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Abstract 

Wrist-worn accelerometer actigraphy devices present the opportunity for large-scale data 

collection from people during their daily lives. Using data from approximately 100,000 

participants in the UK Biobank, actigraphy-derived measures of physical activity, sleep, 

and diurnal rhythms were associated in exploration and validation cohorts with a full 

phenome-wide set of diagnoses, biomarkers and metadata. Rhythmicity was captured by 

two independent models based on accelerometer and skin temperature harnessing 

behavioral (diurnal) and molecular (circadian) components. We found that robust rhythms 

significantly with biomarkers, survival, and phenotypes including diabetes, hypertension, 

mood disorders, and chronic airway obstruction; these associations were comparable to 

those with physical activity and sleep. Surprisingly, associations were mostly consistent 

between the sexes, while modulation by age was significant. More importantly, rhythms 

were found to be powerful predictors of future diseases: a two standard deviation 

difference in wrist temperature rhythms corresponded to increases in rate of diagnosis of 

61% in diabetes, 38% in chronic airway obstruction, 27% in anxiety disorders, and 22% 

in hypertension. Our PheWAS of actigraphy data in the UK Biobank establishes that 

rhythmicity is fundamental to modeling disease trajectories, as are physical activity and 

sleep. Integration of long-term remote biosensing into patient care could thus afford an 

individualized approach to risk management. 
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Introduction 

Genome-wide association studies (GWAS) [1] offer a systematic approach to identify 

genetic variants for their association with specific phenotypes of interest. Phenome-wide 

association studies (PheWAS) [2] go further and screen the multitude of phenotypes 

available from electronic health records (EHR) for their association with specific genetic 

variants of interest. These power discoveries in large-scale biobanks annotated with rich 

EHRs and have elucidated disease mechanisms, so that they can be exploited for 

treatment and prevention. A recent example illustrates how these approaches can be 

leveraged to discern new genetic markers of lipid levels in the Million Veteran Program 

[3]. The success of PheWAS on genetic variation and the strong association of 

accelerometry-based behavioral phenotyping and mortality [4, 5] and its potential use in 

disease mapping [6, 7] highlight the need to develop phenome-wide approaches for 

associating behavior with health outcomes. 

Here, we develop this phenome-wide approach for remotely sensed behavioral health 

measures, quantified per wrist actigraphy in the UK Biobank (UKB). We associated these 

metrics with phenome-wide disease phenotypes and quantitative traits, and accounted 

for medication exposure extracted from the UKB. To distinguish this from traditional 

PheWAS approaches that associate phenotypes with genetic variants, we coined the 

term Phenome-Wide Association Studies Sensed Remotely or PheWAS-SensR. 

Our PheWAS-SensR analysis underscores the relevance of physical activity and sleep 

for human health and extends this to consolidated diurnal variability as an equivalent 

behavioral health dimension; all three categories of measures were significantly 

associated with disease phenotypes. Associations between these behavioral health 

measures and disease phenotypes or quantitative traits were mostly consistent between 

the sexes. Age, in contrast, significantly modulated these relationships. We established 

robustness to determine a phenotype’s diurnal variability by both accelerometer- 

(capturing diurnal rhythmicity) and temperature-based (capturing circadian rhythmicity) 

modelling.  
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Importantly, we found that wrist temperature rhythms are powerful predictors of future 

diseases. Phenotypes including diabetes, hypertension, chronic airway obstruction, 

anxiety and pneumonia exhibited large increases in diagnosis rates in individuals who 

showed reduced circadian rhythms. Concretely, our PheWAS-SensR quantified physical 

activity, sleep, and rhythms from remote sensors to model disease trajectories.  

  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.09.21267558doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267558
http://creativecommons.org/licenses/by/4.0/


5 

 

Methods and Results 

Architecture of the PheWAS-SensR Cohort 

The UKB project collected 7 days of actigraphy data from 103,688 participants roughly 

from June 2013 to December 2015 (Figure S 1 top left) [8]. Participants were excluded 

from further analyses based on failed calibration (n=2,826), insufficient data (n=4,258) or 

crossing over daylight savings time (n=4,279), following prior experiments[8-10]. A total 

of 92,325 participants passed to enter the PheWAS-SensR. We divided the participants 

into two cohorts by random sampling: 25,000 participants formed an exploratory cohort, 

and the remaining 67,325 participants formed an independent validation cohort (Figure S 

1 bottom left). All results are reported from the validation cohort and are consistent in both 

cohorts, see Supplemental File 1. 

From the week-long actigraphy readings, 214 objective behavioral health measures were 

derived for each participant as detailed in the Supplemental Methods. In brief, the data 

were calibrated [8] and classified by a machine learning pipeline [11], giving each 30 

second epoch one of six actigraphy type labels (such as “sleep” or “walking”). Actigraphy 

health variables were derived via cosinor fits, circadian parameters, Gaussian sliding 

windows identifying daily peaks, and summary statistics.  

Behavioral health measures were assessed for stability within an individual across 

different measurements, using the repeated data collections performed on a subset of 

individuals (n=2,339 with five week-long measurements). After discarding health metrics 

displaying more variability between repeated measurements on the same individual than 

between individuals, a total of 116 actigraphy-derived behavioral health measures 

remained. 

Measures were furthermore generated from temperature level sensors included on the 

actigraphy device. Skin temperature reflects circadian rhythmicity [12], and thus  offered 

an orthogonal assessment to diurnal variability derived from physical activity. 
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Eight self-reported health variables physical activity, sleep and chronotype were included. 

This created a final catalog of 124 behavioral health measures (Table S 3) in the PheWAS-

SensR cohort. 

We annotated by expert opinion (T.B., C.S.) each behavioral health measure as being 

reflective of physical activity (60 metrics), sleep (24 metrics) or diurnal rhythms (40 

metrics). A typical example of a physical activity metric is acceleration_overall (mean 

acceleration), typical examples of sleep metrics are main_sleep_duration_mean (sleep 

duration of longest sleep period) and main_sleep_ratio_mean (mean fraction of longest 

sleep period spent asleep, commonly referred to as sleep efficiency), and a typical 

example of a diurnal rhythm metric is acceleration_RA (normalized difference in day and 

night activity levels) (Table S 3). 

Phenotypes 

We derived the lifetime history of diagnoses for the PheWAS-SensR participants from 

medical record ICD-10 and ICD-9 codes as well as from self-reported conditions during 

the initial assessment dated 2007-2010 (Figure S 1 top left). ICD-10 and ICD-9 codes 

were grouped into phenotypes by mapping to PheCODES, an algorithm developed for 

the Vanderbilt University Medical Center (VUMC) and UKB datasets [13, 14] using 

Phecode Map v1.2b1. Self-reported diagnoses were mapped by expert opinion (C.S.) to 

the PheCODES (Table S 3). 

Previous works have found a “healthy volunteer” effect in the UKB where participants 

have greater health than the overall population [15]. This bias increased among 

participants who enrolled in actigraphy, who had overall fewer diagnoses at study end 

(mean±SD 9.3±11.5 per person) than those who did not enroll in actigraphy (11.7±14 per 

person) (Figure S 1 top right).. Compared to the UKB overall, individuals with actigraphy 

tended to be slightly more white, more female, younger and had a lower BMI (Table S 1). 

As expected, medical record diagnoses accelerated over time, culminating in a total of 

478,697 distinct diagnoses to date (Figure S 1 top). Furthermore, a total of 1,516 deaths 
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were recorded among PheWAS-SensR participants (2.25%, per data download on 

November 20, 2020, Figure S 1 bottom). 

To complement diagnosis PheCODEs, 83 quantitative phenotypes were derived from 

measures, taken at initial assessment, of blood assays, urine assays, and physical 

measurements. 

Phenome-Wide Association Study Sensed Remotely through wearable devices (PheWAS-
SensR) 

For diagnoses with at least 50 cases, a phenome-wide association of actigraphy health 

variables and diagnoses was performed (Figure 1, Table S 4, Figure S 2 top). To achieve 

this, a linear model was computed for each actigraphy health measure and PheCODE 

pairing. The model included covariates for sex, ethnicity (white/other), self-reported 

overall health, high household income (> 52,000 pounds sterling/year), age at the time of 

actigraphy, BMI, college education and if they’ve ever smoked, all measured at the initial 

assessment. This resulted in a total of 55,676 statistical tests performed with 12,081 of 

them achieving FDR significance of q<0.05 and 3,357 achieving Bonferroni-corrected 

significance of p<0.05. 

Disease phenotypes across all major organ systems associated significantly with physical 

activity, sleep and diurnal variability (Figure 1 a). 

Overall, in healthy people we observed greater daytime activity paired with low nighttime 

activity. This difference is summarized using the relative amplitude (RA) score, in the 

measure "acceleration_RA” [16]. This is computed as 𝑀𝑀10−𝐿𝐿5
𝑀𝑀10+𝐿𝐿5

 where M10 is the average 

activity level during the 10 most active hours of the individual’s day, and L5 is the average 

activity during the 5 least active hours. Values of acceleration_RA near 1 reflect strong 

daily activity rhythms while lower values indicate inconsistent or low-amplitude rhythms. 

Few people reached an acceleration RA lower than 0.65 to 0.7, suggesting adherence to 

the common day-night activity-inactivity rhythm. Only a few participants reached an 
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acceleration RA higher than 0.95, suggesting that the summary stats past 0.95 should 

not be considered reliable (Figure 1 b). 

We found that average acceleration_RA was lower in many disease conditions including 

diabetes mellitus, renal failure, Parkinson's disease, chronic airway obstruction, 

hypertension, and pneumonia. In the case of hypertension, participants with an 

acceleration RA of ≈0.75 had a 50% prevalence of comorbid elevated blood pressure, 

while participants displaying an acceleration RA close to 0.9 barely registered with high 

blood pressure (≈15% prevalence). This was reflected in the overall lower mean of 0.83 

acceleration RA in cases (n=20,720) compared to 0.85 acceleration RA in controls 

(n=46,605) (q=9.2x10-43). We observed similar associations for other diseases, shown in 

Figure 1 c-e for diabetes mellitus, renal failure, and Parkinson’s disease. Patients with 

Parkinson’s disease showed, as expected [17], a low mean acceleration RA of 0.78. 

To examine physical activity-related PheCODEs, we selected the acceleration_overall 

measure, which is the mean activity acceleration level. The most significant associations 

with it were with hypertension (q = 9.5x10-42, Cohen’s d = -0.11) and tobacco use disorder 

(q = 9.3x10-40, d = -0.27). Next are Parkinson’s disease (q = 5.3x10-33, d = -0.72), diabetes 

mellitus (q = 1.7x10-27, d = -0.18), and renal failure (q = 4.8x10-27, d = -0.25). 

For sleep quality, we examined the main_sleep_ratio_mean (i.e., sleep efficiency [18]). 

Its top associations were also with hypertension (q = 4.6x10-48, d=-0.13) and Parkinson’s 

disease (q = 2.7x10-46, d=-0.88). In addition, it associated with diabetes mellitus (q = 

4.7x10-39, d=-0.22), renal failure (q = 7.6x10-36, d=-0.30), and with mood disorder 

(q=2.6x10-32, d = -0.21). 

In summary, these findings illustrate how well actigraphy-derived metrics of physical 

activity, sleep, and diurnal rhythmicity track with disease phenotypes. 

We further examined behavioral health associations with the quantitative phenotypes 

(Figure 1 f, Figure S 2 bottom, and Supplemental Results) where we found congruent 

results with the diagnosis associations. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.09.21267558doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267558
http://creativecommons.org/licenses/by/4.0/


9 

 

Wrist Temperatures Mark Circadian Rhythms and Disease State 

Wrist temperature rhythms have been used to mark circadian rhythms [12] and are 

comparable to melatonin and core body temperature in estimating circadian phase [19]. 

Wrist temperature from the UKB study may reflect a combination of environmental 

ambient temperature and skin temperature and was collected originally to calibrate the 

accelerometer [20]. The traces, however, accurately captured the diurnal variability in 

distal skin temperature as previously reported. One prior report [21] had, in n=103 healthy 

volunteers, the delta between maximum (36.1±0.5°C) and minimum (30.4±1.7°C) 

rhythmic temperature fluctuations was around 6°C, which corresponds exactly to our 

observations (Figure 2). Furthermore, we hypothesized that chronotype (i.e., evening or 

morning preference) shifts the skin temperature rhythm curve [22]. Indeed, morningness 

associated with a larger amplitude in the skin temperature rhythm than eveningness 

(p=3x10-58 with an effect size of 0.23°C) and as expected the mid-morning nadir was 

phase advanced (Figure 2 a). In contrast, self-reported nappers had reduced temperature 

rhythms [23], see Figure S 3 (p=2x10-67 and effect size of 0.3°C change in amplitude 

comparing never-nappers to usual-nappers). 

Participants with a diagnosis of diabetes mellitus, hypertension, or anxiety disorders 

showed a reduced amplitude of the wrist temperature-over-time curve (Figure 2 b-d). We 

did not find an interaction of disease with chronotype: the difference between amplitudes 

of cases and controls in evening chronotypes was similar to the difference in morning 

chronotypes (Figure S 3). Dysfunction of adipose tissue in individuals with elevated body 

weight may cause various comorbidities [24]. An increase in BMI was associated with a 

proportional loss of amplitude in wrist temperature, without modulation by chronotype 

(Figure S 3).  

Taken together, these observations strongly support using skin temperature variance 

over the day, temp_RA, as marker of circadian rhythm. We define temp_RA as 𝑀𝑀10−𝐿𝐿5
𝑀𝑀10+𝐿𝐿5

 

where M10 is the average temperature during the 10 consecutive hours of highest activity 

and L5 is the average temperature during the lowest 5 hours of activity.  The M10 and L5 
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reflect the same time periods used in the acceleration_RA, and not necessarily the lowest 

and highest times for the temperature itself.  In the computed associations to quantitative 

traits and disease phenotypes, significant hits included HDL-C (q < 10-39), triglycerides (q 

< 10-38), hypertension (q < 10-32), diabetes, mood and anxiety disorders (q < 10-7) and 

respiratory conditions (chronic airway obstruction q < 10-13, asthma q < 10-9).  

Deconstructing Disease Phenotypes into the Behavioral Health Components: Physical 
Activity, Sleep, & Diurnal Rhythmicity 

One limitation is that multiple behavioral measures have been derived from a single data 

source (acceleration values) and therefore these may reflect a combination of behaviors. 

For example, the acceleration_RA score measures daytime-nighttime differences and 

was classified as a measure of diurnal rhythmicity. Despite this, it is influenced by physical 

activity levels (r=0.66 Spearman correlation between acceleration_RA and overall 

acceleration levels) as well as sleep quality. An alternative for this is to use temp_RA, 

which has lower correlations with activity levels (r =-0.25). 

To separate the contributions of diurnal rhythmicity independent from other health 

measures, we first chose behavioral health measures from each of the categories of 

physical activity, sleep, and circadianness. Specifically, we chose acceleration_overall for 

physical activity, sleep efficiency (main_sleep_ratio_mean) for sleep, and temp_RA for 

diurnal rhythms. We performed a logistic regression, modelling each PheCODE 

phenotype as a function of the three selected behavioral measures, identifying the 

contributions of activity levels, sleep, and diurnal rhythms (Figure 3 a, Table S 6). For the 

quantitative phenotypes, we performed a linear model of the phenotype as a function of 

the three behavioral measures (Figure 3 b, Table S 6). From these, we obtained 

significance of any one variable while controlling for the other two. 

 In both cases, significant contributions of diurnal rhythms (as measured by temp_RA) 

were identified after controlling for both physical activity levels and sleep quality across 

multiple phenotypes. Prominently associated PheCODES were diabetes mellitus, 

hypertension, asthma, chronic airway obstruction, lipoid disorders, mood disorders, and 
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anxiety disorders (all with q<0.0002); the most significant quantitative traits included 

triglycerides, HDL-C, and urine creatinine (all with q<10-20). These indicated a significant 

contribution of diurnal rhythmicity, quantified by wrist temperature, beyond sleep and 

physical activity levels towards disease state associations.  

Behavioral Health Measures are Strong Predictors of Survival 

Balanced physical activity and stable sleep-wake rhythms are predictors for survival [25, 

26]. To address this hypothesis in the UKB we performed a Cox proportional hazards 

model of all-cause mortality to test for associations between survival and each behavioral 

measure.  The model controlled for sex as well as BMI and smoking status at time of 

initial assessment in 1,516 deaths. One hundred and eight of the 124 actigraphy variables 

were significantly associated (FDR q < 0.05) with survival in the model (Figure 4, Table S 

3). 

Next, we applied this same survival model in males and females separately. Most 

measures clustered along the line of identity for sex-dependent differences in Figure S 4, 

suggesting that men and women overall experience similar benefits from physical activity, 

sleep, and diurnal rhythmicity. A few significant interactions emerged for physical activity 

(n=12) and sleep (n=2) related behavioral health variables (sex_difference_q<0.05). 

These suggested a trend that men have increased mortality risk from low physical 

inactivity compared to women (for example, moderate_overall physical activity 

logHR=-8.21 in men compared to logHR=-0.88 in women, q=0.001). Similarly, 

fragmentation of sleep (acceleration_during_main_sleep_mean) associated with higher 

mortality in men (logHR=0.003 in men, logHR=-0.47 in women, q=0.0017). 

Rhythms Predict Future Diagnoses 

We hypothesized that diurnal rhythmicity predicts future diagnoses, rather than simply 

associating with lifetime disease status. To test this, we selected the temp_RA measure 

of diurnal rhythmicity and performed Cox proportional hazards models with each 

PheCODE diagnosis as an endpoint. All subjects with the diagnosis occurring prior to 

actigraphy measures were removed from consideration. Factors were included to control 
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for sex, ethnicity (white/other), self-reported overall health, high household income (> 

52,000 pounds sterling/year), age at the time of actigraphy, BMI, college education and 

smoking status, all measured at the initial assessment.  

Of 332 PheCODEs with at least 50 cases, 45 PheCODEs reached significance at q<0.05 

(Figure 5, Table S 7). The most significant association was in diabetes mellitus, where a 

two standard deviation increase in temp_RA increased the log hazard ratio by 0.48 

corresponding to a 61% (48-76%, 95% CI) increase in rate of diabetes diagnosis. Wrist 

temperature rhythms also had large predictive power in other diagnoses, see Table 1 and 

Table S 2. 

The model was repeated with sex interaction terms to check for differences in males and 

females and with age interaction terms to check for difference in younger and older 

populations. No significant sex or age differences were observed (q > 0.4 for all 

PheCODEs), indicating that temperature RA is a robust marker of future disease state in 

this population. 

 

Phenome-wide Sex and Age Differences 

Most PheCODE Associations Consistent Between Sexes  

To check for sexual dimorphic effects, associations between PheCODEs and behavioral 

health measures were computed in each sex for phenotypes with at least 50 cases in 

both males and females (Figure 6 a,c, Figure S 5). Effect sizes in the two sexes were 

similar but with significant differences in the digestive and mental disorders. Among 

38,316 disease phenotype and behavioral measure pairs, only 54 reached a significant 

difference between men and women (q-diff≤0.05, Table S 4). See also Supplemental 

Results. 
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Physical activity shows stronger associations with quantitative phenotypes in males 
than females  

Among the quantitative traits, a strong sex-dependence was observed (Figure 6 d, Table 

S 5) with 944 associations displaying sexual dimorphism where males have the larger 

effect sizes in 81% of those associations. Effect sizes were measured as Pearson r 

correlations (using each sex’s individual variations) and so these differential effects were 

not driven by differences in variability in the sexes. The actigraphy health variables driving 

these changes are primarily those reflecting physical activity levels (Figure S 6) and are 

consistent in both the objectively measured activity level and the IPAQ activity group 

derived from self-report. These sex-dependent effects were seen in a wide range of 

quantitative traits including vitamin D, physical measures (grip strength, waist 

circumference), creatinine, cardiovascular measures (pulse rate, apolipoprotein A and 

triglycerides) (q<10-5).  

 

Age Interacts Significantly with Physical Activity, Sleep, and Diurnal Rhythmicity and 
PheCODEs  

Next, we examined age-dependent differences. This model was performed among 

phenotypes with at least 200 cases and age (at the time actigraphy was taken) was 

included as an interaction term with case/control status. Here, 1,397 out of 39,432 pairs 

of disease phenotype and actigraphy health variable are significant at the q≤0.05 level 

(Table S 4). This demonstrated significant differences between older and younger 

populations in a subset of diagnoses. To illustrate this, in Figure 6 b,c, effect size 

estimates at age 55 were plotted against estimates at age 70, which corresponded 

approximately to the 20th and 80th percentile ages in this population, respectively. 

Hypertension, osteoarthrosis, chronic airway obstruction, anxiety and mood disorders 

showed larger effect sizes in the younger populations. Disorders of menstruation and 

varicose veins had larger effects in the younger populations. See Supplemental Results. 
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Age-Dependent Patterns in Quantitative Traits Associated with Physical Activity  

Age dependency in the association between quantitative trait and actigraphy health 

variables were seen in 20% (2,109 out of 10,292 tests) at a level of q≤0.05. Top 

candidates almost exclusively belonged to the cardiovascular system, lipoid metabolism, 

body mass and kidney function (Figure 6 e). Results were consistent with or without 

controlling for medication, except in some lipoprotein profiles while controlling for 

cholesterol lowering medications (see Supplemental Results). 
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Discussion 

Many chronic disease conditions are associated with disrupted biological rhythms [27]. 

By applying our PheWAS-SensR approach to the UKB, we show that actigraphy data 

strongly associates with PheCODES. Overall exercise and sleep behaviors correlate well 

with disease, biomarkers of organ function and health, and outcomes. We find that these 

relationships are modulated little by sex but substantially by age.  

In a novel approach for which we quantified diurnal behavior in two distinct ways, 

actigraphy-based (diurnal rhythmicity) and skin temperature-based (circadian rhythmicity), 

we demonstrated that these rhythms associate substantially with disease, survival 

outcomes, and quantitative biomarkers of health and organ function. These effects were 

similar in size to effects from exercise and slumber, underscoring the relevance of robust 

rhythms for health. Hypertension, diabetes mellitus, pneumonia and anxiety disorders are 

exemplary PheCODES for these relationships. Diabetes mellitus had strong correlations 

with both physical activity and diurnal rhythmicity. Interestingly, the levels of glycated 

hemoglobin were less associated with exercise but significantly so with rhythmicity. This 

raises the question of whether the structured lifestyle interventions used to treat diabetes 

[28] confer part of their benefit on glycemic control through re-establishing rhythmic 

behavioral patterns. Our analyses show that robustness of diurnal rhythmicity is an 

important determinant of health status, and that deconsolidation increases disease risk 

separate from physical activity and sleep. Therefore, it not only matters for our wellbeing 

that we exercise and sleep well, but also the regularity of timing that we are engaged in 

these activities.  

A key question is which disease onsets are predicted by deconsolidation of rhythmicity. 

Here, we find that weaker circadian rhythms of skin temperature in healthy participants at 

the time of actigraphy had a higher risk for a future diagnosis of diabetes mellitus, 

hypertension, asthma, chronic airway obstruction, lipid disorders, chronic liver disease, 

renal failure, pneumonia, and anxiety disorders. This suggests that longitudinal 

monitoring of diurnal rhythmicity has prognostic value for disease progression.  These 

hazard ratios were not modulated by sex or age in our modeling, suggesting this as a 
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robust circadian marker amongst those older than 50. In contrast, our PheWAS-SensR 

associations demonstrated significant age modulation. For example, temp_RA had a 

stronger association with hypertension among younger individuals than older, but its 

predictive power was not significantly affected by age. However, the predictive models 

have lower sample sizes and lower power than the associative scores, though sample 

sizes are expected to be higher when re-run in the future. 

The UKB population is not a random sample, being older, overwhelmingly white, and in 

better overall health than the general population. For actigraphy, the large number of 

retirees is significant and may affect generalizability of results to younger, more diverse 

populations. However, the older population also enriches the study for many pathological 

phenotypes of interest. 

The increasing ease of wearable technology facilitates incorporation into large, diverse 

cohorts, such as the All of Us research program [29]. While smartphone-based  

approaches are easily scalable, it is still unclear how much this digital phenotyping, where 

sleep time data may be limited, can provide insight into diurnal rhythmicity [30]. 

In conclusion, our PheWAS-SensR quantifies physical activity, sleep, and rhythms from 

remote sensors to model disease trajectories with strong associations to survival and 

powerful predictions for future disease onset. Integration of long-term remote biosensing 

into patient care could thus afford an individualized approach to risk management. 
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Figures 

 

Figure 1 – Associations between Disease Phenotypes and Behavioral Measures  

(a) Manhattan plot of -log10 p-values of associations between behavioral measures and 

PheCODE. The Benjamini-Hochberg FDR cutoff of q < 0.05 is shown in the horizontal 

dashed line and a Bonferoni cutoff for p < 0.05 in horizontal solid line. To enhance 

visualization, the vertical axis is broken. (b-e) Example associations of the most common 

phenotypes, (b) hypertension, and the RA score as well as other representative disease 

phenotypes, (c) diabetes mellitus, (d) renal failure, and (e) Parkinson’s disease. The top 
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graph in each panel shows the distributions of RA scores in cases (orange) and controls 

(torquise). The bottom graphs display the prevalence of the diagnosis by RA score. As 

compared to the overall population, those with lower acceleration_RA than the mean 

(0.845) had an increased prevalence of the disease, while those with higher RA scores 

had decreased prevalence. Note that due to low case counts in renal failure and 

Parkinson’s, axes have been rescaled. (f) Manhattan plot of -log10 p-values of 

associations between behavioral measures and quantitative phenotypes. 
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Figure 2 - Wrist temperature traces 

Wrist temperature traces comparing cases and controls for differences by (a) 

morning/eveningness, (b) diabetes mellitus, (c) hypertension, and (d) anxiety disorders. 

25th to 75th percentiles of the population are displayed in shaded regions (controls in blue, 

cases in yellow and overlap in grayish green). Temperature is plotted relative to an 

individual’s overall mean. 
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Figure 3 – Characterizing Disease Phenotypes and Quantitative Traits by Sleep, 
Physical Activity, and Diurnal Rhythmicity 

Logistic and linear regression were fit for top diagnoses (a) and quantitative phenotypes 

(b), respectively, as functions of three behavioral health measures: one from each of 

physical activity (blue), sleep (green), and diurnal rhythmicity (orange) categories. In the 

left panels, the -log10 p-values of the contributions of each of the three variables (capped 

at 40). The vertical dashed line denotes the FDR q < 0.01 cutoff and phenotypes whose 

diurnal variability contribution is significant at this level are marked with an asterisk. In 

right panels, the standardized effect sizes of the model coefficients (absolute population 

mean marginal effect size per standard deviation of the actigraphy health variable, divided 

by the phenotype’s overall prevalence) with 95% confidence intervals. 

  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.09.21267558doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267558
http://creativecommons.org/licenses/by/4.0/


22 

 

 

Figure 4 - Associations Between Behavioral Health Variables and Survival / 
Disease Phenotypes 

Survival curves by quintiles of behavioral health variables for physical activity 

(acceleration_overall), diurnal rhythmicity (acceleration_RA) and sleep (main sleep ratio). 
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Figure 5 – Diurnal Rhythmicity Predict Diagnoses 
To test whether diurnal rhythmicity predict future disease, a Cox proportional hazards 

model was run for each PheCODE testing for effects from the diurnal rhythm measure 

temp_RA. Individuals with diagnoses prior to the actigraphy measurement were excluded. 

In many phenotypes, weaker temperature rhythms predict future diagnosis. No 

phenotypes displayed significant differences by sex or by age in the level of predictive 

power provided by temp_RA. Left, significance of the overall effect size (not by age or 

sex). Right three panels, effect sizes by overall model, by sexes, and in younger and older 

populations. Effect size measured as the log hazard ratio (log HR) per standard deviation 

(SD) change in the temp_RA measure. 
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Figure 6 - Sex- and Age-Specific Effects 

Comparison of associations between medical diagnoses and behavioral health measures 

by sex and age. (a, b) Comparison of the sex-specific effect sizes for behavioral health 

measure (difference in behavioral health measure or quantitative trait between cases and 

controls, normalized by the standard deviation of the behavioral health measure) in (a) 

males versus females and (b) in the younger (age 55) and older (age 70) populations by 

phenotype category. Dashed lines represent equal or opposite effect sizes between the 

two groups. (c) Effect sizes in males versus females and by age in select categories of 

phenotypes, associating with circadian rhythm robustness (measured as 

acceleration_RA). Lines denote 95% confidence intervals. (d-e) Comparison of sex-

specific effect sizes for quantitative traits (SD difference in quantitative trait per SD 

change in behavioral measure) in (d) males and females and in (e)  younger and older 

populations, by quantitative trait category. 
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Tables 
Table 1 Hazard Ratios for select diagnoses 

Activity Variable Hazard Ratio 
From 1 SD increase 
(95% CI) 

Hazard Ratio 
From 2 SD increase 
(95% CI) 

Diabetes 1.27 (1.21 – 1.33) 1.61 (1.48 – 1.76) 

Hypertension 1.10 (1.08 – 1.13) 1.22 (1.16 – 1.27) 

Renal Failure 1.14 (1.08 – 1.21) 1.30 (1.16 – 1.46) 

Chronic Airway Obstruction 1.18 (1.11-1.25) 1.38 (1.23 – 1.55) 

Pneumonia 1.14 (1.08 – 1.20) 1.30 (1.16 – 1.45) 

Anxiety Disorders 1.13 (1.06 – 1.19) 1.27 (1.13 – 1.42) 

Disorders of Lipoid Metabolism 1.09 (1.06 – 1.13) 1.19 (1.11 – 1.27) 

From the Cox proportional hazards models, wrist temperature rhythms (temp_RA) were 

predictive of disease outcomes. Seven of the largest effect sizes are given here, as 

hazard ratios comparing between mean and 1 SD above average temp_RA or comparing 

mean to 2 SD above average. See also Table S 7. 
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