional genotyped dataset to fine tune the final PRS by finding the best linear 

combination of the proximal and adjunct PRS, it only appreciably outperformed a shaPRS-

informed analysis for two of the eight tested traits. We note that such a fine-tuning approach 

could, in principle, be applied to the outputs of any PRS method (including those built by 

shaPRS) to further improve their PRS accuracy across populations. Unfortunately, we 

believe that additional genotyped datasets will seldom be available for most 

underrepresented populations and lower prevalence traits, making shaPRS ability to 

generate accurate PRS without these a key feature of our method.  

 

Comparing the full with the nested models of either just shaPRS or just one of the other 

methods, also demonstrated our method’s advantages, as evidenced by the consistently 

lower likelihood-ratio test p-values favouring shaPRS. This held true for both the simulations 

(Fig S7) as well as for the majority of the real data analyses (Tables S4 and S5), despite the 

limited sample sizes and therefore lower power for the latter. We interpret these results to 

suggest that shaPRS was able to achieve a higher performance by adding unique 

information not available to the other methods.  

 

In the coming years, to expand the clinical applicability of PRS, more ancestrally diverse 

populations will need to be recruited for large-scale genetic research12,13. In the interim, 

methods such as shaPRS can contribute to more equitable health outcomes by leveraging 

existing datasets more effectively. Our simulations and real-world examples show that 

shaPRS can improve PRS estimation across a broad range of genetic architectures. While 

we have showcased the power of shaPRS for improving PRS estimates between traits and 

ancestries, this flexibility enables shaPRS to be applied whenever incomplete sharing of 

genetic effects is expected between two GWAS datasets. Other possible use cases for 

shaPRS could therefore include generating PRS for traits with heterogeneity of effect 

between the sexes or between different environments.  

 

ShaPRS is designed to fit within existing pipelines as a pre-processing tool, thus, it is not in 

direct competition with other PRS generation tools such as LDpred229 or PRS-CS30. shaPRS 

can therefore continue to be applied as more performant PRS methods are derived in the 

future, such as the recently proposed PolyPred59.Our recommended approach is to pre-

process GWAS summary statistics via shaPRS before taking them forward to a PRS tool of 

choice that would be used to produce the final profile scores. shaPRS also fits with the 
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ongoing trend of reliance on summary statistics alone, without the need for access to 

genotype level data at any stage, as it provides a competitive performance without the need 

for a validation genotype cohort. Our method is open source and is freely available from 

https://github.com/mkelcb/shaprs. 

 

 

 

Table 1 | Cross-ancestry PRS data parameters 

Target  

ancestry 

trait Adjunct study 

Ancestries  

(cases / controls 

or sample size) 

Proximal study 

Ancestries  

(cases / controls 

or sample size) 

SNPs in PRS 

 

 

 

 

 

 

EUR 

asthma Biobank Japan 

East Asian  

(8,216 / 201,592) 

Demenais60  

European 

(19,954 / 107,715) 

752,731 

height Biobank Japan 

East Asian 

(159,095) 

Wood47  

European 

(241,826) 

698,742 

BRCA Biobank Japan 

East Asian  

(5,552 / 89,731) 

Michailidou61  

European 

(14,910 / 17,588) 

763,902 

CAD Biobank Japan 

East Asian  

(29,319 / 183,134) 

Nelson et al.,62  

European 

(10,801 / 137,914) 

818,926 

T2D Biobank Japan 

East Asian  

(36,614 / 155,150) 

Scott63  

European 

(26,676 / 132,532) 

891,047 

 

 

AFR 

height Wood et al.,47,48 

European 

241,826 

Uganda Genome 

Resource 

African 

(14,126) 

680,312 
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BMI Locke et al.,48 

European 

230,965 

Uganda Genome 

Resource 

African 

(13,976) 

638,552 

LDL Willer et al.,49 

European 

(92,019) 

Uganda Genome 

Resource 

African 

(13,086) 

660,233 

Adjunct study is the source of the summary statistics for the adjunct ancestry data (Japanese for the 

European target PRS, and European for the African target PRS). Proximal study is the source of the 

summary statistics for the target ancestry data. SNPs in PRS are the number of SNPs in the 

polygenic score for all methods. Data on coronary artery disease / myocardial infarction have been 

contributed by the CARDIoGRAMplusC4D and UK Biobank CardioMetabolic Consortium CHD 

working group who used the UK Biobank Resource (application number 9922). Data have been 

downloaded from www.CARDIOGRAMPLUSC4D.ORG. For the European datasets, for the traits 

CAD, height, BMI and LDL, the per-SNP sample sizes differed, thus the values shown represent the 

mean. 
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Crohn’s disease and ulcerative colitis genotype data used here can be obtained via 
managed access at: https://ega-archive.org/studies/EGAS00001000924, https://ega-
archive.org/studies/EGAS00000000084 and https://ega-archive.org/datasets/EGAD00000000005. The 
standard LD reference panels for LDpred2 and PRS-CS may be obtained from 
https://figshare.com/articles/dataset/European_LD_reference_with_blocks_/19213299 and 
https://personal.broadinstitute.org/hhuang//public//PRS-CSx/Reference/, respectively. 
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