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Abstract 22 

Hurricane Harvey caused record-breaking, catastrophic flooding across the city of Houston. After 23 

floodwaters receded, several health concerns arose, including the potential adverse impact of exposure to 24 

mold in flooded homes. We rapidly launched the Houston Hurricane Harvey Health Study to evaluate if 25 

microbiome sampling in the wake of a disaster could inform flood-associated environmental exposures and 26 

adverse health outcomes. We enrolled a total of 347 subjects at 1-month and 12-months post-Harvey, 27 

collecting human (stool, nasal, saliva) and environmental (house swab) samples to profile the bacterial and 28 

fungal microbiota. Here we show reported exposure to mold was associated with increased risk of allergic 29 

symptoms for up to one year post-disaster, and that butyrate-producing bacteria in the gut were linked to 30 

protection from allergic symptoms in mold-exposed individuals. Together, these data provide new insights 31 

into how microbiome:environment interactions may influence health in the setting of a flood-related disaster.  32 
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Introduction 33 

On August 25, 2017, Hurricane Harvey made landfall in Rockport, Texas as a category 4 hurricane, marking 34 

the beginning of the second costliest tropical cyclone disaster in US history.1 Over the next several days, 35 

the slow-moving storm system stalled over Harris County, dropping over 50 inches of rain, breaking the 36 

record for continental US rainfall.2 Catastrophic flooding across the greater Houston area impacted over 37 

200,000 homes in Harris County alone.3 Clean-up efforts lasted months, with many individuals “mucking 38 

and gutting” their own homes. Given the unprecedented levels of flooding, extensive clean-up efforts, and 39 

the humid climate in Southeast Texas, exposure to mold and other environmental microbes was a 40 

significant health concern.4 41 

 42 

Mold can cause a variety of health problems, including sequelae of mycotoxin ingestion and invasive 43 

infections in immunocompromised individuals.5 However, for healthy individuals in non-occupational 44 

settings, the primary concern is allergic response and/or respiratory tract irritation caused by inhaled mold 45 

spores.5,6 Mold growth and/or indoor dampness are associated with a variety of allergic pathologies 46 

including allergic rhinitis, eczema, and asthma exacerbation.7 As many Houstonians remained in flood-47 

damaged homes, the health effects of mold exposure became a significant concern.8 Previous studies on 48 

the health impact of mold growth caused by hurricanes have been inconclusive: after Hurricanes Katrina 49 

and Rita, 46% of homes assessed in New Orleans had documented mold growth, but no increase in 50 

symptoms related to mold exposure was detected.6 However, these studies were limited to individuals who 51 

sought medical care and likely overlooked those who chose not to seek treatment or lacked access to 52 

healthcare.6 Thus, the health impact of mold exposure after flooding events remains unknown, particularly in 53 

communities with limited resources.  54 

 55 

The role of the microbiome in regulating allergic immune responses is becoming increasingly apparent.9 56 

Microbial-derived metabolites such as butyrate, a short-chain fatty acid (SCFA) derived from bacterial 57 

fermentation of dietary fiber, have been shown to directly regulate eosinophil migration and survival and 58 
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reduce allergic airway inflammation.10,11 Given these findings, we hypothesized that human microbiome 59 

composition may be associated with health outcomes following exposure to environmental allergens such 60 

as mold. 61 

 62 

We launched the Houston Hurricane Harvey Health (Houston3H) Study to assess environmental exposures 63 

and health outcomes of Houstonians impacted by Hurricane Harvey. We found mold exposure was 64 

significantly associated with increased risk of at least one allergic symptom up to a year after Hurricane 65 

Harvey. Furthermore, we discovered that subjects with higher levels of butyrate-producing gut bacteria were 66 

at lower risk for allergic symptoms even with mold exposure. Therefore, while exposure to mold in the 67 

setting of a flood-related disaster can increase risk of allergic symptoms, the gut microbiome may play an 68 

important role in mitigating this risk.  69 

 70 

Results 71 

Cohort Characteristics 72 

The Houston3H Study enrolled a total of 347 subjects from 270 households across two timepoints: 206 73 

subjects (178 households) at 1-month post-Harvey and 266 subjects (199 households) at 12-months post-74 

Harvey, which includes 125 subjects (107 households) who participated at both time points. Subjects were 75 

recruited from four distinct Houston-area neighborhoods impacted by Hurricane Harvey: Addicks, Baytown, 76 

East Houston, and Bellaire/Meyerland. Demographics varied significantly by neighborhood: the majority of 77 

subjects from Addicks and Bellaire/Meyerland were Non-Hispanic White and lived in census tracts with 78 

lower Area Deprivation Index (ADI) scores, indicative of higher socioeconomic status, while the majority of 79 

subjects from Baytown and East Houston were Hispanic or Non-Hispanic Black and had higher ADI scores 80 

(Figure 1a, Supplementary Table 1). Details of this cohort have been previously described.12 81 

 82 

Human and house microbiome composition varies by demographics and geography 83 
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We first evaluated the microbiome composition in association with subject demographics and geography. 84 

We profiled the bacterial microbiome using 16S-V4 rRNA amplicon sequencing, and beta diversity (Binary 85 

Jaccard) analyses revealed strong associations between race/ethnicity, age, neighborhood, enrollment site, 86 

and ADI and the human microbiome (Figure 1b, Supplementary Figure 1). The stool and salivary 87 

microbiomes were more strongly associated with race/ethnicity than any other demographic variable tested, 88 

suggesting that race and ethnicity and/or associated collinear cultural and dietary factors are major drivers 89 

of microbial ecology in these body sites. In contrast, the nasal microbiome was most strongly associated 90 

with neighborhood, suggesting that geographic location plays a significant role in shaping the nasal 91 

microbiome.  92 

 93 

Using Internal Transcribed Spacer-2 (ITS2) amplicon sequencing, we profiled the fungal microbiome 94 

(mycobiome) of nasal, stool and house swab samples. Beta diversity analyses revealed the same variables 95 

that drove nasal bacterial microbiome composition impacted the nasal mycobiome, with neighborhood more 96 

strongly associated with mycobiome composition than race/ethnicity. However, unlike the stool bacterial 97 

microbiome, we found no association between the taxonomic composition of the stool mycobiome and any 98 

demographic variables tested. We additionally profiled a snapshot of the microbes in the home environment 99 

(house microbiome). Subjects sampled their homes by swabbing the entry/threshold of their home’s front 100 

door. At 1-month post-Harvey (Figure 1b), beta diversity analyses revealed no association between the 101 

house microbiome (fungal and bacterial) and demographic variables. At 12-months post-Harvey, we found a 102 

significant association between geographical variables and the house microbiome (both fungal and 103 

bacterial), suggesting that geographical location (neighborhood) plays a significant role in shaping the 104 

community of microbes in the home environment (Supplementary Figure 1). 105 

 106 

Impact of mold exposure on allergic symptoms 107 

We next assessed the relationship between allergic symptoms and mold exposure. Our questionnaire was 108 

designed using the NIH Disaster Research Response Resources (https://dr2.nlm.nih.gov) and asked 109 
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subjects to report symptoms known to be associated with indoor dampness or mold exposure7,13 including 110 

throat irritation, sinus irritation, eye irritation, wheezing, cough, shortness of breath, and skin rash (both time 111 

points) and worsening asthma (1-month post-Harvey only). For simplicity, we collectively refer to this group 112 

of mold-associated symptoms as “allergic symptoms.” For the seven individual symptoms included at both 113 

time points, our questionnaire asked subjects to report symptoms that occurred following the hurricane, 114 

excluding those resulting from a cold or seasonal allergies and inclusive of symptoms that had since 115 

resolved. The majority of participants reported at least one allergic symptom (70.4% in 1-month post-Harvey 116 

cohort, 65.0% in 12-months post-Harvey cohort), with minimal variation in subject demographics by allergic 117 

symptoms (Supplementary Tables 2-3). Building on our prior work assessing the relationship between 118 

hurricane exposures and individual allergic symptoms,12 in the present study we analyzed symptoms 119 

collectively and assessed the relationship between reported mold exposure and the presence of at least 120 

one allergic symptom. At 1-month post-Harvey, both reported exposure to visible mold and new signs of 121 

mold in the home were associated with increased risk of at least one allergic symptom (Figure 2). In the 12-122 

months post-Harvey cohort, when the majority of flood remediation was complete, only signs of mold growth 123 

in the home was associated with increased risk of allergic symptoms (Figure 2).  124 

 125 

Gut bacterial microbiome is associated with allergic symptoms when mold is present in the home 126 

As the microbiome has a major influence on systemic immune responses to allergens,14 we asked if there 127 

was an association between reported allergic symptoms and the microbiome. Using 16S-V4 and ITS2 128 

amplicon sequencing, we discovered a strong association between the gut bacterial microbiome and 129 

allergic symptoms at 1-month post-Harvey, but no association in any other sample type (Figure 3a). We 130 

performed Whole Genome Shotgun (WGS) sequencing to verify this association using species-level 131 

resolution of the gut microbiome, and again found significant clustering of taxonomic composition by 132 

presence of allergic symptoms (Figure 3b). This association did not persist at 12-months post-Harvey in the 133 

gut or any other sample type (Supplementary Figure 2). Among individuals who reported new signs of 134 

mold in their home after Harvey, we found that gut microbiome composition at 12-months post-Harvey was 135 
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associated with allergic symptoms, potentially due to the ongoing allergen exposure even after remediation 136 

efforts (Figure 3b). No significant differences in gut microbiome alpha diversity (species richness) by 137 

allergic symptoms were detected (Figure 3c). 138 

 139 

Butyrate-producing bacteria are enriched in the gut microbiome of subjects without allergic 140 

symptoms 141 

We next determined which bacterial species were driving the observed gut microbiome:environmental mold 142 

interaction with allergic health outcomes. Linear Discriminant Analysis Effect Size15 (LEfSe) revealed that 143 

species enriched in subjects without allergic symptoms had the common ability to produce butyrate, a 144 

microbial product known to regulate immune cells and mitigate allergic responses11,16 (Figure 4a,b). At 1-145 

month post-Harvey, multiple butyrate-producing species were enriched in subjects without allergic 146 

symptoms, including Roseburia intestinalis, Roseburia inulinovorans, Bacteroides finegoldii, Coprococcus 147 

comes, and Eubacterium ventriosum. At 12-months post-Harvey, only a single butyrate-producing bacterial 148 

species (Bacteroides faecis) was enriched in subjects without allergic symptoms. However, co-occurrence 149 

analysis revealed that B. faecis frequently co-occurred with other butyrate-producing bacteria including 150 

multiple Alistipes, Bacteroides, and Roseburia spp. (Figure 4c,d). This suggests that butyrate production 151 

may be driven by a cooperative network of multiple bacteria rather than dominance of only a few species 152 

driving butyrate production. Notably, Ruminococcus gnavus, which negatively co-occurs with many 153 

butyrate-producing bacteria, was enriched in subjects with allergic symptoms at 12-months post-Harvey. 154 

This pattern of R. gnavus negative co-occurrence was remarkably consistent across both time points as 155 

well as multiple independent cohorts from the US and Europe (Supplementary Figure 3).  156 

 157 

Microbial butyrate metabolism genes are enriched in the gut microbiome of subjects without allergic 158 

symptoms 159 

We next examined the functional capacity of the gut microbiome using WGS sequencing data. We found 160 

that butyrate metabolism genes were significantly enriched in the guts of subjects without allergic symptoms 161 
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at 1-month post-Harvey (Figure 5a). At 12-months post-Harvey, similar to taxonomic composition (Figure 162 

3b), we found that while there was no difference in butyrate metabolic capacity by allergic symptoms across 163 

all subjects (Figure 5b), when including only subjects reporting signs of mold growth in their home post-164 

Harvey, we saw a significant enrichment of butyrate metabolism genes in the gut microbiome of subjects 165 

without allergic symptoms (Figure 5c). To test if the consistency of this association was driven primarily by 166 

longitudinal subjects who participated at both time points, we next repeated this analysis excluding 167 

longitudinal subjects, and found that this association was reproducible in the cohort of subjects who 168 

participated at the 12-month post-Harvey time point only (Supplementary Figure 4). Given that many 169 

bacterial species capable of producing butyrate are also able to produce other short chain fatty acids 170 

(SCFA; e.g., propionate and acetate), we asked if gene content of the gut microbiome was enriched for 171 

these metabolic pathways, but found no difference between subjects with and without allergic symptoms at 172 

either time point (Figure 5). To test if additional bacterial functions could also be associated with allergic 173 

health outcomes, we performed LEfSe analysis on all mapped functional pathways (Supplementary Figure 174 

5), which revealed several other functional pathways associated with allergic health outcomes; notably, fatty 175 

acid biosynthesis was enriched in subjects without allergic symptoms at both 1-month and 12-months post-176 

Harvey. Finally, we evaluated factors known to associate with gut microbiome composition including body 177 

mass index (BMI)17 and recent antibiotic use,18 and we found no association between these variables and 178 

butyrate metabolism gene abundance at either time point (Supplementary Figure 6).  179 

 180 

Impact of hurricane exposures on microbiome composition 181 

We next sought to determine if hurricane exposures may have altered human microbiome composition. 182 

Beta diversity analysis revealed no significant associations between hurricane exposures (exposure to dirty 183 

water, sewage, visible mold, new signs of mold growth in the home since Harvey, and whether subjects 184 

were rescued or involved in clean-up work) and human microbiome composition in any sample type 185 

(Supplementary Figure 7).  We next evaluated if ITS2 amplicon sequencing of house threshold samples 186 

can be used to assess mold growth in the home, and discovered no significant association between house 187 
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threshold mycobiome profiles and subject reported mold growth. (Supplementary Figure 7). Given the 188 

variation in the mycobiome across neighborhoods, we hypothesized this lack of association may be 189 

explained by neighborhood-specific mold signatures, supposing a single signature indicative of mold growth 190 

may not be universal across Houston. At 12-months post-Harvey, we found that each subjects’ nasal 191 

mycobiome was more similar (shorter Binary Jaccard distance) to the mycobiome of their own home relative 192 

to other homes, suggesting each home has its own unique mold exposure profile. However, the similarity 193 

(Binary Jaccard distance) between a subjects’ nasal and house mycobiome was not associated with 194 

reported exposure to mold or signs of mold growth in the home (Supplementary Figure 8). 195 

 196 

Discussion 197 

By rapidly launching the Houston3H study following an unprecedented flooding disaster in our city, we were 198 

able to assemble a uniquely diverse cohort to evaluate the interaction between environmental exposures 199 

and microbiome composition in a disaster setting. We found significant associations between exposure to 200 

mold and allergic symptoms. At 1-month post-Harvey, both reported exposure to visible mold (anywhere) 201 

and reported signs of mold growth in the home were associated with increased risk of at least one allergic 202 

symptom, while at 12-months post-Harvey only signs of mold in the home was associated with increased 203 

risk of allergic symptoms. These data suggest that at 1-month post-Harvey, mold in the home was not 204 

necessarily the primary source of mold exposure, while months after the Hurricane, mold growth in the 205 

home likely became the primary source.  206 

 207 

Our study provides epidemiological corroboration of prior observational and mechanistic work establishing a 208 

strong link between butyrate and protection against allergic inflammation.  Butyrate, a SCFA derived from 209 

fermentation of dietary fiber by gut microbiota,10 is a key microbial product linking the microbiome and the 210 

immune system via regulation of inflammatory cytokine production and induction of regulatory T cells.16  211 

Multiple studies have found higher levels of butyrate-producing bacteria and/or fecal levels of SCFAs to be 212 

associated with protection against allergic health outcomes including asthma, allergic rhinitis, atopic 213 
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dermatitis, and allergic sensitization.19–22 Several interventional studies in animal models have established a 214 

causal link between dietary fiber intake, butyrate, and protection against allergic airway disease including 215 

asthma.11,20,23,24 Butyrate directly inhibits eosinophil migration, adhesion, and survival in vitro, and studies in 216 

adults with stable asthma have shown that consumption of fiber (with or without probiotics) acutely 217 

decreases airway inflammation and improves asthma control.11,25,26 Together, these observations provide 218 

strong evidence that butyrate derived from bacterial fermentation of dietary fiber plays a significant role in 219 

attenuating allergic immune responses.  220 

 221 

In our study, the association between lower levels of bacterial butyrate metabolism genes and presence of 222 

allergic symptoms was found at 1-month post-Harvey in all subjects, while at 12-months post-Harvey, this 223 

association was only detected in subjects who reported new signs of mold growth in their home after the 224 

hurricane. This pattern suggests a possible microbiome:environment interaction, whereby lack of butyrate 225 

producers in the gut may prime individuals for an allergic response, but individuals will only become 226 

symptomatic with antigen exposure. A sub-analysis excluding longitudinal subjects verified this association 227 

is reproducible in two distinct cohorts of participants. 228 

 229 

Given that the gut microbiome represents a cooperative network of microbes rather than individual species 230 

exerting functional effects in isolation, it is possible that a gut microbial ecosystem marked by elevated 231 

levels of butyrate producers may harbor additional beneficial functionalities that influence allergic health 232 

outcomes. For example, Candida albicans, a yeast commonly found in the gut microbiome, has been shown 233 

to promote cross-reactive Th17 cells which trigger an allergic response upon mold exposure,27 and 234 

Roseburia spp., which are butyrate-producers, have been shown to inhibit C. albicans growth.28 Thus a gut 235 

microbiome with higher levels of Roseburia may protect against allergic pathology by both producing higher 236 

levels of butyrate and by preventing growth of C. albicans in the gut. Conversely, the mucin-degrader29 237 

Ruminococcus gnavus has been shown to precede onset of respiratory allergies and atopic eczema in 238 
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infants, and R. gnavus directly induced a Th2 allergic response and airway hyper-responsiveness in mice.30 239 

R. gnavus was found to negatively co-occur with many butyrate-producers in multiple independent cohorts. 240 

This may be explained by dietary fiber intake, as high dietary fiber promotes the growth of butyrate-241 

producers,31 while low dietary fiber promotes the growth of mucin-degraders like R. gnavus.32 Thus, 242 

individuals who consume low fiber diets may have a gut microbiome marked by both lower levels of butyrate 243 

producers and higher levels R. gnavus, potentially predisposing them to allergic pathology via two 244 

synergistic mechanisms: lack of butyrate and R. gnavus-driven allergic inflammation. Together, this 245 

suggests that microbiome:environment interactions may be driven by synergistic effects of gut microbial 246 

ecology, including the presence of beneficial bacteria such as butyrate producers and absence of microbes 247 

that promote allergic pathology such as C. albicans and R. gnavus. 248 

 249 

Our cohort was unique in its inclusion of study participants from four distinct neighborhoods in the Houston 250 

area, one of the most racially and ethnically diverse metropolitan areas in the United States. While the 251 

association between race/ethnicity and the human microbiome is well-established,33 we discovered that 252 

neighborhood-level geographical associations, including indices of neighborhood-level poverty, are also 253 

strongly associated with microbiome composition.  While this undoubtedly is partly driven by strong 254 

associations between race, ethnicity, neighborhood, and poverty, it reveals these factors should be 255 

considered when interpreting reported differences in microbiome composition by racial and ethnic variation. 256 

This is particularly apparent when considering the nasal microbiome, as the microbiota detected in the nose 257 

were more strongly associated with neighborhood than race/ethnicity. Gut mycobiome composition showed 258 

no significant associations with any demographic variable tested, consistent with previous reports that in 259 

contrast to the gut bacterial microbiome, which is relatively stable over time, the gut mycobiome is more 260 

dynamic.34  261 

 262 

We did not find associations between hurricane exposures and microbiome composition, which may be 263 

explained by several factors. First, it is possible that the human microbiome is relatively resilient in the face 264 
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of disasters. Alternatively, it may be that Hurricane Harvey caused shifts in microbiome composition that 265 

were overpowered by the demographic variation in the microbiome; thus, a more racially and geographically 266 

homogenous cohort may have revealed differences not detected in our study. Third, it is possible that the 267 

impact of the hurricane on the microbiome is not uniform across individuals and that unique changes 268 

occurred in each individual which would not be captured by our methods. As culture-independent 269 

sequencing methods cannot profile absolute magnitude of microbes present, it is possible that the amount 270 

of microbes (such as mold) significantly varied by hurricane exposures, but were not detected due to this 271 

inherent limitation of our methodology.  272 

 273 

While we were understandably unable to collect pre-hurricane samples for this study, the lack of association 274 

between hurricane exposures and microbiome composition suggests that the robust association between 275 

allergic symptoms and the gut microbiome detected in this cohort was likely not driven by hurricane-induced 276 

changes in gut microbiota. Rather, the level of butyrate-producing bacteria in each individual’s gut 277 

microbiome may have been established prior to the hurricane, and the widespread mold exposure after the 278 

hurricane subsequently induced an immune response in susceptible individuals. Furthermore, by collecting 279 

self-reported symptoms known to be associated with mold exposure, we were able to capture health 280 

outcomes in populations who may have lacked access to health care or were unable to seek medical care 281 

for other reasons, a weakness of prior studies assessing health outcomes following flooding events.6 282 

However, our study was limited by the restraints inherent in rapidly launching a disaster microbiome study in 283 

response to a hurricane, as we were unable to further validate the etiology of symptoms included in our 284 

questionnaire.   285 

 286 

The lack of association between mycobiome profiles and reported mold exposure suggests that mycobiome 287 

sequencing may not adequately capture clinically-significant mold exposures. For the house swabs 288 

collected at 1-month post-Harvey only, this may be explained by the use of non-sterile swabs to collect 289 

house threshold samples, which were utilized due to a shorthand of supplies immediately after the 290 
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hurricane, as sterile swabs were prioritized for human sampling. For all other samples types and time points 291 

(which utilized sterile collection materials), this lack of association may be explained by several possible 292 

factors: 1) the inability of ITS2 sequencing to quantify the magnitude of mold exposure, 2) fungal taxonomy 293 

analysis may not be sufficient to delineate the features of mold that trigger an allergic response, as many 294 

antigens contain cross-reactive epitopes that are shared among distantly-related fungal and non-fungal 295 

species,35 3) the nasal mycobiome may be relatively transient, thus exposures that occurred hours or days 296 

prior may not be accurately reflected at the time of nasal sampling. Finally, subjects were only able to swab 297 

a small portion of their homes, which assuredly did not capture the full profile of microbes present in the 298 

home environment.   299 

 300 

Together, our data suggest that the human microbiome is shaped by long-term environmental factors such 301 

as neighborhood of residence, race/ethnicity, and socioeconomic status; in addition, it may be relatively 302 

resilient and stable in the face of acute, novel microbial exposures from flooding events. We found that 303 

exposure to mold is associated with increased risk of allergic symptoms after a severe flooding event. 304 

Furthermore, we found that the risk of these allergic symptoms may be dependent on the interaction 305 

between the microbiome and the environment, whereby lower levels of microbial butyrate production in the 306 

gut may prime individuals for an allergic response to mold, which then manifests upon mold exposure. 307 

 308 

Methods 309 

Study Design and Recruitment 310 

The Hurricane Harvey Health (Houston3H) Study was launched by Baylor College of Medicine (BCM), The 311 

University of Texas Health Science Center (UTHealth), and Oregon State University (OSU) in response to 312 

the 2017 hurricane. Leveraging an existing disaster protocol at OSU, rapid IRB approval was obtained at 313 

BCM (Protocol H-42111) within days of reopening after the hurricane, and UTHealth obtained reciprocal 314 

approval. This study complied with all relevant ethical regulations. Enrollment took place September 23 – 315 

October 3, 2017 (referred to as 1-month post-Harvey), with follow-up one year later (August – December 316 
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2018; i.e., 12-months post-Harvey). Study eligibility criteria were (1) impacted by Hurricane Harvey through 317 

flooding and/or involvement in clean-up efforts, (2) age 5 or older, and (3) conversant in English or Spanish.  318 

Enrollment sites in three Harris county neighborhoods highly impacted by flooding were selected for 319 

recruitment: Addicks, Baytown, and East Houston. Baylor College of Medicine served as the fourth 320 

enrollment site.  Written informed consent was obtained in English or Spanish by trained study personnel. 321 

Participants at 1-month post-Harvey were re-contacted for follow-up at 12-months post-Harvey; however, 322 

participation at 1-month post-Harvey was not a prerequisite for participation at 12-months post-Harvey.  323 

 324 

Exposures and Health Questionnaire 325 

All subjects completed a questionnaire detailing (1) subject demographics and addresses, (2) individual 326 

hurricane exposures and clean-up effort involvement, and (3) health outcomes including symptoms 327 

associated with mold exposure. Questionnaire data were coded using Research Electronic Data Capture 328 

(REDCap) software. After data cleaning, questionnaire data was imported into R (version 3.6.1) for 329 

integration with microbiome analyses. Hurricane exposures assessed at both time points included (1) if 330 

subjects’ home flooded during Hurricane Harvey, (2) if there were new signs of mold growth in their home 331 

after Harvey, (3) if they were rescued during Harvey, and (4) if they were exposed to dirty water, sewage, or 332 

visible mold. At 1-month post-Harvey only, the questionnaire additionally asked if subjects were involved in 333 

clean-up efforts such as removing mud and debris. Health outcomes assessed included symptoms known 334 

to be associated with indoor dampness and/or mold exposure including throat irritation, sinus irritation, eye 335 

irritation, wheezing, cough, shortness of breath, and skin rash7,13 (1-month and 12-months post-Harvey), 336 

and worsening asthma (only assessed at 1-month post-Harvey), collectively described as “allergic 337 

symptoms.” For all symptoms except worsening asthma, subjects were asked to report symptoms that had 338 

occurred since Hurricane Harvey, excluding symptoms caused by a cold or seasonal allergies, and subjects 339 

provided a Yes/No response for each symptom. For worsening asthma, subjects were asked “Has your 340 

asthma gotten worse since Hurricane Harvey?” and subjects provided a Yes/No/Don’t Know response. This 341 

question was not included in the 12-month post-Harvey questionnaire, and subjects who did not have 342 
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asthma were instructed to skip this question. Participants at both time points were also asked 1) if they had 343 

taken any antibiotics within the past month and/or the past 6 months, 2) if they had taken any probiotics 344 

within the past month and/or the past 6 months, and 3) if they are currently or have ever been vegan or 345 

vegetarian. For subjects who participated at both time points, answers to similar questions provided at 1-346 

month versus 12-months post-Harvey were at times discrepant; attempts were made to re-contact 347 

participants to clarify answers when possible, otherwise data were unchanged.  348 

 349 

Neighborhood Assignment and Area-level Socioeconomic Disadvantage 350 

Subjects’ addresses were geocoded using ArcGIS, and all subjects living within a 7.5 mile radius of the 351 

centroid of each study neighborhood were assigned to that neighborhood regardless of their enrollment site. 352 

Subjects whose homes were outside the 7.5 mile radius of all neighborhoods were assigned to “Other.” 353 

Subject address was also used to assess census tract-level socioeconomic disadvantage by calculating an 354 

Area Deprivation Index (ADI) score for each address. Briefly, ADI uses 17 U.S. Census measures of 355 

income, housing, employment, and education to measure the level of deprivation within each census tract, 356 

with a higher ADI score indicative of greater socioeconomic disadvantage. ADI scores were calculated 357 

using the U.S. Census 2012-2016 American Community Survey (ACS) 5-year estimates data summarized 358 

to the census tract level. Singh’s formula36,37 was used to compute ADI scores for all census tracts in the 359 

state of Texas (n = 5,265). Houston3H Study participant addresses were then geocoded using ArcGIS, and 360 

participants were assigned an ADI Score based on the ADI score of the census tract they resided in.  The 361 

median ADI score for the 1-month post-Harvey participants (106.23) was used to stratify all participants into 362 

low (ADI Score < 106.23) and high (ADI Score ≥ 106.23) ADI groups. Map of participant locations were 363 

created using the R package ggmap using address latitude and longitude geocoded in ArcGIS. For 364 

participants who had moved due to Hurricane Harvey, the address of their home at the time of Hurricane 365 

Harvey was used for neighborhood assignment and ADI score calculation.  366 

 367 

Sample Collection 368 
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Four types of microbiome samples were collected from participants at both time points: nasal, saliva, stool, 369 

and swabs of subjects’ homes. Nasal and saliva samples were collected upon enrollment and immediately 370 

placed on dry ice. For nasal samples, study personnel swabbed subjects’ nares using the Catch-All Sample 371 

Collection Swab (Epicentre) for collection at 1-month post-Harvey and the BBL CultureSwab EZ (BD) at 12-372 

months post-Harvey.  Discontinuation of the Catch-All swab prevented the same instrument from being 373 

used at both time points. For saliva samples, subjects collected their own unstimulated saliva in a sterile 374 

Thermo Nunc 15mL conical tube (Thermo Fisher).  At the time of enrollment, subjects were also provided 375 

an Omnigene Gut collection kit (DNA Genotek) as well as a swab for at-home collection of stool and a home 376 

environment sample, respectively.  Due to shorthand of supplies at 1-month post-Harvey, non-sterile Q-tips 377 

were provided for house threshold swabs to prioritize sterile collection swabs for human microbiome 378 

sampling. At 12-months post-Harvey, a sterile double-tipped BBL Culture Swab (BD) was provided for door 379 

threshold sampling.  Instructions for stool and home environment collection were given in person and 380 

provided in written English and Spanish. Participants were instructed to swab the entry/threshold of their 381 

front door. Stool and environmental samples were collected from participants one week after enrollment.  A 382 

total of 625 samples were collected and processed for subsequent analysis at 1-month post-Harvey (107 383 

house swabs, 120 stool samples, 202 nasal swabs, 196 saliva samples) and 968 samples at 12-months 384 

post-Harvey (237 house swabs, 231 stool samples, 255 nasal swabs, and 245 saliva samples). 385 

 386 

Sample Extraction 387 

Microbial DNA was extracted from all sample types using the Qiagen MagAttract PowerSoil DNA Kit. DNA 388 

yielded from this extraction was subsequently used for all sequencing. 389 

 390 

16S rRNA Gene Sequencing 391 

All sample types were profiled by 16S-V4 sequencing. The 16S rRNA V4 region was amplified using 515F 392 

and 806R PCR primers containing single-index barcodes and Illumina adapters38. Samples were 393 

sequenced on the Illumina MiSeq platform using reagent kit v2 (2 × 250 bp) paired-end protocol.  Reads 394 
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were demultiplexed using the Illumina ‘bcl2fastq’ software, then demultiplexed fastq read pairs were merged 395 

using USEARCH v7.0.109039 ‘fastq_mergepairs’ function. Merging parameters required read pairs overlap 396 

by at least 50 base pairs, a merged length of at least 252 base pairs, a truncation quality above 5, and zero 397 

differences in the overlapping region. Merged reads with maximum expected error greater than 0.05 were 398 

filtered using usearch70 ‘fastq_filter’ program, and PhiX was filtered using bowtie2 v.2.3.4.340 at the ‘very-399 

sensitive’ parameter setting. Reads were run through usearch70 ‘derep_fulllength’ program and sorted by 400 

size using usearch70 ‘sortbysize’ program. Operational Taxonomic Unit (OTU) clustering was performed 401 

using the UPARSE algorithm41 with a 97% similarity cutoff value. A clustered OTU file with chimeras filtered 402 

was created using the usearch70 ‘uchime_ref’ program and the GOLD database.42,43 OTUs were mapped 403 

against an optimized version of SILVA Database44 v132 containing only sequences from the V4 region of 404 

the 16S rRNA gene, using usearch70 ‘usearch_global’ function with an identity threshold of 96.8%. All 405 

singleton and non-bacterial OTUs were filtered prior to analysis. After filtering, a total of 18,285,084 reads 406 

were retained (median 11,629 reads per sample).  407 

ITS2 Gene Sequencing and Processing 408 

House, nasal, and stool samples were profiled by ITS2 sequencing. ITS3 and ITS445 primers containing 409 

adapters for MiSeq sequencing and 12mer molecular barcodes were used to amplify the ITS2 region. 410 

Samples were sequenced on the MiSeq platform (Illumina) using the 2x300 bp paired-end protocol38. 411 

USEARCH v7.0.109039 was used to demultiplex and merge paired reads. Mismatches were allowed for up 412 

to 5% of the overlapping sequence; the base with the higher Q score was chosen when there was a 413 

mismatch. Reads containing above 0.5% expected errors were discarded. The UPARSE algorithm41 was 414 

used to iteratively cluster sequences into OTUs at a similarity cutoff value of 99%. USEARCH v8.0.1517 415 

and UCHIME were used to filter chimeras. To identify OTU taxonomy, USEARCH v8.0.1517 was used to 416 

map OTUs to the combined GenBank Plant (containing fungi) and Environmental databases. All non-fungal 417 

OTUs were filtered prior to analysis. After filtering, a total of 38,140,016 reads were retained (median 418 

33,848 reads per sample).  419 

 420 
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Whole Genome Shotgun (WGS) Sequencing and Processing 421 

Stool samples were profiled by WGS sequencing. Metagenomic shotgun sequencing was performed on a 422 

NovaSeq 6000 (Illumina) yielding 150 bp paired-end reads. Bbduk3 (BBMap version 38.69) was used for 423 

quality trimming and adapter removal from raw fastq reads (trimming parameters: kmer length of 19, one 424 

mismatch allowed, and a min Phred quality score of 20). After trimming, reads with a minimum average 425 

quality score less than 17 and length shorter than 50 bp were removed. To identify PhiX (standard Illumina 426 

spike in) and human (host) reads, bbmap46 (version 37.58) was used to map reads to a combined PhiX and 427 

hg38 reference database using a kmer length of 15, the bloom filter enabled, and fast search settings, and 428 

these reads were subsequently filtered using a custom in-house script. A total of 22,088,152,115 reads 429 

were retained after filtering (median 60,319,766 reads per sample, median coverage 9.05 Gbp).Taxonomic 430 

profiling was performed using MetaPhlAn2,47 and all non-bacterial taxa were filtered prior to analysis. 431 

Functional profiling of the gut microbiome was performed using HUMAnN248, with minor modifications to the 432 

standard workflow: diamond49 (version 0.9.26) was used for filtering and bbmap46 was used as the 433 

nucleotide aligner. Uniref gene families were then mapped to KEGG Orthologs (KO’s) using the utility 434 

mapping file provided by HUMAnN2 (map_ko_unrief90.txt.gz). KO’s were then mapped to KEGG Pathways 435 

using the HUMAnN-v0.9950 KEGG Pathway database (keggc). Unmapped, unintegrated, and ungrouped 436 

results were filtered, and outputs were then normalized to relative abundances for analysis. Butyrate 437 

producing-bacteria were determined by searching the UniProt database for bacterial species with an 438 

annotated or probable buk gene and by searching the literature51 for experimentally-verified butyrate 439 

production by individual species. Where these results conflicted, experimentally validated butyrate 440 

production was used. 441 

 442 

Statistical Analysis 443 

All statistical analysis was performed in R (v3.6.1). Odds ratios and corresponding 95% confidence intervals 444 

and p-values were calculated using unconditional logistic regression adjusting for age, sex, race/ethnicity, 445 

and education level. Taxonomic analysis was performed using phyloseq (v1.30.0) and vegan (v2.5.6).  For 446 
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all alpha and beta diversity analyses, rarefaction was performed to 5,000 reads (16S), 10,000 reads (ITS2 – 447 

nasal and house swabs), 1,000 reads (ITS2 – stool), and 2,982,616 estimated counts (WGS, minimum 448 

sample count). House microbiome samples submitted by subjects living in the same house were included in 449 

all analyses unless otherwise indicated. All beta diversity analyses used Binary Jaccard distances. For 450 

principal coordinate analyses, all samples lacking necessary metadata were removed before analysis, then 451 

ordination was performed on Binary Jaccard distance matrices for remaining samples. The adonis function 452 

(vegan) was used to calculate R2 and a p-values (PERMANOVA), and Bonferroni correction was used to 453 

correct for multiple hypothesis testing. PERMDISP was calculated using the betadisper function (vegan) 454 

using the group centroid. Alpha diversity was calculated based on the number of unique OTUs (ITS2) or 455 

number of unique bacterial species (WGS) detected after rarefaction. Linear Discriminant Analysis Effect 456 

Size (LEfSe, online galaxy version)15 was used to evaluate bacterial species and pathways that were 457 

differentially abundant between subjects with and without allergic symptoms. For taxonomic analysis, 458 

relative abundance outputs of MetaPhlAn2 were used as input for LEfSe analysis. For functional pathway 459 

analysis, all KEGG pathways with median non-zero coverage > 0.1 were used as input for LEfSe analysis. 460 

Co-occurrence analyses were performed with the package co-occur (v1.3) by converting species relative 461 

abundance to presence (relative abundance > 0%) or absence (relative abundance = 0%). The R package 462 

CuratedMetagenomicData52 (v1.16.0) was used to import previously published33,53–55 metagenomic data 463 

sets for co-occurrence analysis. All statistical tests are indicated in figure legends. Race/Ethnicity was 464 

treated as five separate categories (Non-Hispanic Black, Non-Hispanic White, Asian, Hispanic, and Other) 465 

for all analyses except for Supplementary Tables 1-3, where Asian was counted as “Other” to protect 466 

subject confidentiality. For figures that utilize boxplots, individual data points were plotted using the R 467 

function “geom_jitter.” 468 

 469 

Data Availability 470 
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16S-V4, ITS2, and WGS metagenomic data will be made available in a publicly accessible repository. 471 

Accompanying metadata will be made available, though some variables will be filtered and/or collapsed to 472 

maintain subject confidentiality. 473 
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 636 

 637 

Figure 1. Impact of subject demographics on bacterial and fungal microbiome composition. a. Distribution of 638 
study participants (1-month post-Harvey) across Houston-area neighborhoods. Color indicates race/ethnicity of 639 
subjects, shape indicates census tract-level calculation of area deprivation index (ADI) of subjects’ homes, with higher 640 
ADI scores indicative of lower socioeconomic status. Placement of markers on map represent approximate location of 641 
participants’ homes at the time of Hurricane Harvey. b. Principal coordinate analysis (PCoA) of Binary Jaccard 642 
distances was used to evaluate associations between demographic variables and microbiome composition at 1-month 643 
post-Harvey. PERMANOVA was used to calculate R2 (percent of total microbial variation accounted for by each 644 
variable) and p-values. Bonferroni correction of p-values was used to calculate q-values for each body site. Total 645 
samples (n) remaining in each analysis after rarefaction: house 16S (n=80), nasal 16S (n=186), stool 16S (n=120), 646 
saliva 16S (n=194), house ITS2 (n=93), nasal ITS2 (n=189), stool ITS2 (n=102). Only one house swab per household 647 
was included in house microbiome analyses. Sample numbers and statistics for each individual analysis are provided 648 
in Supplementary Table 4. 649 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.09.21267553doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267553
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

27 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

Figure 2. Association between reported exposure to mold and presence of allergic symptoms. Odds ratios 661 
calculated using reported exposures to mold (visible mold anywhere, or mold in the home) and presence of at least one 662 
allergic symptom at each time point, controlling for race/ethnicity, age, sex, and education level. Circles indicate odds 663 
ratios and bars indicate 95% confidence intervals. Total subjects in each analysis, excluding missing values: exposure 664 
to visible mold, 1-month post-Harvey (n = 168), exposure to visible mold, 12-months post-Harvey (n= 243), mold in the 665 
home, 1-month post-Harvey (n = 151), mold in the home, 12-months post-Harvey (n = 207). 666 
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Figure 3. Association between microbiome composition and allergic health outcomes. a. PCoA analyses of Binary 696 
Jaccard distances were used to evaluate associations between bacterial (16S) and fungal (ITS2) microbiota composition 697 
and reported allergic symptoms within 1-month post-Harvey. PERMANOVA was used to calculate R2 (percent of total 698 
microbial variation accounted for by each variable) and p-values, followed by Bonferroni correction. Total samples in 699 
each analysis after rarefaction: house 16S (n=77), stool 16S (n=107), nasal 16S (n=161), saliva 16S (n=165), house 700 
ITS2 (n=92), stool ITS2 (n=89), nasal ITS2 (n=162). Sample numbers and statistics for each individual analysis are 701 
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provided in Supplementary Table 4. b. PCoA analysis of bacterial species profiled by Whole Genome Shotgun (WGS) 702 
sequencing of stool samples evaluating association between gut bacterial species and allergic symptoms at 1-month 703 
post-Harvey (n=18 without symptoms, n=88 with symptoms, PERMANOVA p = 0.0018 and R2 = 0.021, PERMDISP p < 704 
0.001) and 12-months post-Harvey (n=67 without symptoms, n = 156 with symptoms, PERMANOVA p = 0.094 and R2 705 
= 0.006, PERMDISP p = 0.52) in all subjects, and sub-analysis of 12-months post-Harvey subjects with reported signs 706 
of mold in the home (n=29 without symptoms, n=97 with symptoms, PERMANOVA p = 0.036 and R2 = 0.012, PERMDISP 707 
p = 0.20). Outer ellipse represents 95% normal confidence ellipse for each group. c. No difference in gut bacterial alpha 708 
diversity was detected at any time point (two-sided Mann-Whitney test; p > 0.05). Box plots indicate median and 709 
interquartile range (IQR), whiskers show smallest (lower whisker) or largest (upper whisker) value within 1.5 times the 710 
IQR. 711 

  712 
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 713 

Figure 4. Gut bacterial species co-occurrence and association with allergic health outcomes. Linear discriminant 714 
analysis Effect Size (LEfSe) reveals bacterial species associated with absence of allergic symptoms (gray) and presence 715 
of allergic symptoms (red) at 1-month post-Harvey (a, n=18 without symptoms, n=88 with symptoms) and 12-months 716 
post-Harvey for subjects with signs of mold in the home (b, n=29 without symptoms, n=97 with symptoms) (Kruskal-717 
Wallis p < 0.05, LDA Score > 2.0, species prevalence > 20% of samples). Co-occurrence analysis of all bacterial species 718 
reveals positive (blue) and negative (red) associations between gut bacterial species in subjects at 1-month post-Harvey 719 
(c, n=117) and 12-months post-Harvey with mold in home (d, n=130). Species associated with presence and absence 720 
of allergic symptoms are highlighted in red and blue, respectively, and blue stars indicate butyrate-producing bacteria. 721 
Co-occurrence analyses include species present at >0.1% relative abundance in at least 20% of samples.  722 
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Figure 5. Relative abundance of bacterial genes involved in short-chain fatty acid (SCFA) metabolism in 750 
association with allergic symptoms. WGS sequencing was used to determine the relative abundance of metabolic 751 
pathways involved in the production of the three major SCFAs (butyrate, propionate, and acetate) at 1-month post-752 
Harvey (a, n=18 without symptoms, n=88 with symptoms), 12-months post-Harvey (all subjects) (b, n=67 without 753 
symptoms, n=156 with symptoms) and 12-months post-Harvey (mold in home only) (c, n=29 without symptoms, n=97 754 
with symptoms). All statistical tests reported are one-sided Mann-Whitney tests. Box plots indicate median and 755 
interquartile range (IQR), whiskers show smallest (lower whisker) or largest (upper whisker) value within 1.5 times the 756 
IQR. 757 
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