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Abstract

Genes with moderate to low expression heritability may explain a large proportion of complex

trait heritability, but these genes are insufficiently captured in transcriptome-wide association

studies (TWAS) partly due to the relatively small available reference datasets for developing

expression genetic prediction models to capture the moderate to low genetically regulated com-

ponents of gene expression. Here, we introduce a new method, Summary-level Unified Method

for Modeling Integrated Transcriptome (SUMMIT), to improve the expression prediction model

accuracy and the power of TWAS by using a large expression quantitative trait loci (eQTL)

summary-level dataset. We applied SUMMIT to the eQTL summary-level data provided by the

eQTLGen consortium, which involve 31,684 blood samples from 37 cohorts. Through simulation

studies and analyses of GWAS summary statistics for 24 complex traits, we show that SUMMIT

substantially improves the accuracy of expression prediction in blood, successfully builds expres-

sion prediction models for genes with low expression heritability, and achieves higher statistical

power than several benchmark methods. In the end, we conducted a case study of COVID-19

severity with SUMMIT and identified 11 likely causal genes associated with COVID-19 severity.
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1 Introduction

Genome-wide association studies (GWASs) have shown that most disease-associated variants

reside in non-coding regions [8, 25, 41], raising challenges in biological interpretation and target gene

identification and validation [4]. These findings also lead to the hypothesis that genetic variants

affect complex traits mainly through regulating gene expression levels, which motivates large-scale

expression quantitative trait loci (eQTL) analyses [6, 33] and transcriptome-wide association studies

(TWASs) [10, 11, 14, 27, 39, 44]. TWASs integrate expression reference panels (eQTL studies with

matched individual-level expression and genetic data) with complex traits GWAS results to discover

gene-trait associations. First, the expression reference panel is used to learn per-gene expression

prediction model by regressing assayed gene expression levels on cis-eQTL genotypes (i.e., SNPs

within 1 megabase of the gene transcription start site and transcription end site). Second, statistical

associations are estimated between predicted gene expression levels for GWAS samples and the trait

of interest. TWASs have garnered substantial interest within the human genetics community and

have deepened our understanding of genetic regulation in many complex traits [12, 30].

Despite many successes, the size of expression reference panels primarily determines the number

of analyzable genes, and hence the power of TWAS. For example, building expression prediction

models with the Genotype-Tissue Expression (GTEx) project v7p data yielded more than twice

more predictive models (i.e., analyzable genes) than that with GTEx v6p data (see TWAS/FUSION

website, http://gusevlab.org/projects/fusion/gtex.html). For whole blood tissue, the number of

analyzable genes increased from 2, 057 to 6, 006 when the size of the expression reference panel

increased from 338 samples to 369 samples. Others have also observed that the number of analyzable

genes can be significantly increased when using a slightly larger expression reference panel [44].

More importantly, perhaps due to the small sample size of available expression reference panels,

the current standard practice of TWAS is to only analyze genes with model performance R2 ≥ 0.01

[10, 11, 14]. This practice may ignore genes with low expression heritability, but larger causal effect

sizes on the trait of interest, since genes with low expression heritability have substantially larger

causal effect sizes on complex traits [41]. It is of great interest to construct more powerful gene

expression prediction models, especially for those genes with low expression heritability.
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One potential approach to improve the power of TWAS is to directly combine individual-level

reference panel data from several consortia or studies, increasing the sample size of expression

reference panel. While straightforward, privacy concerns and subject consents can preclude access

to individual-level reference panel data, making this approach often practically infeasible. On the

other hand, one may use summary-level expression panels (often publicly available) with much larger

sample sizes to build expression prediction models. However, to date, there is limited exploration

regarding how one can build expression prediction models using a summary-level expression panel.

In this work, we introduce Summary-level Unified Method for Modeling Integrated Transcrip-

tome (SUMMIT), a novel method that integrates summary-level expression reference panel data,

derived from much larger sample sizes, with trait GWAS results to identify associated genes for

the trait of interest. Specifically, we build gene expression prediction models in blood based on the

eQTL summary-level data provided by the eQTLGen consortium [33]. To date, eQTLGen consor-

tium conducted the largest meta-analysis involving 31, 684 blood samples from 37 cohorts [33], and

the corresponding eQTL summary-level data have been released to be publically available. Through

extensive simulation studies and analyses of GWAS summary statistics from 25 complex traits, we

show that SUMMIT substantially improves the accuracy of expression prediction in blood, success-

fully builds expression prediction models for genes with low expression heritability, and identifies

way more risk genes than benchmark methods. In the end, we conduct a case study on COVID-19

severity and identify 11 likely causal genes. The real data results are deposited into a user-friendly

and freely available web portal (https://chongwulab.shinyapps.io/SUMMIT-app/), enabling

practitioners to easily search and download significant gene-trait associations.

2 Results

2.1 SUMMIT overview

We develop SUMMIT, which extends the conventional TWAS methods [10, 11, 14, 27, 39], by

leveraging eQTL summary-level data to predict expression levels. SUMMIT consists of three main

steps. First, for each gene in the genome, we train expression prediction models using a penalized

regression framework with eQTL summary-level data (e.g., eQTLGen [N = 31, 684; 33]). Next, we

3

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.09.21267570doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267570


31,684 blood
examples

cis-SNPs

eQTLGen Consortium

GTEx Portal

Gene expression
reference

LD reference (𝑹)

1000 Genomes Project

Testing associations

cis-eQTL
effect sizes

(𝒘)

Individual-level GWAS data

Phenotype  ∼ Imputed
expression

Imputing gene expression

Tuning &
validation

Constructing

Summary-level GWAS data

𝒁∗ ≈
𝒘𝑻𝒁

𝒘𝑻𝑹𝒘
where 𝒁 is the SNP-trait standardized effect.

Figure 1: SUMMIT workflow. SUMMIT consists of three main steps: 1) building prediction
models to impute gene expression levels; 2) testing association between predicted gene expression
levels and the trait; and 3) aggregating results from all the fitted prediction models.

test associations between predicted gene expression levels and the trait of interest for each fitted

expression prediction model with satisfactory performance (with R2 ≥ 0.005). Finally, we apply the

Cauchy combination test to aggregate results from the fitted prediction models, which effectively

quantifies the overall gene-trait associations.

2.2 Simulation results

In the simulation studies, we first evaluated the accuracy of expression imputation models

generated by SUMMIT and benchmark methods and the corresponding statistical power. Next, we

studied the impact of sample size on prediction performance and verified that SUMMIT recovered

the information of individual-level expression reference panel from summary-level data.

First, we observed that SUMMIT performed better than two widely-used competing methods,

TWAS-fusion and PrediXcan, yielding higher average imputation R2 with respect to different gene

expression heritability (h2e) and the proportion of causal SNPs (pcausal) (Figure 2a). For example,

when h2e = 0.01 and pcausal = 0.2, the average imputation R2 of 1, 000 replications was estimated

at 0.61% by SUMMIT, showing 1233% improvement compared with PrediXcan and 250% im-
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provement compared with TWAS-fusion. Importantly, such improvements in expression prediction

models result in consistently higher power of subsequent association studies under different sparsity

levels (Figure 2b). For example, when h2e = 0.01 and pcausal = 0.2, the power of SUMMIT was

0.918 while that of PrediXcan and TWAS-fusion were 0.039 and 0.209, respectively.
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Figure 2: Performance comparison in simulations based on gene CHURC1. Plots of
imputation R2 (a) and subsequent power (b) in test samples by SUMMIT, PrediXcan, and TWAS,
with varying true expression heritability h2e and proportion of true causal SNPs pcausal. For (b),
we set h2p = 0.2 and empirical power was estimated by the proportions of P -value less than the
significance threshold 2.5 × 10−6. The empirical power comparisons for h2p ∈ (0.1, 0.5, 0.8) are in
Supplementary Figure 1.

The current standard practice of TWAS is to only analyze genes with imputation R2 ≥ 0.01 and

does not take into account genes with lower prediction performance (i.e., genes with imputation

R2 between 0.005 and 0.01). However, such genes may have larger causal effect sizes on the

trait of interest [41]. To evaluate the performance of different methods under highly small heritable

situations, we simulated data with h2e = 0.005. Figure 2a shows that SUMMIT achieved satisfactory

performance under these scenarios. For example, when h2e = 0.005 and pcausal = 0.2, SUMMIT

estimated the average imputation R2 at 0.24%, which was much higher than those yielded by
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TWAS-fusion (0.067%; 255% improvement) and PrediXcan (0.014%; 1651% improvement). This

is because SUMMIT leverages the summary-level eQTL data with a larger sample size.

Next, we studied the impact of the size of expression reference panel (Supplementary Figure

2). As expected, the imputation R2 increased as the sample size increased. For example, for the

setting with h2e = 0.05 and pcausal = 0.2, when the sample size increased from 300 to 31, 684,

the average imputation R2 increased from 0 to 0.0401, highlighting the gains of using a larger

expression reference panel. Importantly, the imputation models became more stable (i.e., the

variance decreased) as the sample size increased. Also, we confirmed that the imputation results

from SUMMIT (average imputation R2: 0.0401) were highly similar to that of individual-level data

available (average imputation R2: 0.0392), validating that SUMMIT can recover the individual-level

information from summary-level data.

To consider the potential impact of genetic architecture, we considered two additional randomly

selected genes, and the results were similar (Supplementary Figures 3–6). Furthermore, we ran sim-

ulations 5,000,000 times (5,000 runs for each of 1,000 computed weights) under the null hypothesis

to evaluate the Type 1 error rates, confirming that all methods maintained well-controlled Type 1

error rates (Supplementary Figure 7).

In summary, these results demonstrated the potential usefulness of the SUMMIT for building

expression prediction models and conducting subsequent association studies, especially for genes

with low heritable expression.

2.3 SUMMIT improves the expression imputation accuracy

We compared the accuracy of expression imputation models of SUMMIT and four benchmark

methods, including MR-JTI, TWAS-fusion, PrediXcan, and UTMOST for whole blood tissue. We

trained the SUMMIT models with eQTLGen summary data, and the four benchmark methods were

trained with GTEx data. For a fair comparison, we compared the number of genes with an estimated

R2 ≥ 0.01 and only focused on the genes that appear in the eQTLGen summary data. The R2

for the benchmark methods were based on cross validation and provided by the corresponding

authors, and the R2 for the SUMMIT was calculated based on the additional subjects in GTEx

version 8 data, who have not been meta-analyzed in the eQTLGen and thus can be viewed as an
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independent external dataset. Compared with the benchmark methods, MR-JTI (9, 576 genes),

TWAS-fusion (5, 411 genes), PrediXcan (7, 512 genes), and UTMOST (7, 236 genes), SUMMIT

developed satisfactory prediction models for more genes (9, 749 genes with R2 ≥ 0.01). Importantly,

SUMMIT could build prediction models for the majority (8, 364 out of 11, 450; 73%) of genes that

can be analyzed by either of benchmark methods, (Figure 3(a)). In addition, SUMMIT was able

to establish prediction models of additional 1, 836 genes that were ignored by benchmark methods,

showing consistent improvement by using a large training dataset. Furthermore, compared with

MR-JTI, SUMMIT achieved significantly higher prediction accuracy in different quantiles (p <

2.2 × 10−16 by the Kolmogorov-Smirnov test). This was also true for other methods (PrediXcan:

p < 2.2× 10−16; TWAS-fusion: p < 2.2× 10−16 ; and UTMOST: p < 2.2× 10−16).

2.4 SUMMIT identifies more associations than competing methods

To evaluate the performance of identifying significant associations, we applied SUMMIT to the

summary statistics of 24 GWAS (Ntotal ≈ 5, 600, 000 without adjusting for sample overlap across

studies, Supplementary Table 1) and compared the results with those of the benchmark methods

(for all genes with R2 ≥ 0.01). The full association results for SUMMIT were summarized in

Supplementary Table 1. While the SUMMIT analyzed all genes with R2 ≥ 0.005 and applied the

Bonferroni correction accordingly, we focused on the genes with R2 ≥ 0.01 for a fair comparison

(Figure 3(b)). Compared with the benchmark methods, SUMMIT identified substantially more

associations for each trait analyzed, showing 90% improvement compared with MR-JTI (p = 1.44×

10−5 by the paired Wilcoxon rank test), 139% improvement compared with TWAS-fusion (p =

9.68×10−6), 115% improvement compared with PrediXcan (p = 5.96×10−8), and 83% improvement

compared with UTMOST (p = 1.65× 10−5).

Because different methods test different sets of genes, we also compared methods over a common

set of 4, 291 genes that could be analyzed by all the methods (Figure 3(c)). Again, SUMMIT

maintained an edge over competing methods, showing 35% improvement (p = 0.00053 by the

paired Wilcoxon rank test) compared with the second best performing method, UTMOST.

Importantly, SUMMIT was applicable to analyze genes with low heritability for the expressions

(0.005 ≤ R2 < 0.01), which have been largely ignored by benchmark methods. Out of the 11, 585
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Figure 3: SUMMIT improves the performance of TWAS in real data. (a) is the UpSet
plot of overlapping imputation models with R2 ≥ 0.01 among different methods. (b) shows the
number of significant genes identified by different methods when using all available genes across 24
GWAS, where (c) shows the number of significant genes when evaluated on a common gene set of
all methods. (d) is the ROC plot for identifying “silver standard” genes.
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genes with R2 ≥ 0.005, 1, 836 had testing R2 between 0.005 and 0.01. For these 1, 836 genes, we

identified 607 gene-trait associations (Figure 3(b)). In comparison, for the remaining 9, 749 genes,

we identified 3, 759 gene-trait associations, indicating that genes with relatively smaller R2 may be

equally important as those with larger R2. This finding is aligned with the fact that genes with

low expression heritability have substantially larger causal effect sizes on complex traits [41].

2.5 SUMMIT achieves higher predictive power for identifying “silver standard”

genes

We compared different methods in terms of identifying the likely causal genes that mediate

the association between GWAS loci and the traits of interest. Following [2], we used a set of

1,258 likely causal gene-trait pairs curated by using the OMIM (Online Mendelian Inheritance in

Man) database [13] and a set of 29 gene-trait pairs based on rare variant results from exome-wide

association studies [18, 22, 24], which provide orthogonal information that is independent of GWAS

results. Both gene-trait pairs sets can be found in Supplementary Table 2.

Figure 3(d) shows that SUMMIT yielded good sensitivity and specificity for identifying the

silver standard genes and achieved the highest AUC (0.731) among all the methods compared. All

methods achieved relatively good sensitivity and specificity, showcasing the potential predictive

ability of TWAS-type methods to prioritize putative causal genes. For example, with Bonferroni

correction cutoffs, SUMMIT identified 80 (54%) genes in the silver standard gene list, whereas the

second best performing method, PrediXcan, identified 57 (39%). In summary, perhaps due to the

improvement in expression prediction models, SUMMIT achieved higher predictive power in terms

of prioritizing likely causal genes.

2.6 SUMMIT identifies novel risk genes for COVID-19 severity

We leveraged GWAS summary data from The COVID-19 HGI [16] to identify risk genes for

COVID-19 severity. Using SUMMIT, we identified significant associations of 17 genes with COVID-

19 severity (B2 outcome) comparing COVID-19 hospitalized patients and controls at the Bonferroni

correction cutoff of 4.33 × 10−6 (Figure 4). In comparison, the competing methods PrediXcan,

TWAS-fusion, UTMOST, and MR-JTI identified 1, 6, 2, and 1 significant genes, respectively
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Figure 4: Manhattan plot for COVID-19 severity (B2 outcome) comparing COVID-19
hospitalized patients and controls. The horizontal line marks the genome-wide significance
threshold (0.05/11539 ≈ 4.33× 10−6).

(Supplementary Table 3). For these 17 genes identified by SUMMIT, 11 was prioritized by a

fine-mapping method FOGS (Table 1). We further validated these 11 genes by analyzing COVID-

19 comparing very severe respiratory confirmed COVID-19 versus population controls (A2). Of

them, 10 were validated at P < 0.05.

Chromosome Gene R2 COVID-B2 COVID-A2

Direction p Direction p

3 ACTL6A 0.008 − 9.9× 10−19 − 2.5× 10−1

3 LRRC2 0.044 − 5.4× 10−9 − 3.9× 10−5

3 RP11-24F11.2 0.006 − 8.8× 10−12 − 9.0× 10−6

3 FLT1P1 0.116 − 3.3× 10−14 − 1.0× 10−7

3 CCR5 0.049 − 9.9× 10−19 − 1.8× 10−6

12 OAS1 0.056 − 1.4× 10−7 − 1.2× 10−8

12 OAS3 0.041 + 2.7× 10−8 + 3.4× 10−11

17 LRRC37A4P 0.668 + 2.6× 10−6 + 3.5× 10−3

17 RP11-707O23.5 0.599 − 2.8× 10−6 − 3.4× 10−3

17 DND1P1 0.489 − 2.7× 10−6 − 3.3× 10−3

21 IFNAR2 0.037 − 2.2× 10−11 − 2.2× 10−9

Table 1: Predicted gene expression in blood–COVID-19 associations for the likely causal
genes based on the COVID-19 Host Genetics Initiative data. “+” and “−” stand for
positive and negative directions, respectively.

For some of these 11 putative causal genes related to COVID-19 severity, there are already

prior knowledge supporting their potential links with COVID-19. For example, SNP rs1015164

that lies near the antisense transcribed sequence RP11-24F11.2 was associated with HIV set-point
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viral load [17, 26] and CD4+ T cell counts. Such chemokine receptor-ligand interactions mediating

the traffic of inflammatory cells and pathogen-associated immune responses could be plausible for

being related to COVID-19 severity. For FLT1P1, its expression was reported to be positively

associated with predicted neutrophil count [45]. This may mediate the genetic link between this

gene and COVID-19 severity. Another identified genes, CCR5, is known to play a role in immune

cell migration and inflammation. A study found that CCR5 blockade in critical COVID-19 patients

induced decreased inflammatory cytokines, increased CD8 T-cells, and decreased SARS-CoV2 RNA

in plasma [29]. For OAS1, both predicted and measured protein levels are inversely associated with

COVID-19 susceptibility and severity, which is consistent with the current study’s finding [46].

Two of the other genes, namely, OAS3 and IFNAR2, have been identified in our earlier work of

COVID-19 TWAS using complementary methods and designs [38].

3 Discussion

By leveraging the summary-level expression reference panel with a much larger sample size, our

new method SUMMIT substantially improved the prediction accuracy of built expression prediction

models, which in turn increased the power for identifying risk genes for complex traits. The

corresponding software SUMMIT and its tutorial are available at GitHub.

Through simulations and analyses of GWAS results for 25 traits, we demonstrated the substan-

tial performance gain of SUMMIT over existing methods. Briefly, we demonstrated that SUM-

MIT improved the expression imputation accuracy (built more expression prediction models with

R2 ≥ 0.01), identified more associations, and achieved higher predictive power for identified ‘silver

standard’ genes. Importantly, SUMMIT was applicable to analyze genes with low expression heri-

tability (with R2 between 0.005 and 0.001), which have larger causal effects sizes on complex traits

[41] but have been largely ignored by existing methods.

SUMMIT can be viewed as one type of gene-based Mendelian randomization and provide valid

causal interpretations when all genetic variants used in expression prediction models (with non-

zero weights) are valid instrumental variables [5, 40, 42]. However, with the wide-spread horizontal

pleiotropy of genetic variables [19], valid instrumental variables assumptions may be violated and
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thus we recommend practitioners using multiple complementary methods jointly to identify likely

causal genes. For example, we can apply fine-mapping approaches such FOCUS [23] and FOGS

[37] to further prioritize likely causal genes by modeling the linkage disequilibrium and correlation

among TWAS signals.

There are several limitations in our current study. First, the summary data of eQTLGen are

for whole blood in European ancestry; thus, the built gene expression prediction models would be

applicable only for blood tissue of European ancestry subjects. While SUMMIT can be equally

applied to other tissues and ancestry, the corresponding summary eQTL data would be needed for

such extensions. Second, several TWAS methods such as UTMOST [14] and MR-JTI [44] have

been proposed to leverage expression from other tissues or functional annotations to improve the

prediction accuracy of expression prediction models. We expect that the number of analyzable

genes can be further increased when we integrate this informative information. Third, similar to

most existing TWAS methods, the results of SUMMIT imply causality only when valid instrumental

variable assumptions are met. A partial solution is to apply fine-mapping to prioritize likely causal

genes. However, the robustness of SUMMIT would be significantly improved if we can relax these

stringent valid instrumental variable assumptions. We leave this exciting topic to future research.

In conclusion, SUMMIT is a novel and powerful framework to perform TWAS. It integrates

summary-level eQTL data with GWAS summary statistics via advanced statistical methods. When

combined with fine-mapping and functional validations, its findings may gain insights into the

genetic basis of diseases and benefit the development of new therapies. To facilitate such efforts,

we deposit TWAS results of 26 traits described in the manuscript into a user-friendly server (https:

//chongwulab.shinyapps.io/SUMMIT-app/) such that practitioners can search and download

gene-trait association results.
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4 Methods

4.1 Penalized regression model for expression prediction

Consider the following linear regression model for estimating the genetically regulated expres-

sion:

Y =

p∑
j=1

wjXj + ε, (1)

where Y is the N -dimensional vector of gene expression levels of a gene of interest (corrected for

important covariates like age, gender, and genotype principal components), X = (X ′1, · · · , X ′p)′ is

the N × p standardized genotype matrix of p cis-SNPs around the gene (within 1 MB of the gene

transcription start site and transcription end site), the p-dimensional vector w = (w1, · · · , wp)′ is

the cis-eQTL effect size, and ε is random noise with mean zero.

We estimate w using a penalized regression framework. Specifically, the objective function is

f(w) =
(Y −Xw)′(Y −Xw)

N
+ Jλ(w) =

Y ′Y

N
+ w′

(X ′X
N

)
w − 2w′

X ′Y

N
+ Jλ(w), (2)

where Jλ(·) is a penalty term. Since the performance of different penalties may vary under different

genetic architecture, we consider several penalties, including LASSO [32], elastic net [48], minimax

concave penalty (MCP) [43], smoothly clipped absolute deviation (SCAD) [7], and MNet [15].

Note that the objective function (Equation (2)) is a function of the marginal statistics X ′Y/N

and the linkage disequilirium (LD) matrix X ′X/N , and does not require observing and storing the

individual-level data. This allows us to build expression prediction models using eQTL summary-

level data, which are computed using a much larger sample size. That is, rewrite the objective

function as

f(w) =
Y ′Y

N
+ w′Rw − 2w′r + Jλ(w), (3)

where r = X ′Y/N = (r1, · · · , rp)′ is a p-dimensional vector of standardized marginal effect size

for cis-SNPs (i.e., correlation between cis-SNPs and gene expression levels), and R = X ′X/N is
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the LD matrix of cis-SNPs. We use the z-scores provided in the summary-level eQTL dataset

to estimate r (denoted by r̃) and use a shrinkage estimator (shall be illustrated later) with a LD

reference panel (such as 1000 Genomes Project [1]) to estimate R (denoted by R̃). We add an L2

penalty term θw′w (where θ ≥ 0) to the objective function, which ensures a unique solution upon

optimization. Notice that Y ′Y/N does not depend on w and can be ignored when optimizing f .

Thus, the final objective function that we optimize can be written as,

f̃(w) = w′R̃w − 2w′r̃ + θw′w + Jλ(w). (4)

The estimates ŵ can be obtained by the coordinate descent algorithm [9], which solves the univariate

penalized regression problem sequentially and iteratively. Briefly, suppose that (ŵ
(t)
1 , . . . , ŵ

(t)
p )

are the coefficients at the t-th iteration of the coordinate descent algorithm. Define z
(t)
j = r̃j −∑

l 6=j R̃jlŵ
(t)
l . When Jλ(w) is the LASSO penalty (Jλ(w) =

∑p
j=1 λ|wj |), one can update wj as

ŵ
(t+1)
j =


z
(t)
j −λ
1+θ z

(t)
j > λ

z
(t)
j +λ

1+θ z
(t)
j < −λ

0 otherwise

for j = 1, . . . , p and t = 0, 1, . . . .

The convergence properties of the coordinate descent algorithm guarantee a local minimum for

ŵ [9]. We put details on optimization, including choices for initial starting values, λ, and θ and

updating formulas for other penalties to the Supplementary Note.

4.2 Estimating standardized marginal effect size r̃ and LD matrix R̃

The standardized marginal effect size rj is often not provided in eQTL summary-level data,

but it can be well approximated by r̃j = Zj/
√
Nj − 1 + Z2

j , where Zj and Nj are the z-score and

sample size for cis-SNP j, respectively. The eQTL summary-level data combine the results from

multiple cohorts and thus the sample size for each SNP may vary. To yield unbiased estimation,

we use the SNP-specific sample size Nj instead of the largest sample size (cohort size) [28].

The objective function (4) involves a estimated LD correlation matrix R̃. Instead of using
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the sample correlation matrix estimated from a reference panel such as 1,000 Genomes Project [1]

data, we use the shrinkage estimator of the LD matrix [21, 35, 47], which stabilizes the results

by shrinking the off-diagonal entries towards zero. Specifically, we first calculate the sample LD

correlation matrix from a reference panel. Each entry of the LD correlation matrix is then multiplied

by the factor exp(−2Necij
m ), where Ne is the effective population size, m is the sample size of the data

for generating the genetic map, and cij is the genetic distance between sites i and j in centiMorgans

scale. The entries are set to zero if the factor exp(−2Necij
m ) is less than a pre-specified threshold

c. Following others [21, 47], we use the genetic distance generated from the 1000 Genomes OMNI

arrays with Ne = 11, 400 and m = 183 and the pre-specified threhold c was set to 1× 10−3.

4.3 Model training and evaluation

We trained our expression prediction model by using the cis-eQTLs summary-level data from

eQTLGen [33], which consist of the effect sizes of more than 11 million SNPs from 31, 684 blood

samples. Following PrediXcan [10], SNPs in the vicinity of the given gene (within 1 Mbp of the

gene transcription start site and transcription end site) were used as the cis-genotype information.

Further, we filtered out all SNPs with a minor allele frequency < 0.01 and those were non-biallelic

or ambiguous or not in HapMap 3 SNPs set [10].

We used both genotype and gene expression data in the GTEx project (version V7, dbGaP

Accession number phs000424.v7.p2) [31] to select the tuning parameters. The processed gene

expression in whole blood (N = 369) were downloaded from the GTEx website. Briefly, the RPKMs

in each sample was standardized and normalized by quantile-transformation. Expression for each

gene was further adjusted by performing a multivariate linear regression with sex, genotyping

platform, 35 PEER factors and three genotype-based principal components (PCs) and the residuals

were used as processed expression levels. We used the squared correlation between the predicted

and observed expression (that is, R2) to select the best tuning parameters. Of note, the subjects in

GTEx v6 (N = 336; 1.1%) have been meta-analyzed in eQTLGen [33] and may result in sub-optimal

tuning parameters.

We used independent subjects that are in GTEx v8 but not in GTEx v7 (N = 309) as external

validation data. Of note, these subjects in GTEx v8 have not been meta-analyzed in eQTLGen
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and thus can be viewed as an external validation. Because genes with low expression heritability

have substantially larger causal effect sizes on complex traits [41], we selected the models with

R2 ≥ 0.005 instead of the commonly used criterion of R2 ≥ 0.01.

4.4 Association Study with single expression prediction model

When individual-level GWAS data (genotype dataXnew, phenotype Pnew, and covariance matrix

Cnew) are available, one can apply a generalized linear regression model

f(E[Pnew|Xnew, Cnew]) = αCnew + βXnewŵ

to test H0 : β = 0, where f(·) is a link function, and Xnewŵ is the predicted genetically regulated

expression.

When only summary-level GWAS data are available, one can apply a burden type test:

Z̃ = Zŵ/
√
ŵ′V ŵ,

where Z is the vector of z-scores for all cis-SNPs and V is the linkage disequilibrium (LD) matrix

of analyzed SNPs (which can be estimated by a population reference panel such as 1000 Genomes

Project [1]).

4.5 Association study with multiple expression prediction models

To further improve the power, we apply the Cauchy combination test [20] to integrate informa-

tion from K models that have R2 ≥ 0.005. Specifically, we use the following test statistics:

T =

K∑
j=1

R̃2
j tan{(0.5− pj)π},

where pj is the P -value for model j and R̃2
j is calculated by R2

j/
∑k

j=1R
2
j . T follows a standard

Cauchy distribution approximately, and the P -value can be calculated as 0.5 − arctan(T )/π. Of

note, we use R̃2
j as weights when combining multiple expression prediction models because a larger

R̃2
j indicates a better expression prediction model. The Cauchy combination test has been widely
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used in the human genetics community [20, 36], because the P -value approximation is accurate for

the highly significant results (which are of interest) and there is no need to estimate the correlation

structure among the combined P -values.

One may be interested in the association direction for a specific gene. For the majority of

significant genes identified by SUMMIT, all the expression prediction models yield the same as-

sociation direction. When expression prediction models provide conflicting association direction,

we determine the association direction by the majority voting. In the rare situation where the

number of models indicating positive associations equals the number of models indicating negative

associations, we declare the association direction is unknown.

4.6 Simulation study design

We conducted extensive simulation studies to evaluate how the size of the expression reference

panel impacts the expression prediction accuracy and the subsequent power of TWAS. Also, we

evaluated whether using the summary-level eQTL data achieves similar performance to that of

using individual-level expression reference panel. Specifically, we used data from the UK Biobank

(application number 48240) and randomly chose genotype data from 31, 684 (to match the sam-

ple size of the eQTLGen data) independent White British individuals as training data, genotype

data from additional 369 (to match the sample size of GTEx v7 data) independent White British

individuals as tuning data, and genotype data from additional 10, 000 independent White British

individuals as test data. The imputed genetic 877 cis-SNPs (with minor allele frequency (MAF)

> 1%, Hardy-Weinberg p-value > 10−6, and imputation “info” score > 0.4) of the arbitrarily cho-

sen gene CHURC1 were used for our main simulations. We also considered several other randomly

selected genes.

We simulated gene expression levels and phenotype values by Eg = Xw+ εe and Y = βEg + εp,

respectively. X is standardized genotype matrix, w is the effect size, εe ∼ N(0, 1 − h2e), and

εp ∼ N(0, 1 − h2p), where h2e and h2p were the expression heritability (i.e., the proportion of gene

expression variance explained by SNPs) and phenotypic heritability (i.e., the proportion of phe-

notypic variance explained by gene expression levels), respectively. We randomly selected pcausal,

that is, the proportion of SNPs to be causal, and generated its effect size wj from N(0, 1). The
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effect sizes for the remaining non-causal SNPs were set to 0. We re-scaled the effect sizes w and β

to achieve the targeted h2e and h2p.

To evaluate the performance of proposed method SUMMIT, we performed an association scan

on the whole simulated training data (Eg, X) and computed the summary-level data (i.e., Z scores)

by a linear regression. Besides building models with summary-level data, we also built prediction

models with individual-level data of different sample sizes (300, 600, 3, 000, 10, 000, 31, 684). We

compared SUMMIT with two widely used methods, PrediXcan [10] and TWAS-fusion [11]. We

trained models with PrediXcan and TWAS-fusion with individual-level data of 670 samples (to

match the sample size of blood tissue in GTEx v8 data).

We considered comprehensive scenarios that varied the proportion of causal SNPs pcausal (0.01,

0.05, 0.1, 0.2), expression heritability h2e (0.005, 0.01, 0.1), and phenotypic heritability h2p (0.1, 0.2,

0.5, 0.8). For each scenario, we repeated simulations 1,000 times. Statistical power was calculated

as the proportion of 1,000 repeated simulations with P -value less than the genome-wide significance

threshold 0.05/20, 000 = 2.5× 10−6.

4.7 Comparison with existing methods

To demonstrate the potential usefulness of the SUMMIT, we further compared SUMMIT with

several TWAS methods, including MR-JTI [44], PrediXcan [10], TWAS-fusion [11], and UTMOST

[14] for whole blood tissue in the following aspects.

First, we compared prediction accuracy (in terms of R2) estimated by different methods. Of

note, while the prediction performance of competing methods was estimated through cross val-

idations, the prediction performance of SUMMIT was estimated in an external testing dataset.

This difference may slightly favor the competing methods. The difference in R2 across genes was

tested by the one-sided Kolmogorov-Smirnov test, a nonparametric test that calculates the largest

distance between the empirical distribution functions to determine whether two distributions are

equivalent.

Second, we compared different methods by analyzing GWAS summary statistics for 24 complex

traits. The details of 24 traits were summarized in Supplementary Table 1. We used the Bonferroni

correction for each method with different significance cutoffs as different methods have different
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numbers of analyzable genes. To make a fair comparison, we also evaluated the common gene set

that can be analyzed by all methods and used the same Bonferroni correction cutoff to determine

the significant gene sets. The number of significant genes identified by different methods was further

compared by Wilcoxon signed-rank test, which compares two matched samples to test whether their

population mean ranks differ.

Third, as TWAS can be viewed as a special case of Mendelian randomization [34], we further

compared different methods in terms of identifying the causal genes that mediate the association

between GWAS loci and the traits of interest. Following [2], we curated a set of likely causal gene-

trait pairs using information that is independent of GWAS results. Briefly, we utilized the OMIM

(Online Mendelian Inheritance in Man) database [13] and rare variant results from exome-wide

association studies [18, 22, 24], leading to 1, 287 gene-trait pairs. We used LDetect to partition

the genome into approximately independent LD blocks [3] and refined the gene-trait pairs by only

considering the genes that were located in LD blocks with at least one genome-wide significant

variant, leading to 148 likely causal gene-trait pairs (among 24 distinct traits). We denote the

curated set as “silver standard” to highlight their imperfect nature. We compared different methods

by the area under receiver operating characteristic curve (AUC).

4.8 Applications to COVID-19 GWAS data

To identify novel genes associated with COVID-19 severity, we applied SUMMIT to the GWAS

summary data from The COVID-19 HGI (Release 5 (January 2021)) [16]. The detailed information

for participating studies, quality control, and analyses have been included on the COVID-19 HGI

website (https://www.covid19hg.org/results/). Briefly, data from 9, 986 hospitalized COVID-

19 patients and 1, 877, 672 population controls were used in the current analyses. Hospitalized

COVID-19 cases represented patients 1) with laboratory confirmed SARS-CoV-2 infection (RNA

and/or serology based) and 2) hospitalized due to corona-related symptoms. Controls represent

those that are not cases. Only Europeans were included to ensure the homogeneous population

structure for the analyses. A fixed-effect meta-analysis of individual participating studies was

performed and variants with imputation quality > 0.6 were retained.

We applied fine-mapping method FOGS [37] to prioritize likely causal genes for COVID-19
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severity. In the end, we evaluated associations of identified genes with additional COVID-19 phe-

notype. Briefly, we leveraged A2 ALL eur (Europeans; 5, 101 cases and 1, 383, 241 controls) for

comparing very severe respiratory confirmed COVID vs population controls.
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