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Abstract 
Sleep problems and substance use frequently cooccur. While substance use can often manifest as 
specific sleep deficits, genetic pleiotropy could also explain part of the relationship between 
sleep and substance use. Here we assess the genetic overlap between substance use behaviors 
and both sleep and circadian-related activity measures by deriving genetic clusters between these 
domains and testing processes of causality vs. horizontal pleiotropy using the largest publicly 
available genome-wide summary statistics of substance use behaviors (N= 79,729 - 632,802) and 
sleep/activity phenotypes/endophenotypes to date (N=85,502 - 449,734). We found 31 genetic 
correlations between substance use and sleep/activity measures after Bonferroni correction. Two 
specific genetic clusters explained our patterns of overlap. Genes associated with tobacco use 
severity (age of first regular tobacco use and smoking cessation) share overlap with elements of 
sleep health (sleep duration, sleep efficiency, and chronotype). Substance consumption (drinks 
per day and cigarettes per day) and problematic substance use behaviors (cannabis use disorder, 
opioid use disorder, and problematic alcohol use) clustered strongly with problematic measures 
of sleep (insomnia, self-reported short sleep duration, increased number of sleep episodes, 
increased sleep duration variability, diurnal inactivity) as well as measures of circadian-related 
activity (L5, M10, and sleep midpoint). Latent causal variable analyses determined that 
horizontal pleiotropy (rather than causality) underlies a majority of the associations between 
substance use and sleep/circadian related measures, except one plausible genetically causal 
relationship for opioid use disorder on self-reported long sleep duration. Results indeed show 
significant genetic overlap between substance use and sleep/circadian-related activity measures. 
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Introduction 
 
 Sleep disturbances are one of the most common complaints in substance use treatment, 1,2 

and there is substantial comorbidity between substance use disorders (SUD) and sleep disorders 

3,4. Attempting to quit using substances and the consequent cravings and withdrawal are often 

associated with sleep disturbances and these sleep deficits can in turn be reciprocally linked to 

substance use relapse 5. For instance, sleep difficulties and insomnia are common clinical 

features of withdrawal from alcohol, nicotine, and cannabis 6. Further complicating this 

relationship, common substances, such as alcohol and cannabis, are often used to self-medicate 

sleep issues, with evidence that cannabis 7–9 and alcohol 8–11 are frequently considered sleep aids 

despite strong cross-sectional evidence demonstrating positive correlations between increased 

use of many common substances and sleep issues 5. Relatedly, tobacco is often used as a stress 

and tension reliever 12,13 but tobacco use before sleep is also associated with sleep disturbances 

14.  

Research suggests that circadian mechanisms contribute to the association between sleep 

issues and substance use/abuse, and that substance use may also impact circadian rhythms, thus 

further disturbing sleep 15. While circadian rhythm is a multi-faceted biological construct, it is 

often operationally defined as chronotype, a preference between either evening or morning 

activity, wake-up, and bedtime 16. An evening chronotype has been associated with higher 

alcohol 17–19, tobacco 18,20,21 , and cannabis use 19,20,22. In addition to the standard self-report 

measure of chronotype, activity-related proxies (measured via actigraphy or accelerometer) can 

function as objective circadian-related measures 23–26. Research on the relationship between 

circadian-related activity measures and substance use is scarce 27 and is yet to be fully 

understood. 
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 Sleep and substance use behaviors seem to interact dynamically. There is evidence of a 

bi-directional relationship between the domains of substance use and sleep deficits particularly 

during development there is indication that early sleep problems and an evening chronotype 

predict later substance use 19,28–35 and both early substance use and problematic substance use 

predicts later sleep issues 28,29,36–42. Reconciling these cross-sectional associations and 

bidirectional patterns, it is likely that a third variable, such as genetic pleiotropy, is driving trait-

like manifestations of sleep and substance use comorbidity.  

Here, we focus on trait like (rather than state-like) overlap in sleep and substance use by 

utilizing statistical genetics methods. Prior genetic studies implicate shared genetic influences on 

sleep and substance use and misuse as a likely contributor to their comorbidity. Twin studies 

focused on sleep/circadian-related outcomes and substance use are scarce but a few have found 

genetic correlations between regular cannabis use and both short sleep duration and insomnia 

41,42  as well as genetic correlations between an evening chronotype with alcohol quantity and 

increased binge drinking 43. Modern genome-wide association studies (GWASs)  studies have 

found genetic correlations amongst subjective sleep deficits and common substance use 

behaviors including tobacco behaviors such as smoking initiation, smoking cessation, and 

cigarettes per day 44,45, alcohol behaviors via scores on The Alcohol Use Disorders Identification 

Test (AUDIT) 46, Opioid Use Disorder 47, and cannabis behaviors such as lifetime cannabis use 

and Cannabis Use Disorder 48. GWASs focused on chronotype/circadian-related activities and 

substance use are sparse. Genetic correlations have been found between an evening chronotype 

and lifetime cannabis use 48, but the relationship between the multitude of available substance 

use and both chronotype and circadian-related activity measures has yet to be explored. Still, the 

current limited genetically informed results imply that the genes that could be contributing to 
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sleep deficits and circadian-related factors such as chronotype might contribute to substance use 

and misuse as well or vice versa.   

Genetic studies can also be used to inform causality. A prior study explored the pairwise 

associations between sleep and substance use disorders using Mendelian randomization, finding 

that insomnia had a potential positive causal influence on smoking, alcohol dependence, and 

cannabis initiation, while smoking initiation may be causal for insomnia 49. However, the effects 

of insomnia on both alcohol dependence and cannabis initiation were partially driven by 

pleiotropic SNPs (rather than direct causality), suggesting caution in inferring these results as 

causal and the possibility of a shared genetic liability. Thus, a perspective incorporating 

pleiotropy is needed.  

Finally, there has yet to be a comprehensive genomic study to include multitude of 

alcohol, tobacco, cannabis, and opioid use behaviors as well as both a collection of subjective 

and objective/endophenotype sleep/circadian-related measures. Sleep itself is a highly 

heterogenous set of behaviors, encompassing many subdomains that relate differentially. 

Substance use and use disorder may interfere with sleep generally, or with sleep efficiency, 

duration, circadian rhythm, or the sleep cycle to produce sleep problems. Further, different 

substances may show unique relationships with any one domain of sleep specifically.  Therefore, 

it is important to explore subdomains of substance use, misuse, and sleep behaviors in order to 

localize the causes of such deficits.    

No study has comprehensively looked across the relationships of substance use behaviors 

and sleep/activity measures with the goal of defining genetic clusters of sleep/circadian-related 

behaviors and substance use traits. Therefore, the goals of the current study were to: 
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1) Investigate the shared genetics between a multitude of substance use and sleep/activity 

measures. 2) Determine if genetic causality or genetic pleiotropy are responsible for the genetic 

relationships discovered. 3) Analyze genetic clusters amongst the domains of substance use and 

sleep/activity. 

Methods 

Measures 

Subjective and Objective Sleep and Circadian-related Measures 

 Our analyses used summary statistics from several large scale GWAS focused on self-

report sleep phenotypes and objective accelerometer derived sleep/activity 

phenotypes/endophenotypes. Self-report sleep phenotypes included insomnia, chronotype, self-

report sleep duration, self-report short sleep duration, and self-report long sleep duration 50–53. 

Objective accelerometer derived sleep/circadian-related activity phenotypes/endophenotypes 

included sleep duration, standard deviation of sleep duration (a measure of sleep variability), 

sleep efficiency, number of sleep episodes, diurnal inactivity (inactive states such as napping and 

wakeful rest), sleep midpoint (a proxy of chronotype 54,55), least active 5 hours of the day (L5 

timing, indication of a preference for going to bed earlier or later in the day 23), and most active 

10 hours of the day (M10 timing, indication of if a person is most active earlier or later in the day 

23) 56. Diurnal inactivity can be conceptualized as a sleep problem due to increased 

naps/rest/inactivity that are a compensatory behavior for non restful sleep 57. L5, M10, and sleep 

midpoint will be conceptualized as activity measures that are circadian-related proxy measures. 

Table 1 details sleep/activity trait in terms of type of measure, measure construct, coding, and 

discovery sample. 

Substance Use Measures 
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 Our analysis used summary statistics from several of the largest GWAS of substance use 

behaviors. Alcohol behaviors included alcoholic drinks per week (DPW) 58 and problematic 

alcohol use (PAU) 43. Tobacco behaviors included lifetime tobacco use, age of first becoming a 

regular smoker, smoking cessation, and cigarettes per day (CPD) 58. Cannabis behavior included 

lifetime cannabis use 59 and Cannabis Use Disorder (CUD) 60. Lastly, we included Opioid Use 

Disorder (OUD) 47. All trait discovery cohorts were of European ancestry. Table 1 details each 

substance use trait in terms of type of measure, measure construct, coding, and discovery sample.  

Analyses  

Linkage Disequilibrium Score Regression 

 We used Linkage Disequilibrium Score Regression (LDSC) 61 to estimate genetic 

correlations between traits. GWAS summary statistic SNPs were removed if they had MAF > 

0.01 and INFO > 0.70. SNPs, duplicated rs numbers, were multi-allelic variants, were strand 

ambiguous, had deletions/insertions or had low Ns. Alleles were merged with the Hap Map 3 62 

reference panel (major histone complex removed). Beta weights and linkage disequilibrium (LD) 

were pre-generated from 1000 Genomes European GWAS data included in the LDSC software 

download. LDSC regresses Chi-square statistics from the summary stats of GWAS on LD scores 

of the trait of interest 61. LD scores for each SNP are calculated via the sum of the variance 

explained by LD of that SNP with other SNPs 63. Genetic correlations were estimated using 

overlapping SNPs from filtered summary statistic files provided from GWAS summary statistics. 

LDSC accounts for possible sample overlap and additional sources of confounding (e.g., 

population stratification). We estimated a pair-wise genetic correlation matrix that included all 

sleep/activity and substance use measures (figure 7). Due to the large number of genetic 

correlations estimated, we utilized Bonferroni correction 64 to adjust for potential false positives. 
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K-means Clustering of correlations 

 K-means clustering is an unsupervised machine learning clustering technique that uses a 

centroid or distance-based algorithm to assign correlations to a cluster of a predefined number 

65,66.  After assigning the K number of clusters, the algorithm shuffles the data to clusters and 

assigns them to initial random centroids. It then determines the sum of squares (or distance) 

between each data point and the initial centroids and does a series of reassignments to the 

centroids until the algorithm is finished with the appropriate clusters, attempting to make data in 

the clusters similar while making each individual cluster separate from the others.  By comparing 

the distance (sum of squares) within clusters across different number of clusters (i.e. 1 vs. 2 and 

2 vs. 3) we can estimate a silhouette coefficient that shows the best number of clusters to account 

for patterns in the data, i.e. the cluster solution that allows for the smallest sum of squares across 

clusters.   

An advantage of K-means over other clustering algorithms is that clustering is done at the 

variable level with the correlation matrix (unlike mixture modeling or DBSCAN) in a hypothesis 

free format (unlike GenomicSEM). The latter is necessary for this analysis as large GWAS 

studies do not share individual data. For the current analyses, the genetic correlation matrix was 

read into the K-Means algorithm. The silhouette coefficient determined how many centers were 

needed to keep each substance use and sleep measure closest together, compared to other 

potential cluster solutions. K-means clustering was conducted in R using the R packages 

“cluster”67 and “factoextra”68. 

Latent Causal Variable Analysis  

 To examine evidence for genetic causality between sleep and substance use/misuse 

phenotypes, we used latent causal variable analysis (LCV) 69 on genetic correlations that 
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survived Bonferroni correction. LCV allows genetic correlations between two traits to be 

mediated by a latent variable with a causal effect on each trait. This model was designed to 

account for genetic pleiotropy by partitioning the genetic correlation into pleiotropy vs partial 

causality. This is done using the 4th order moments from LD Score Regression69.  Using this 

model, causality is implied when trait one is strongly correlated with the causal latent variable 

compared to the second trait, suggesting that part of the genetic component of trait one is causal 

for the second trait in the relationship. If trait one is perfectly genetically correlated with the 

latent variable, it can be considered fully genetically causal. The extent to which the latent causal 

variable causes trait 1 versus trait 2 is expressed as a ratio, referred to as the genetic causality 

proportion (gcp). The gcp is an estimate of the degree to which each trait is correlated with the 

latent genetic variable with a score that can range from 0 (reflecting no genetic causality) to 1/-1 

(signifying full genetic causality). For instance, a gcp of 0.70 would suggest 70% of SNP effect 

sizes are consistent with trait 1 causing trait 2. It is worth noting that LCV estimates the direction 

of causality in terms of the order of variables, if the gcp is positive, trait 1 is genetically causal 

for trait 2. If the gcp is negative, trait 2 is genetically causal for trait 1. For the current analyses, 

the sleep/activity measure is trait 1 and the substance use measure is trait 2.  

 While LCV is similar to other methods of determining genetic causality in that it utilizes 

SNPs to derive instrumental variables (like traditional Mendelian randomization), LCV has 

advantages over other methods of estimating genetic causality. First, sample overlap is accounted 

for by the LDSC intercept. Second, the model produces a genetic causality proportion, that is the 

proportion of genetic effects that are consistent with a model of genetic causality, allowing us to 

account for partial overlap. Third, the gcp is robust to pleiotropy, which is accounted for using 

4th order moments from LDSC. Fourht, the pleiotropic effects across the entire genome are 
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accounted for, rather than only at a few SNPs69. Indeed, simulation designs shows that the 

method outperforms Mendelian randomization69 when the genetic correlation between traits is 

non-zero. Considering that many of our samples overlap and that we want to account for 

pleiotropy, LCV is ideal over MR in this analysis.  

Results 

Genetic Correlations Across Sleep and Substance Use 

 Figure 1 displays the genetic correlation matrix between all substance use behaviors and 

sleep/activity measures. We found 31 significant pair-wise correlations across domains that 

survived Bonferroni correction (Table 2), with several trends suggesting strong genetic 

relationships between substance use behaviors and sleep/activity measures. In all cases, greater 

vulnerability for substance use was associated with more sleep problems. Measures of both 

subjective self-reported sleep duration (long, full, and short) and objective accelerometer derived 

sleep duration had genetic correlations with numerous substance use traits including lifetime 

tobacco use, age of first becoming a regular smoker, CPD, smoking cessation, PAU, lifetime 

cannabis use, CUD, and OUD (absolute values of rGs between 0.11 - 0.32). Increased diurnal 

inactivity was genetically correlated with lifetime tobacco use, age of initiation of smoking, 

CPD, and DPW (Absolute values of rGs between 0.12 – 0.18), Insomnia was also genetically 

correlated with numerous substance use traits including lifetime tobacco use, age of initiation of 

regular smoking, CPD, smoking cessation, DPW, PAU, CUD, and OUD (absolute values of rGs 

between 0.11-0.36).  

Only a few of the genetic correlations involving the activity based circadian-related 

endophenotype measures survived Bonferroni corrections including 1) sleep midpoint with 

lifetime cannabis use (rG = 0.26), and DPW (rG = 0.24) and 2) M10 with DPW (rG = 0.24). 
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Focusing on measures of chronotype, in addition to the circadian-related sleep midpoint 

relationships mentioned above, significant genetic correlations were found between self-reported 

chronotype and lifetime cannabis use, lifetime tobacco use, and DPW (Absolute values of rGs 

between 0.08 – 0.25).  

K-means clustering within and between sleep and substance use domains 

 A silhouette coefficient determined that 2 clusters were optimal to explain the overlap 

between sleep/circadian-related activity and substance use dimensions (Figure 2).  Figure 3 

displays our optimal cluster solution. We refer to the first cluster as the “tobacco use severity” 

cluster, which grouped the substance use behaviors of age of initiation of regular smoking and 

smoking cessation with elements of sleep health such as self-report long sleep duration, self-

report sleep duration, accelerometer derived sleep duration, sleep efficiency, and self-report 

chronotype. The traits most central to this cluster included sleep efficiency (sleep duration 

divided by the time between the start and end of the first and last nocturnal inactivity period) and 

self-reported sleep duration. The second cluster reflected “substance use and use disorders” and 

contained common substance use behaviors (lifetime tobacco use and lifetime cannabis use), 

consumption behaviors (CPD and DPW) as well as problematic substance use behaviors (CUD, 

OUD, and PAU) with measures of sleep difficulties (insomnia, self-report short sleep duration, 

increased number of sleep episodes, increased standard deviation of accelerometer derived sleep 

duration, and diurnal inactivity) and circadian-related activity measures (L5, M10, and sleep 

midpoint). The traits most central to this cluster included DPW, PAU, and the standard deviation 

of accelerometer derived sleep duration. 

Latent Causal Variable Analysis 

 We used latent causal variable analysis between each of the 31 substance use and 
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sleep/activity measure genetic correlations that survived Bonferroni correction. Of the 31 LCV 

models, one model survived further Bonferroni correction among the LCV models 

(.05/31=.0016), with evidence of OUD being genetically causal for self-report long sleep 

duration (gcp = 0.50, corrected p = 0.01). Several models reached nominally significant p-values 

before Bonferroni correction, including CUD with subjective short sleep duration (gcp = -0.23, 

nominal p = 0.04), CUD with insomnia (gcp = -0.29, nominal p = 0.05), and OUD with insomnia 

(gcp = -0.35, nominal p = 0.05). A majority of the models lacked significance before correction, 

indicating a lack of support for causality between substance use/misuse and sleep measures 

(Table 3). Thus, there was scarce evidence of genetic causality once pleiotropy, polygenicity, 

and sample overlap are appropriately accounted for.  

Discussion  

 Using summary data from the largest publicly available GWAS of both sleep/circadian-

related activity and substance use measures to date, we found 31 significant genetic correlations 

between traits in these domains that survived Bonferroni correction. Clustering analysis 

uncovered two principal genetic clusters: 1) the tobacco use severity cluster and 2) the substance 

use and use disorders cluster. Latent causal variable analyses confirmed that the associations 

between sleep/activity measures and substance use behaviors were driven primarily by common 

or shared genetic influences, with one exception, a model which implied that OUD may 

plausibly exert a genetically causal influence on self-reported long sleep duration. The results 

herein suggest a strong pleiotropic genetic relationship between the domains of substance use 

and sleep/circadian-related activity measures. 

 We found significant genetic correlations that align with prior findings, including genetic 

relationships between subjective sleep measures and substance use behaviors involving cannabis 
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48, tobacco44,45,  alcohol46, and opioids47. We also found novel relationships between subjective 

measures of sleep and substance use, such as OUD with subjective long sleep duration. Of 

primary interest are the genetic correlations involving substance use and objective measures of 

sleep and circadian-related activity, most of which have not been reported previously. For 

example, genetic associations between lifetime cannabis use and objectively measured later sleep 

mid-point and decreased accelerometer derived sleep duration are the first reports of a genetic 

relationship between cannabis use and objective measures in this domain of research. Later sleep 

midpoint is an objective proxy for an evening chronotype 26,54,55, and these results corroborate 

prior subjective findings regarding a genetic relationship between lifetime cannabis use and self-

report evening chronotype 48. These findings suggest a shared genetic relationship of lifetime 

cannabis use with circadian-related measures, implying that people who have more evening or 

nighttime activity are more likely to have used cannabis due to a shared genetic vulnerability.   

 While a prior result of objective sleep duration variation and lifetime tobacco use were 

not replicated 56, this is the first report of significant genetic correlations between numerous 

tobacco behaviors and subjective sleep measures. These results imply shared genetic 

underpinnings between a range of increased tobacco behaviors (lifetime use, earlier age of first 

becoming a regular smoker, increased cigarettes per day, and smoking cessation) with both 

problematic objective sleep duration (short and long sleep duration) and increased diurnal 

inactivity during the day. These relationships suggest the genetics responsible for increased 

tobacco use are also responsible for improper sleep duration and the potential sleep 

compensation/rest that can accompany. Genetic correlations between drinks consumed (DPW) 

and sleep midpoint, diurnal inactivity, and M10 are the first report of a genetic relationship 

between alcohol use and objective measures of sleep and circadian-related activity. Interestingly, 
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increased DPW being genetically correlated with less diurnal inactivity, later midpoint (proxy for 

evening chronotype), and increased M10 (more active later in the day) imply that genetic 

predisposition to increased drinking might also be associated with increased activity throughout 

the day and being more active later in the day or evening. Thus, these differential associations 

may be of interest in developing sleep-assisted interventions, such that adjusting chronotype 

could be a novel intervention for issues related to alcohol use. 

These genetic correlations formed two distinguishable and well-delineated clusters. The 

first cluster suggests that genes associated with aspects of tobacco use severity (a younger age of 

regular smoking initiation and smoking cessation) share genetic overlap with elements of sleep 

health such as sleep duration (self-report long sleep duration, shorter self-report sleep duration, 

and shorter accelerometer derived sleep duration), sleep efficiency, and self-report chronotype. 

Sleep health is an established research term that provides a frame of reference for the field 70 and 

includes sleep elements such as sleep duration, efficiency, and chronotype. These sleep health 

elements clustering together imply a genetic relationship between indicators of heavy tobacco 

use and sleep health. Tobacco use is highly comorbid with insufficient sleep 71 and it is 

speculated that the relationship could be centered on potential nightly withdrawals, the strong 

stimulant effects of nicotine, and an increased prevalence of sleep disordered breathing in 

comparison to nonsmokers 72. Exploration of sleep deficits in tobacco withdrawal may benefit 

from understanding shared genetic vulnerabilities to poor sleep health in particular.  

The second cluster found that substance use behaviors, such as consumption (lifetime 

tobacco use, lifetime cannabis use, DPW, and CPD) and problematic use (CUD, OUD, and 

PAU) clustered strongly with measures of problematic sleep (insomnia, self-report short sleep 

duration, increased number of sleep episodes, increased standard deviation of accelerometer 
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derived sleep duration, and diurnal inactivity) as well as measures of circadian-related activity 

(L5, M10, and sleep midpoint). Insomnia deficits are thought to be part of the “dark side ” of 

substance use 73 that reflects negative reinforcement-related drug intake, and seems to manifest 

specifically with diagnosis (and likely heavy use) based on this cluster. Interestingly, recent drug 

targets for these negative affect/withdrawal-related symptomology of addiction have been shown 

to improve insomnia symptoms as well. For instance, Acamprosate that is used to treat alcohol 

use disorder targets withdrawal symptoms and thus improves sleep symptoms during treatment 

74.   

 Though some previous work argues the association between insomnia and substance use 

is causal (via Mendelian randomization) 49, based on results herein, these findings are likely 

confounded by pleiotropy. Our approach accounted for pleiotropy and did not confirm the 

previous findings, although we did find one novel association. Specifically, our LCV analyses 

provided novel evidence that liability to OUD may be genetically causal for self-report long 

sleep duration, even after accounting for pleiotropy between these traits. Over 80% of 

individuals with OUD report poor sleep quality and sleep problems which likely impedes opioid 

maintenance and other pharmacological treatments 75,76. Opioid therapy for pain and related 

conditions has been well-documented to disrupt sleep and due to its respiratory depressant 

effects, exacerbate risk for sleep-disordered breathing 77. While this is the first finding of a 

significant relationship between OUD and long sleep duration, long sleep duration has been 

found to be phenotypically correlated with depression, antidepressant use, benzodiazepine use, 

and heavy drinking 78, as well as genetically correlated with depression 52. Thus, the causal 

genetic relationship demonstrated could reflect more of an underpinning of the genetics 

associated with a general maladaptive behavioral profile in comparison to specific opiate use 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.09.21267547doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267547
http://creativecommons.org/licenses/by-nc/4.0/


genetics. While three other models were nominally significant before correcting for multiple 

tests, the lack of significance in these models ultimately implies pleotropic inferences as the 

more supportive explanation of the associations. Thus, it is worth noting that pleiotropy may 

underlie sleep problems in substance use, and that populations entering substance use treatment 

are also likely to be at greater vulnerability for sleep deficits.   

Limitations 

 There are several limitations of this study that would influence LDSC and LCV analyses 

and the generalizability of our findings. First, GWAS results are comprised of mostly common 

variants; therefore, no rare variation would be included in our analyses, but rare variants may be 

an additional source of genetic overlap or provide stronger instruments for causality. Second, the 

GWAS summary statistics used in our analyses assume that the genomic liability to a trait is a 

good instrument for manifesting the phenotype (for example, genomic liability for insomnia is a 

good predicter of having insomnia), but this may not necessarily be true for all traits. Third, LCV 

and LDSC are best when used in one ancestral population, and all GWAS traits were of 

European ancestry. There is a need to include more racially diverse and multi-racial samples in 

genetics research. Finally, the objectively measured sleep/activity phenotypes/endophenotypes 

(the accelerometer derived traits) had much smaller samples than the self-report sleep measures; 

this difference in statistical power may mean that genetic correlations with the accelerometer 

traits were less likely to be statistically significant that those for self-report sleep measures, and 

therefore less likely to be carried forward in the causal analyses.  

Conclusions 

  While substances such as cannabis and alcohol are often used as sleep aids, individuals 

with substance use disorders also struggle with sleep difficulties, and poor sleep complicates 
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pathways to sustained remission from substance use disorders. Our study documents the role of 

shared genetic influences on substance use disorders and both sleep and circadian-related 

measures indicating specific domains of overlap that may be used to discover mechanisms of 

intervention. For opioid use disorder in particular, mechanisms of association likely extend 

beyond pleiotropy into potential causality. Together, these results imply a strong shared genetic 

relationship between the domains of common substance use behaviors and sleep traits. 
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Table 1. Trait, type of measure, measure construct, coding, and discovery sample for all 
substance use and sleep and activity phenotypes/endophenotypes. 
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Trait Type of measure Discovery Sample Measure construct Coding 
Insomnia  
(Jansen et al. 2019) 

Self-report UK Biobank  Insomnia complaints 
were assessed by asking: 
“Do you have trouble 
falling asleep at night or  
do you wake up in the 
middle of the night?” 
Insomnia cases were 
defined as participants 
who answered this 
question with “usually”, 
while participants 
answering “never/rarely” 
or “sometimes” were 
defined as controls.  
 

n�=�386,533 

Chronotype  
(Jones et al. 2019) 
 
 
 
 

Self-report UK Biobank  
 

Self-reported measure 
phrased as “Do you 
consider yourself to be?” 
with one of six possible 
answers: “Definitely a 
‘morning’ person”, 
“More a ‘morning’ than 
‘evening’ person”, 
“More an ‘evening’ than 
a ‘morning’ person”, 
“Definitely an ‘evening’ 
person”, “Do not know” 
or “Prefer not to 
answer”. 

n = 449,734 
 
Definitely morning, 2, 
n= 107,555 
 
More morning than 
evening ,1, n = 144,731 
 
Don’t know, 0, n = 
46,538 
 
More evening than 
morning, -1, n = 
115,090 
 
Definitely evening, -2, 
n = 35,818 
 

Self-report sleep duration  
(Dashti et al. 2019) 

Self-report UK Biobank  
 

A continuous variable 
categorized as short 
(6�h or less), normal (7 - 
8�h), or long (9�h or 
more) sleep duration. 
Responses of less than 
3�h or more than 18�h 
excluded. 
 

n�=�446,118 
 

Self-report short sleep 
duration 
(Dashti et al.2019) 
 

Self-report UK Biobank  
 

Short sleep duration 
(<7�h) compared to 7–
8�h sleep duration. 

n�=�446,118; short 
(<7�h; n�=�106,192 
cases) compared to 7–
8�h sleep duration 
(n�=�305,742 
controls)  

Self-report long sleep 
duration 
(Dashti et al. (2019) 
 

Self-report UK Biobank  
 

Long sleep duration 
(≥9�h) compared to 7–
8�h sleep duration. 

n�=�446,118; long 
(≥9�h; n�=�34,184 
cases) compared to 7–
8�h sleep duration 
(n�=�305,742 
controls)  
 

L5 timing  
(Jones et al. 2019) 
 
  
 

Accelerometer UK Biobank  
 

The midpoint of the least 
active 5�h of each day. 
This measure implies 
whether someone prefers 
to go to bed earlier or 
later in the day. 

n = 85,830 
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M10 timing  
(Jones et al. 2019)  

Accelerometer UK Biobank  
 

The most active 10�h of 
each day. This measure 
implies whether a person 
is most active earlier or 
later in the day. 
 

n�=�85,723 

Sleep duration in hours 
(Jones et al. 2019) 

Accelerometer UK Biobank  
 

Summed duration of all 
sleep episodes. 
 

n�=�85,068 

Sleep duration in hours 
(standard deviation) 
(Jones et al. 2019) 

Accelerometer UK Biobank  
 

Standard deviation of the 
summed duration of all 
sleep episodes. 
 

n�=�85,068 

Sleep midpoint  
(Jones et al. 2019) 

Accelerometer UK Biobank  
 

The midpoint between 
the start of the first 
detected sleep episode 
and the end of the last 
sleep episode. 
 

n�=�85,502 
 

Sleep efficiency (%) 
(Jones et al. 2019) 

Accelerometer UK Biobank  
 

sleep duration divided by 
the time between the start 
and end of the first and 
last nocturnal inactivity 
period. 
 

n�=�85,502 
 

Number of sleep episodes  
(Jones et al. 2019) 
 
 

Accelerometer UK Biobank  
 

Periods of at least 5�min 
with no change larger 
than 5° associated with 
the z-axis of the activity-
monitor. 
 

n�=�85,502 
 

Diurnal inactivity  
(Jones et al. 2019) 

Accelerometer UK Biobank  
 

The total daily duration 
of estimated bouts of 
inactivity that fell outside 
of the sleep period time 
window. This measure 
captures very inactive 
states such as napping 
and wakeful rest but not 
inactivity such as sitting 
and reading or watching 
television. 
 

n�=�85,502 
 

Alcoholic drinks per week  
(DPW) 
(Liu et al., 2019) 

Self-report Meta-analysis performed from, 
Add Health, Avon Longitudinal 
Study of Parents and Children, 
Atherosclerosis Risk in 
Communities, Biobank Japan 
Project, The Barrett's and 
Esophageal Adenocarcinoma. 
Genetic Susceptibility Study, 
Brisbane Longitudinal Twin 
Study, Center on Antisocial 
Drug Dependence, 
Collaborative Genetic Study of 
Nicotine Dependence, Genetics 
of Chronic Obstructive 
Pulmonary Disease, deCODE 
Genetics/AMGEN, Inc., 
Estonian Genome Center, 
Electronic Medical Records 
and Genomics, Finnish Twin 

Average number of 
drinks a participant 
reported drinking each 
week. 

n = 537,349 
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Cohort, Framingham Heart 
Study, Genetic Epidemiology 
Research in Adult Health and 
Aging, Genes for Good, The 
Nord-Trøndelag Health Study, 
Health and Retirement Study, 
Minnesota Center for Twin and 
Family Research, Multi-Ethnic 
Study of Atherosclerosis, 
Metabolic Syndrome in Men, 
Netherlands Study on 
Cognition, Environment and 
Genes, Nurses' Health Study, 
Nurses’ Health Study II, and 
Health Professionals' Follow-
up Study, The National 
Institute of Neurological 
Disorders and Stroke Genetics 
Network, Netherlands Twin 
Register, Australian Twin-
Family Studies on Nicotine and 
Alcohol Genetics, SardiNIA 
project), UK Biobank, and 
Women’s Health Initiative 
 

Problematic alcohol use 
(PAU) 
(Zhou et al., 2020) 

Self-report  Million Veteran Program, UK 
Biobank, Psychiatric Genomics 
Consortium Substance Use 
Disorders working group AUD 
and AUDIT-P, European-
ancestry individuals 

DSM-IV alcohol 
dependence (AD), AUD 
via the International 
Classification of 
Diseases (ICD) codes, 
Alcohol Use Disorders 
Identification Test–
Problems (AUDIT-P). 

 

n = 435,563 

Lifetime tobacco use  
(Liu et al., 2019) 

Self-report Meta-analysis performed from 
23&me, Add Health, Avon 
Longitudinal Study of Parents 
and Children, Atherosclerosis 
Risk in Communities, Biobank 
Japan Project, The Barrett's and 
Esophageal Adenocarcinoma. 
Genetic Susceptibility Study, 
Brisbane Longitudinal Twin 
Study, Center on Antisocial 
Drug Dependence, 
Collaborative Genetic Study of 
Nicotine Dependence, Genetics 
of Chronic Obstructive 
Pulmonary Disease, deCODE 
Genetics/AMGEN, Inc., 
Estonian Genome Center, 
Electronic Medical Records 
and Genomics, Finnish Twin 
Cohort, Framingham Heart 
Study, Genetic Epidemiology 
Research in Adult Health and 
Aging, Genes for Good, The 
Nord-Trøndelag Health Study, 
Health and Retirement Study, 
Minnesota Center for Twin and 
Family Research, Multi-Ethnic 

Reporting ever being a 
regular smoker in their 
life (current or former) 
coded as “2” and any 
participant who reported 
never being a regular 
smoker in their life coded 
as “1”. 

n = 632,802 
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Study of Atherosclerosis, 
Metabolic Syndrome in Men, 
Netherlands Study on 
Cognition, Environment and 
Genes, Nurses' Health Study, 
Nurses’ Health Study II, and 
Health Professionals' Follow-
up Study, The National 
Institute of Neurological 
Disorders and Stroke Genetics 
Network, Netherlands Twin 
Register, Australian Twin-
Family Studies on Nicotine and 
Alcohol Genetics, SardiNIA 
project), UK Biobank, and 
Women’s Health Initiative 
 

Age of first becoming a 
regular smoker  
(Liu et al., 2019) 

Self-report Meta-analysis performed from, 
Add Health, Avon Longitudinal 
Study of Parents and Children, 
Atherosclerosis Risk in 
Communities, Biobank Japan 
Project, The Barrett's and 
Esophageal Adenocarcinoma. 
Genetic Susceptibility Study, 
Brisbane Longitudinal Twin 
Study, Center on Antisocial 
Drug Dependence, 
Collaborative Genetic Study of 
Nicotine Dependence, Genetics 
of Chronic Obstructive 
Pulmonary Disease, deCODE 
Genetics/AMGEN, Inc., 
Estonian Genome Center, 
Electronic Medical Records 
and Genomics, Finnish Twin 
Cohort, Framingham Heart 
Study, Genetic Epidemiology 
Research in Adult Health and 
Aging, Genes for Good, The 
Nord-Trøndelag Health Study, 
Health and Retirement Study, 
Minnesota Center for Twin and 
Family Research, Multi-Ethnic 
Study of Atherosclerosis, 
Metabolic Syndrome in Men, 
Netherlands Study on 
Cognition, Environment and 
Genes, Nurses' Health Study, 
Nurses’ Health Study II, and 
Health Professionals' Follow-
up Study, The National 
Institute of Neurological 
Disorders and Stroke Genetics 
Network, Netherlands Twin 
Register, Australian Twin-
Family Studies on Nicotine and 
Alcohol Genetics, SardiNIA 
project), UK Biobank, and 
Women’s Health Initiative 
 

Age at which an 
individual started 
smoking cigarette 
regularly measured by 
several ways including 
“At what age did you 
begin smoking 
regularly?” and “How 
long have you smoked?” 
combined with “What is 
your current age?”. 

n = 262,990 
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Smoking cessation 
(Liu et al., 2019) 

Self-report Meta-analysis performed from 
Add Health, Avon Longitudinal 
Study of Parents and Children, 
Atherosclerosis Risk in 
Communities, Biobank Japan 
Project, The Barrett's and 
Esophageal Adenocarcinoma. 
Genetic Susceptibility Study, 
Brisbane Longitudinal Twin 
Study, Center on Antisocial 
Drug Dependence, 
Collaborative Genetic Study of 
Nicotine Dependence, Genetics 
of Chronic Obstructive 
Pulmonary Disease, deCODE 
Genetics/AMGEN, Inc., 
Estonian Genome Center, 
Electronic Medical Records 
and Genomics, Finnish Twin 
Cohort, Framingham Heart 
Study, Genetic Epidemiology 
Research in Adult Health and 
Aging, Genes for Good, The 
Nord-Trøndelag Health Study, 
Health and Retirement Study, 
Minnesota Center for Twin and 
Family Research, Multi-Ethnic 
Study of Atherosclerosis, 
Metabolic Syndrome in Men, 
Netherlands Study on 
Cognition, Environment and 
Genes, Nurses' Health Study, 
Nurses’ Health Study II, and 
Health Professionals' Follow-
up Study, The National 
Institute of Neurological 
Disorders and Stroke Genetics 
Network, Netherlands Twin 
Register, Australian Twin-
Family Studies on Nicotine and 
Alcohol Genetics, SardiNIA 
project), UK Biobank, and 
Women’s Health Initiative 
 

Current smokers coded 
as “2” and former 
smokers coded as “1”, 
and never smokers are 
coded as missing. 

n = 312,821  

 

Cigarettes per day 
(CPD) 
(Liu et al., 2019) 

Self-report Meta-analysis performed from 
Add Health, Avon Longitudinal 
Study of Parents and Children, 
Atherosclerosis Risk in 
Communities, Biobank Japan 
Project, The Barrett's and 
Esophageal Adenocarcinoma. 
Genetic Susceptibility Study, 
Brisbane Longitudinal Twin 
Study, Center on Antisocial 
Drug Dependence, 
Collaborative Genetic Study of 
Nicotine Dependence, Genetics 
of Chronic Obstructive 
Pulmonary Disease, deCODE 
Genetics/AMGEN, Inc., 
Estonian Genome Center, 
Electronic Medical Records 

Cigarettes per day 
responses were binned as 
a. 1=1-5  
b. 2 = 6-15  
c. 3 = 16-25 
d. 4 = 26-35  
e. 5=36+ 

n = 263,954 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.09.21267547doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267547
http://creativecommons.org/licenses/by-nc/4.0/


and Genomics, Finnish Twin 
Cohort, Framingham Heart 
Study, Genetic Epidemiology 
Research in Adult Health and 
Aging, Genes for Good, The 
Nord-Trøndelag Health Study, 
Health and Retirement Study, 
Minnesota Center for Twin and 
Family Research, Multi-Ethnic 
Study of Atherosclerosis, 
Metabolic Syndrome in Men, 
Netherlands Study on 
Cognition, Environment and 
Genes, Nurses' Health Study, 
Nurses’ Health Study II, and 
Health Professionals' Follow-
up Study, The National 
Institute of Neurological 
Disorders and Stroke Genetics 
Network, Netherlands Twin 
Register, Australian Twin-
Family Studies on Nicotine and 
Alcohol Genetics, SardiNIA 
project), UK Biobank, and 
Women’s Health Initiative 
 

Lifetime cannabis use 
(Pasman et al., 2018) 

Self-report UK Biobank and International 
Cannabis Consortium 
 

Defined as any use of 
cannabis during lifetime 

n = 162,082 

Cannabis Use Disorder 
(Johnson et al., 2020) 

Clinician ratings or 
semi-structured 
interviews 

Psychiatric Genomics 
Consortium Substance Use 
Disorders working group, The 
Integrative Psychiatric 
Research, and deCODE 

Met criteria for a lifetime 
diagnosis of DSM-IV (or 
DSM-III-R) cannabis 
abuse or dependence, 
DSM-5 cannabis use 
disorder and ICD-10 
codes of F12.1 (cannabis 
abuse) or F12.2 
(cannabis dependence). 

 

n = 384,032 

Opioid Use Disorder 
(Zhou et al., 2020 

Clinician ratings  Million Veteran Program, 
Yale-Penn, and Study of 
Addiction: Genetics and 
Environment  
 

International 
Classification of 
Diseases, Ninth 
Revision-diagnosed 
OUD or International 
Statistical Classification 
of Diseases and Related 
Health Problems, Tenth 
Revision-diagnosed 
OUD (Million Veteran 
Program), and DSM-IV-
defined opioid 
dependence (Yale-Penn 
and Study of Addiction: 
Genetics and 
Environment). 

n = 114,759 

 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.09.21267547doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267547
http://creativecommons.org/licenses/by-nc/4.0/


Table 2. Significant pair-wise correlations that survived Bonferroni multiple corrections between 
substance use and sleep/activity traits. 

Sleep and Activity Trait Substance Use Trait rG P-Values 
before 

correction 

Bonferroni-
corrected 
 P-value 

Subjective Sleep Duration Lifetime Tobacco Use -0.11 4.61E-07 0.00010603 

Short Sleep Lifetime Tobacco Use 0.2304 2.77E-24 6.37E-22 

Long Sleep Lifetime Tobacco Use 0.1318 6.59E-06 0.0015157 

Insomnia Lifetime Tobacco Use 0.2872 6.44E-20 1.48E-17 

Diurnal Lifetime Tobacco Use 0.1453 9.68E-07 0.00022264 

Chronotype Lifetime Tobacco Use -0.0769 2.00E-04 0.046 

Short Sleep 
Age of first becoming a 
regular smoker -0.3188 4.41E-22 1.01E-19 

Long Sleep 
Age of first becoming a 
regular smoker -0.273 7.63E-12 1.75E-09 

Insomnia 
Age of first becoming a 
regular smoker -0.3568 1.25E-24 2.88E-22 

Diurnal 
Age of first becoming a 
regular smoker -0.1557 5.61E-05 0.012903 

Short Sleep CPD 0.2277 8.86E-13 2.04E-10 

Long Sleep CPD 0.2754 2.44E-12 5.61E-10 

Insomnia CPD 0.2872 4.34E-15 9.98E-13 

Diurnal CPD 0.185 4.96E-09 1.14E-06 

Short Sleep Smoking Cessation  -0.254 6.51E-13 1.50E-10 

Long Sleep Smoking Cessation  -0.2585 5.95E-09 1.37E-06 
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Insomnia Smoking Cessation  -0.2763 2.72E-13 6.26E-11 

Sleep Midpoint DPW 0.2364 9.14E-09 2.10E-06 

Insomnia DPW 0.1077 3.07E-05 0.007061 

Diurnal DPW -0.1167 2.00E-04 0.046 

M10 DPW 0.2388 6.70E-09 1.54E-06 

Chronotype DPW -0.1246 4.26E-10 9.80E-08 

Long Sleep PAU 0.1652 1.20E-06 0.000276 

Insomnia PAU 0.2097 2.43E-13 5.59E-11 

Sleep Midpoint Lifetime Cannabis Use 0.263 4.03E-06 0.0009269 

Accelerometer Sleep duration  Lifetime Cannabis Use -0.168 3.72E-05 0.008556 

Chronotype Lifetime Cannabis Use -0.2505 3.90E-21 8.97E-19 

Short Sleep CUD 0.2746 2.89E-14 6.65E-12 

Insomnia CUD 0.3121 5.21E-12 1.20E-09 

Long Sleep OUD 0.2863 2.00E-04 0.046 

Insomnia OUD 0.2509 1.35E-05 0.003105 
 
Numerous significant genetic associations between substance use and sleep/activity traits 
survived Bonferroni correction, demonstrating shared genetic liability between these domains.  
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Table 3. Results from latent causal variable analysis to test causality between associated 
sleep/activity and substance use dimensions. 
 

Sleep and Activity Trait Substance 
Use Trait 

GCP (standard Error) P-values 
before 

correction 

Bonferroni-
corrected  
P-values 

Self-report Short Sleep 
Duration 

Lifetime Tobacco Use -0.14(0.10) 0.10 1 

Insomnia Lifetime Tobacco Use -0.08(0.10) 0.32 1 

Self-report Full Sleep 
Duration 

Lifetime Tobacco Use -0.20(0.28) 0.16 1 

Diurnal inactivity Lifetime Tobacco Use 0.12(0.29) 0.39 1 

Self-report Long Sleep 
Duration 

Lifetime Tobacco Use -0.37(0.37) 0.39 1 

Chronotype Lifetime Tobacco Use -0.26(0.41) 0.25 1 

Insomnia Age of first becoming a 
regular smoker 

-0.10(0.11) 0.39 1 

Self-report Short Sleep 
Duration 

Age of first becoming a 
regular smoker 

-0.03(0.08) 0.79 1 

Self-report Long Sleep 
Duration 

Age of first becoming a 
regular smoker 

-0.33(0.19) 0.16 1 

Diurnal inactivity  Age of first becoming a 
regular smoker 

0.13(0.26) 0.50 1 

Insomnia CPD 0.31(0.41) 0.63 1 

Self-report Short Sleep 
Duration 

CPD -0.21(0.20) 0.32 1 

Self-report Long Sleep 
Duration 

CPD -0.06(0.27) 0.63 1 

Diurnal inactivity CPD -0.41(0.35) 0.32 1 

Insomnia Smoking Cessation -0.43(0.27) 0.13 1 
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Self-report Short Sleep 
Duration 

Smoking Cessation 0.01(0.12) 0.79 1 

Self-report Long Sleep 
Duration 

Smoking Cessation -0.10(0.19) 0.63 1 

Chronotype DPW -0.05(0.21) 0.63 1 

M10 DPW -0.32(0.21) 0.25 1 

Sleep Midpoint DPW -0.45(0.32) 0.32 1 

Insomnia DPW -0.21(0.47) 0.50 1 

Diurnal inactivity DPW 0.04(0.53) 0.63 1 

Insomnia PAU -0.08(0.12) 0.50 1 

Self-report Long Sleep 
Duration 

PAU 0.03(0.28) 1 1 

Chronotype Lifetime Cannabis Use 0.15(0.16) 0.39 1 

Sleep Midpoint Lifetime Cannabis Use 0.21(0.38) 0.63 1 

Accelerometer derived 
sleep duration 

Lifetime Cannabis Use -0.05(0.46) 0.16 1 

Self-report Short Sleep 
Duration 

CUD -0.23(0.11) 0.04 1 

Insomnia  CUD -0.29(0.14) 0.05 1 

Insomnia OUD -0.35(0.17) 0.05 1 

Self-report Long Sleep 
Duration 

OUD -0.50(0.25) 0.00036 0.01116 
 

Significant models that survived Bonferroni correction in bold 
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Figure 1. The genetic (rG) correlation matrix between all substance use behaviors and 
sleep/activity measures.  Positive rGs shown in blue and negative in red.  Correlations are plotted 
on X and Y axis based of centroid clustering. Age. Smoke = Age of first becoming a regular 
smoker, CPD = Cigarettes per week, Former.Smoke = current smoker versus formal smoker, 
DPW= Drinks per week, OUD= Opiate Use Disorder, CUD = Cannabis Use Disorder, PAU = 
Problematic Alcohol Use, Ever.Smoke =  lifetime tobacco use, Long sleep = Subjective self-
report short sleep duration, Short Sleep = Subjective self-report short sleep duration, 
Sleep.Dur.Sd = Accelerometer Sleep Duration (Standard Deviation), Sleep.Dur.report = 
subjective self-report sleep duration. 
 

 

 

ed 
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Figure 2. Silhoutte Coefficents from K-Means Clusting Algorithm 
A silhouette coefficient determined that a 2-cluster solution was optimal to characterize the 
relationships between sleep/activity and substance use dimensions.  
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Figure 3. Optimal cluster solution demonstrated two distinct clusters, both of which were 
comprised of common substance use behaviors and sleep traits. Clusters are plotted by a two 
dimensional representation of the derived components. X and Y axis represent the first two 
components and their proportion of variance they explain in each trait. Clusters are plotted 
around their centroid. Smoke = Age of first becoming a regular smoker, CPD = Cigarettes per 
week, Former.Smoke = current smoker versus formal smoker,  DPW= Drinks per week,  OUD= 
Opiate Use Disorder, CUD = Cannabis Use Disorder, PAU = Problematic Alcohol Use, 
Ever.Smoke =  lifetime tobacco use, Long sleep = Subjective self-report short sleep duration, 
Short Sleep = Subjective self-report short sleep duration, Sleep.Dur.Sd = Accelerometer Sleep 
Duration (Standard Deviation), Sleep.Dur.report = subjective self-report sleep duration. 
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