Title: Effects of midfoot joint mobilization on perceived ankle-foot function in chronic ankle

instability. A crossover clinical trial.

Abbis Jaffri, PT, PhD^{1, 2} abbisjaffri@creighton.edu ; ORCID: 0000-0003-4134-8540

John J. Fraser, PT, DPT, PhD, FACSM^{1, 3} John.j.fraser8.mil@mail.mil; ORCID: 0000-0001-9697-3795, Twitter: @NavyPT

Rachel M. Koldenhoven, PhD, ATC^{1,4} rmr214@txstate.edu; ORCID: 0000-0002-2569-9052

Jay Hertel, PhD, ATC¹ jnh7g@virginia.edu; ORCID: 0000-0003-0680-6534

1. Department of Kinesiology, University of Virginia, Charlottesville, VA, USA

2. School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA

3. Operational Readiness & Health Directorate, US Naval Health Research Center, San Diego,

CA, USA

4. Department of Health and Human Performance, Texas State University, San Marcos, TX,

USA

Conflicts of Interest: We affirm that we have no financial affiliation or involvement with any commercial, organization that has a direct financial interest in any matter included in this manuscript.

Disclosures: This study was funded in part by the University of Virginia's Curry School of Education Foundation and the Navy Medicine Professional Development Center. The views

expressed in this manuscript reflect the results of research conducted by the author(s) and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government. Commander John J. Fraser is a military service member and this work was prepared as part of his official duties. Title 17, USC, §105 provides that 'Copyright protection under this title is not available for any work of the U.S. Government.' Title 17, USC, §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person's official duties. All participants provided informed consent and this study was approved by the Institutional Review Board for Health Sciences Research at the University of Virginia in compliance with all applicable Federal regulations governing the protection of human subjects.

Acknowledgements: Stephan Bodkin, PhD, ATC for his assistance with allocation. Navy Medicine Professional Development Center and the University of Virginia's Curry School of Education Foundation for their generosity in providing funding.

Corresponding Author: John J Fraser, Operational Readiness & Health Directorate, US Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106 Phone: 757-438-0390 Email: john.j.fraser8.mil@mail.mil ORCID: 0000-0001-9697-3795 Twitter: @NavyPT

Key Words: Ankle Injuries; Recovery of Function; Musculoskeletal Manipulations; Pain Perception; Therapeutics; Treatment Outcome

Title: Effects of midfoot joint mobilization on perceived ankle-foot function in chronic ankle

instability. A crossover clinical trial.

1 Abstract

Background: Chronic ankle instability (CAI) is a complex clinical entity that commonly
includes ankle-foot impairment.

4	Objective: To investigate the effects of midfoot joint mobilizations and a one-week home
5	exercise program (HEP) compared to a sham intervention and HEP on pain, patient-reported
6	outcomes (PROs), ankle-foot joint mobility, and neuromotor function in young adults with CAI.
7	Methods: Twenty participants with CAI were instructed in a stretching, strengthening, and
8	balance HEP and were randomized a priori to receive midfoot joint mobilizations (forefoot
9	supination, cuboid glide and plantar 1 st tarsometatarsal) or a sham laying-of-hands. Changes in
10	foot morphology, joint mobility, strength, dynamic balance, and PROs assessing pain, physical,
11	and psychological function were assessed pre-to-post treatment and one-week following.
12	Participants crossed-over to receive the alternate treatment and were assessed pre-to-post
13	treatment and one-week following. Linear modelling was used to assess changes in outcomes.
14	Results: Participants who received midfoot mobilization demonstrated significantly greater
15	perceived improvement immediately posttreatment in the single assessment numeric evaluation
16	(Sham: 5.0±10.2%; Mobilization: 43.9±26.2%; β : 6.8 p<0.001, Adj R ² :0.17) and Global Rating
17	of Change (Sham: -0.1 \pm 1.1; Mobilization: 1.1 \pm 3.0; β : 1.8 p=0.01, Adj R ² :0.12). Following the
18	mobilization intervention, participants demonstrated greater improved rearfoot inversion
19	mobility (Sham: 4.4 \pm 8.4°; Mobilization: -1.6 \pm 6.1°; β : -6.37, p=0.01, Adj R ² :0.19), plantarflexion
20	mobility (Sham: 2.7°±6.4; Mobilization: -1.7°±4.3; β : -4.36, p=0.02, Adj R ² :0.07), and
21	posteromedial dynamic balance (Sham: 2.4±5.9%; Mobilization: 6.0±5.4%; β: 3.88, p=0.04, Adj
22	R ² :0.10) compared to controls at 1-week post-treatment.

- 23 Conclusion: Participants with CAI who received midfoot joint mobilization had greater
- 24 perceived improvement and physical signs that may benefit this clinical population.
- 25
- 26 Key Words: Ankle Injuries; Recovery of Function; Musculoskeletal Manipulations; Pain
- 27 Perception; Therapeutics; Treatment Outcome
- 28
- 29 Word Count:

30

INTRODUCTION

31	Ankle sprains are the most common injury in orthopaedics and sport medicine. ¹
32	Individuals who incur ankle sprains often have difficulty returning to pre-injury functional levels
33	and frequently experience injury recurrence. ² While many recover without residual deficit, 40%
34	of the people who have an ankle sprain progress to develop chronic ankle instability (CAI) at
35	least 12 months beyond the index ankle sprain. ³ CAI is a clinical condition that includes
36	mechanical and functional instability, along with residual symptoms in the ankle after a lateral
37	ankle sprain. ⁴ Mechanical deficits may include joint laxity, arthrokinematics restrictions,
38	osteoarthritic changes, and synovial changes. ^{2,5} Functional insufficiencies constitute
39	proprioceptive deficits, loss in muscle strength, and neuromuscular alterations. ^{2,5}
40	Foot impairments such as altered joint motion, ligamentous laxity and pain, and strength
41	deficits contribute to activity limitation and diminished quality of life in patients with CAI. ⁶
42	Moreover, midfoot injury has been reported in patients who suffered lateral ankle sprains with
43	41% having midfoot ligamentous involvement and 33% having midfoot capsular injury. ⁷ Manual
44	Therapy (MT) is often used by rehabilitation specialists following injury to improve symptoms,
45	range of motion, and sensorimotor function as a complementary treatment during return to
46	activity.8 Additionally, the cascade of temporal neurophysiological effects fostered by joint
47	mobilization may have specific beneficial benefits during treatment in this clinical population.9
48	As such, manual therapy interventions to include joint mobilization are recommended for
49	inclusion in care when coupled with supervised or unsupervised exercise, ¹⁰ While there is
50	evidence for the use MT techniques in this population, study focus has been primarily on the
51	treatment of the talocrural joint with the foot mostly ignored.9

52	Since the rates of CAI do not appear to be decreasing and the persistent perception of
53	"it's just an ankle sprain," it is important to explore complementary treatments that may provide
54	medicinal mechanical, neurophysiological, and psychological effects. ² In a related study of
55	individuals with post-acute lateral ankle sprains, midfoot mobilizations was found to have
56	positive psychological effects in regard to symptoms and function, facets that have are important
57	in the mediation of intrinsic factors that are important in pain, treatment compliance, and
58	functional outcomes. ¹¹ Therefore, the purpose of this crossover clinical trial was to investigate
59	the effects of midfoot joint mobilization and a one-week home exercise program (HEP)
60	compared to a sham intervention and HEP on patient-reported and clinical measures in young
61	adults with CAI.
62	
63	METHODS
64	DESIGN
65	This study is the second crossover clinical trial in a research line assessing the effects of
66	midfoot mobilization in individuals with a history of ankle sprain, with the methods previously
67	reported. ¹¹ A laboratory-based, crossover clinical trial was performed where the independent
68	variable was treatment (50% allocated to initially receive joint mobilization, 50% allocated to
69	initially receive sham). The primary dependent variables were changes in patient-reported pain
70	and function, foot morphology (foot mobility magnitude, arch height flexibility), joint motion
71	(weight-bearing dorsiflexion, rearfoot goniometry, forefoot inclinometry, 1st metatarsal
72	displacement), strength (handheld dynamometry), and dynamic balance (Star Excursion Balance
73	Test, SEBT) immediately post-treatment and one-week following. Crossover design was selected
74	over a parallel randomized control trial to ensure the individual factors of joint phenotype, injury

heterogeneity, and psychological factors were accounted for in the design.¹¹ The trial was
registered with the National Institutes of Health (NCT02697461). The study was approved by the
Health Science Research Institutional Review Board at the University of Virginia.

70

79 PARTICIPANTS

80 Participants in this study were part of a larger research effort assessing foot impairment in individuals with and without CAI.^{8,9,11} A convenience sample of 20 recreationally-active 81 individuals (9 males, 11 females) aged 18-35 with a recent history of LAS were recruited at a 82 83 public university. Recreationally active was defined as participation in some form of physical activity for at least 20-minutes per day, at least three times a week. Participants must have 84 85 incurred an ankle sprain \geq 12-months prior to the study, experienced perceived or episodic 86 giving way and reported deficit on the Identification of Functional Ankle Instability⁵ (IdFAI>10), Foot and Ankle Ability Measure (FAAM) ADL <90 and FAAM-Sport < 85.¹⁴ 87 88 Participant demographics and self-report measures are in Table 1. Individuals were excluded if 89 they had an ankle sprain within 8 weeks prior to the study, a self-reported history of leg or foot fracture, neurological or vestibular impairment that affected balance, diabetes mellitus, 90 91 lumbosacral radiculopathy, soft tissue disorders such as Marfan syndrome or Ehlers-Danlos 92 syndrome, any absolute contraindication to manual therapy, or if they were pregnant. 93 Participants who met inclusion criteria provided informed consent. Figure 1 details the CONSORT²³ flow chart from recruitment to analysis. 94 95

96 **PROCEDURES**

97 Baseline Visit

98	Participants provided demographic information, health and injury history, and completed
99	the FAAM ADL ²¹ and Sport subscales, ⁴ IdFAI, ⁵ the Patient Reported Outcomes Measurement
100	Information System (PROMIS) General Health Questionnaire,17 the 11-item Tampa Scale of
101	Kinesiophobia (TSK-11), ²⁷ and the Godin Leisure-time Exercise Questionnaire. ¹² Height, mass,
102	and true leg length were measured. Foot posture was assessed in standing using the Foot Posture
103	Index-6 item version (FPI), a categorical measure of foot type that is based on five observations
104	and one palpatory assessment. ²⁵
105	Demographic, medical history, and FPI assessments were performed by a physical
106	therapist and board-certified orthopaedic clinical specialist with 15-years of clinical experience.
107	Physical examinations were performed by either an athletic trainer with three-years clinical
108	experience or a physical therapist with two-years clinical experience who were blinded to
109	participants' medical history, functional status, and treatment allocation.
110	Morphologic Foot Assessment
111	Morphologic foot measurements were obtained using the Arch Height Index
112	Measurement System (JAKTOOL Corporation, Cranberry, NJ). Total and truncated foot length,
113	arch height, and foot width were measured in sitting and standing. Test-retest reliability for these
114	measures were previously reported by the authors to be excellent. ¹⁰ Arch height index ³ and foot
115	mobility magnitude ²² were calculated using the component measurements across loading
116	conditions.
117	Joint Motion Measures
118	Weight bearing dorsiflexion (WBDF) ¹ , ankle plantarflexion, inversion, and eversion, and
119	forefoot inversion and eversion joint motion measures ¹⁰ were performed using previously
120	described methods. WBDF was reported as the linear distance measured from the wall to the toes

121 in centimeters. Joint motion measures of rearfoot plantarflexion, inversion, and eversion were 122 performed using a 30.5-cm plastic goniometer (Merck Corporation, Kenilworth, NJ) and 123 reported in degrees. Forefoot inversion and eversion was measured using a digital inclinometer 124 (Fabrication Enterprises, White Plains, NY) and reported in degrees. Linear excursion of first 125 metatarsal (MT) dorsiflexion and plantarflexion were measured utilizing a custom measuring 126 device consisting of two metal rulers bent to 90° and reported in millimeters.¹³ Test-retest reliability for these measures were previously reported by the authors to be good to excellent.^{10,13} 127 128 Muscle Strength 129 Ankle dorsiflexion, plantarflexion, inversion, eversion, and hallux flexion and lesser toe 130 flexion strength were assessed with a handheld dynamometer (Hoggan Health Industries, West 131 Jordan, UT).¹⁰ For toe flexion strength measures, the ankle was positioned in 45° plantarflexion 132 to reduce contribution of the extrinsic foot muscles and increase demand of the intrinsic foot 133 muscles.¹⁶ Strength measures were based on the highest value of three trials. An estimate of 134 torque was derived from the product of force and segment length, normalized to body mass, and 135 reported in Nmkg⁻¹. Test-retest reliability for these measures were previously reported by the 136 authors to be excellent.¹⁰

137 Dynamic Balance

Dynamic balance was assessed using the anterior, posteromedial, and posterolateral
 directions of the Star Excursion Balance Test (SEBT),¹⁸ a measure has been found to have
 excellent test-retest reliability.²⁰ Reach distance was normalized to leg length.¹⁵

141 Intervention

Following baseline assessment, all participants were instructed in a HEP consisting of
triceps surae stretching; four-way stretch of the rearfoot, midfoot, and forefoot; isotonic

144 inversion, eversion and dorsiflexion exercises against resistance tubing; single-limb heel raising; 145 and a single limb balance exercise (Figure 2).^{7,11} Participants were asked to perform all exercises 146 thrice daily, were provided a handout detailing the exercises, and verbalized understanding 147 following instruction. The decision to utilize a HEP over supervised rehabilitation was to better 148 elucidate the specific treatment effects of the midfoot joint mobilizations.¹¹ 149 Participants were randomized *a priori* using a random number generator by the senior 150 author and stratified by sex to receive either the midfoot joint mobilizations or sham intervention 151 on the initial visit. Allocation was performed by an otherwise uninvolved laboratory assistant, 152 concealed in a sealed opaque envelope, and opened by the treating clinician who was a board-153 certified orthopaedic physical therapist with 15-years of clinical experience. Participants 154 allocated to receive midfoot mobilizations were provided a dorsolateral cuboid glide with 155 forefoot supination and 1st tarsometatarsal plantar glides.⁶ Each mobilization technique was an 156 oscillatory Maitland Grade IV applied for 30-seconds duration. If cavitation was not experienced 157 during the first bout of oscillations, a second 30-second bout was provided. In the case where the 158 participant did not exhibit midfoot hypomobility on physical examination (n=3), joint 159 mobilizations were deferred, and the participant was provided the sham treatment only. 160 Participants allocated to the sham treatment were told that they were to receive a gentle soft-161 tissue technique similar to massage and were provided a "laying of hands" for 30-seconds using 162 the same hand position and contacts used for the joint mobilizations. Participants rated the 163 change of symptoms using a single assessment numeric evaluation (SANE, -100%=full 164 exacerbation, 0=no change, 100%=full resolution) immediately post-intervention and completed 165 the Global Rating of Change (GROC, -7= A very great deal worse, 0= About the same, 7= A 166 very great deal better).

167 Follow-up Visit

168	Participants returned to the laboratory following a one-week washout for reassessment.
169	They completed the PROMIS, Godin, FAAM-ADL and Sport, SANE, and GROC. HEP
170	compliance was assessed by having the participants demonstrate the instructed exercises.
171	Participants were rated by the treating clinician whether or not they could demonstrate the
172	exercises without hesitation and with appropriate technique. Participants self-rated their
173	compliance using a SANE, with 0% reflective of complete non-compliance with all home
174	exercises and 100% representing performance of all exercises thrice daily. Any deficiencies in
175	exercise technique were corrected and participants were provided encouragement to continue.
176	Repeat physical examinations were performed pre-and post-intervention. Following the
177	pre-intervention physical examination, participants crossed over to receive the second
178	intervention (i.e. individuals who initially received the sham intervention now received the
179	midfoot joint mobilizations). Participants rated treatment response (SANE) immediately post-
180	intervention and at the end of the visit and completed the GROC.
181	Final Visit
182	Participants returned to the laboratory one-week later for the final reassessment visit
183	consisting of HEP compliance, patient-reported outcomes, and physical examination.
184	STATISTICAL ANALYSIS
185	A priori sample size estimation of 14 participants were needed based on an anticipated 15-
186	point change in the FAAM Sport, an α =.05, and β =.20. ¹⁹ Descriptive statistics were calculated for
187	demographic and self-reported measures for each subset of the sample allocated to receive either
188	sham or midfoot mobilization during the first visit. Effectiveness of the two interventions
189	(midfoot joint mobilization, sham) and the order of treatments were assessed using multivariate

190	linear regression. Ordinal measures that had greater than five items (GROC) were treated as
191	continuous data during analysis. ^{24,26} Participants were analyzed per allocation using intention to
192	treat. Data was analyzed using R Version 3.5.1 (The R Foundation for Statistical Computing,
193	Vienna, Austria). The level of significance was $p \leq .05$ for all analyses.
194	
195	RESULTS
196	Self-reported compliance with the HEP was high following both interventions at Week 1
197	(Mobilization intervention first: 65.9±25.6%; Sham intervention first: 69.6±22.2%; Hedge's g:
198	0.15±0.98) and Week 2 (Mobilization intervention first: 71.9±17.3%; Sham intervention first:
199	$61.3\pm26.7\%$; Hedge's g: 0.45 ±0.96). When asked to demonstrate the home program, the group
200	that was provided the sham treatment first had a substantially higher proportion of the sample
201	that were able to recall and perform the HEP (75.0%) compared to the participants that initially
202	were provided the midfoot mobilization (33.3%). At Week 2, the ability to recall and perform the
203	HEP was more consistent between groups (Sham intervention first group: 66.7%; Mobilization
204	intervention first group: 83.3%).
205	Table 2 details the baseline and change measures for patient-reported outcomes of pain,
206	function, and perceived improvement. Participant demonstrated significantly greater perceived
207	improvement immediately posttreatment in the single assessment numeric evaluation (Sham:
208	5.0±10.2%; Mobilization: 43.9±26.2%; β : 6.8 p<0.001, Adj R ² :0.17) and Global Rating of
209	Change (Sham: -0.1±1.1; Mobilization: 1.1±3.0; β : 1.8 p=0.01, Adj R ² :0.12). Tables 3 and 4
210	details the baseline and change measures for ankle-foot morphological, joint mobility,
211	neuromotor function, and dynamic balance outcome measures following the midfoot
212	mobilization, regardless of order. Additionally, greater improved rearfoot inversion mobility

213	(Sham: 4.4 \pm 8.4°; Mobilization: -1.6 \pm 6.1°; β : -6.37, p=0.01, Adj R ² :0.19), plantarflexion mobility
214	(Sham: 2.7°±6.4; Mobilization: -1.7°±4.3; β: -4.36, p=0.02, Adj R ² :0.07), and posteromedial
215	dynamic balance (Sham: 2.4 \pm 5.9%; Mobilization: 6.0 \pm 5.4%; β : 3.88, p=0.04, Adj R ² :0.10) was
216	observed following midfoot mobilization compared to the sham at 1-week post-treatment. Order
217	of interventions was not a significant factor for any of the outcome measures. There were no
218	other significant findings.
219	
220	DISCUSSION
221	The primary findings of this crossover clinical trial were that CAI patients who received
222	midfoot joint mobilization and a HEP resulted in greater perceived improvement and global
223	rating of change immediately following treatment compared to the receipt of a sham treatment
224	and HEP. At one-week post treatment, patients receiving the midfoot joint mobilization also
225	demonstrated reduced rearfoot inversion and plantarflexion joint mobility and improvements in
226	posteromedial reach distance in the assessment of dynamic balance, whereas those receiving the
227	sham treatment did not.
228	The findings of greater perceived improvement study are consistent with what was
229	observed in the related study of midfoot mobilization in individuals with subacute LAS. ¹¹ MT is
230	purported to work through the interplay of biomechanical, psychological and neurophysiological
231	mechanisms. ¹² In the related study assessing midfoot mobilization in individuals with LAS, the
232	experimental intervention similarly yielded moderate to large magnitude perceived
233	improvements compared to the sham intervention. In the updated model of CAI, psychological
234	status has been highlighted as an important mediator for functional outcomes. ² This is substantial

since individual with CAI have been found to have increased pain-related fear¹³, a finding that
similarly observed in our sample.

237 While there were only trivial and non-significant improvements in dynamic balance 238 immediately post-treatment, there was a meaningful significant improvement observed one week 239 after receipt of mobilization. Previous study of MT in this population found that rearfoot joint 240 mobilizations and plantar massage increased dynamic balance through likely mechanical and 241 neurophysiological mechanism, improvements that persisted up to one-month following 242 treatment.¹⁴ Due to the delay in observed improvements, other plausible mechanisms may 243 explain our findings. Specifically, improvements in psychological status may have influenced the 244 changes in dynamic balance, a salient factor that has been found to mediate functional movement performance.¹⁵ Mitigation of fear in patients with CAI has been associated with improvements 245 246 in physical performance outcomes, such as dynamic balance.¹⁶ Furthermore, improved 247 psychological readiness resulting from increased knowledge of testing procedures, beliefs of 248 improvement, and attitudes toward performance execution following the experimental 249 intervention quite possibly influenced these outcomes through improved self-efficacy.¹⁷ 250 A small, but significant, decrease in rearfoot inversion mobility (mean: -1.6°, 95% CI: -4.4 251 to 1.2°) and plantarflexion mobility (mean: -1.7°, 95% CI: -3.7 to 0.3°) was observed 1-week 252 following joint mobilization, whereas the sham treatment resulted in an increase in these 253 measures (inversion, mean: 4.4°, 95% CI: 0.7 to 8.1°; plantarflexion, mean: 2.7°, 95% CI: 0.8 to 254 4.6°). Individuals with CAI have been found to have a more inverted and plantarflexed rearfoot during functional activities such as walking.¹⁸ It is plausible that reduced rearfoot joint motion 255 256 may be advantageous and result from improved midfoot mobility and rearfoot mechanics during 257 function in the week following treatment. Restoring normal ankle-foot biomechanics may help to

258 reduce the abnormal stresses placed on the ligaments of the complex and prevent further 259 injuries.¹⁹ These suppositions require substantiation in future study.

260

261 CLINICAL RECOMMENDATIONS

262 Higher perceived improvement was observed in the treatment group following joint 263 mobilization compared to sham. This is clinically meaningful because patient preferences form 264 an integral component of evidence-based medicine when it comes to informed clinical decision 265 making.²⁰ There are wide range of emotions reported after the injury that may include anxiety, fear, 266 and anger. Some athletes may be affected more by the severity of the injury translating in to 267 depressed mental state. This emotional toll that an athlete goes through because of injury has certain implications in rehabilitation and may persist beyond rehabilitation programs.²¹ It has been 268 269 suggested that because of an injury, athletes may fall in to a vicious cycle of a general lack of 270 movement that may result in decrease in strength and reinjury which makes them more prone to 271 reinjury.²¹ While there were only modest physical effects observed with the experimental 272 intervention, the positive psychological effects of the inclusion of midfoot joint mobilization 273 may help to bolster a comprehensive rehabilitation program when treating individuals with CAI. 274 Positive psychological characteristics such as high resiliency and self-efficacy are considered of 275 seminal importance in rehabilitation and return to activity.²² Lastly, based on the proportion of 276 CAI patients with observed side to side midfoot hypomobility observed in this study, it is 277 imperative that clinicians examine and treat all the segments of the ankle-foot complex when 278 managing this patient population.

279

280 LIMITATIONS

281 There are limitations to this study. One of the primary limitations of the cross-over 282 designs is the potential for carryover effects. Comfort maybe taken that we did not observe any 283 significant order effects or treatment by order interactions in any of our primary outcomes. In 284 addition, the choice to use change scores was made *a priori* to mitigate potential carryover 285 effects. Outcomes measures were assessed immediately and one week post mobilization. It is 286 unclear if any observed improvements persisted beyond the study epoch. Therefore, future 287 studies that assess long-term outcomes is warranted. Also, while the use of single mobilization 288 treatment in conjunction with a 1-week HEP was purposeful to specifically assess the perceptual 289 and physical effects of the specific treatment, this does not reflect the standards of practice. As 290 such, external validity of these finds are limited. More research is warranted to investigate the 291 effects of mid-foot mobilization incorporated in a comprehensive rehabilitation program. The 292 time between the application of the intervention and the follow up was deliberately short to 293 mitigate the effects of time and healing. This delimitation precluded assessment of potential 294 longer term effects. Finally, we used a range of outcomes measures to account for potential 295 improvements in physical impairment and activity, in addition to psychological mediators. This 296 could potentially increase the risk of Type I error. Acknowledging this risk, we did not rely 297 solely on p-values for determining treatment effectiveness and also considered the magnitude of 298 change in our interpretation of results.

- 299
- 300

CONCLUSION

A single session midfoot joint mobilization, when used in conjuction with a HEP consisting of
 stretching, strengthening, and balance was highly effective in improving patient's perceived
 improvement when compared to a sham treatment. In addition, modest improvements in dynamic

- 304 balance and rearfoot inversion and plantar flexion motion were also observed in the experimental
- 305 group. Integration of midfoot joint mobilization should be considered as part of a larger
- 306 comprehensive rehabilitation program for individuals with CAI.

307

308

309		REFERENCES
310 311 312	1.	Bennell K, Talbot R, Wajswelner H, Techovanich W, Kelly D, Hall A. Intra-rater and inter- rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. <i>Aust J Physiother</i> . 1998;44(3):175-180. doi:10.1016/S0004-9514(14)60377-9
313 314 315	2.	Bialosky JE, Bishop MD, Price DD, Robinso {Citation}n ME, George SZ. The Mechanisms of Manual Therapy in the Treatment of Musculoskeletal Pain: A Comprehensive Model. <i>Man Ther.</i> 2009;14(5):531-538. doi:10.1016/j.math.2008.09.001
316 317 318	3.	Butler RJ, Hillstrom H, Song J, Richards CJ, Davis IS. Arch Height Index Measurement System: Establishment of Reliability and Normative Values. <i>J Am Podiatr Med Assoc</i> . 2008;98(2):102-106. doi:10.7547/0980102
319 320	4.	Carcia CR, Martin RL, Drouin JM. Validity of the Foot and Ankle Ability Measure in Athletes With Chronic Ankle Instability. <i>J Athl Train</i> . 2008;43(2):179-183.
321 322 323	5.	Donahue M, Simon J, Docherty CL. Reliability and validity of a new questionnaire created to establish the presence of functional ankle instability: the IdFAI. <i>Athl Train Sports Health Care</i> . 2013;5(1):38-43. doi:10.3928/19425864-20121212-02
324 325 326	6.	Fraser JJ, Feger MA, Hertel J. Clinical commentary on midfoot and forefoot involvement in lateral ankle sprains and chronic ankle instability. part 2: clinical considerations. <i>Int J Sports Phys Ther</i> . 2016;11(7):1191-1203.
327 328	7.	Fraser JJ, Hertel J. Preinjury to postinjury disablement and recovery after a lateral ankle sprain: A case report. <i>J Athl Train</i> . 2018;53(8):776-781. doi:10.4085/1062-6050-114-17
329 330 331	8.	Fraser JJ, Koldenhoven RM, Hertel J. Ultrasound measures of intrinsic foot muscle size and activation following lateral ankle sprain and chronic ankle instability. <i>J Sport Rehabil</i> . 2021;In press. doi:10.1123/jsr.2020-0372
332 333 334	9.	Fraser JJ, Koldenhoven RM, Jaffri AH, et al. Foot impairments contribute to functional limitation in individuals with ankle sprain and chronic ankle instability. <i>Knee Surg Sports Traumatol Arthrosc</i> . Published online July 6, 2018. doi:10.1007/s00167-018-5028-x
335 336 337	10	Fraser JJ, Koldenhoven RM, Saliba SA, Hertel J. Reliability of ankle-foot morphology, mobility, strength, and motor performance measures. <i>Int J Sports Phys Ther</i> . 2017;12(7):1134-1149. doi:10.16603/ijspt20171134
338 339 340	11.	Fraser JJ, Saliba SA, Hart JM, Park JS, Hertel J. Effects of midfoot joint mobilization on ankle-foot morphology and function following acute ankle sprain. A crossover clinical trial. <i>Musculoskelet Sci Pract</i> . 2020;46:102130. doi:10.1016/j.msksp.2020.102130
341 342	12.	Godin G, Shephard RJ. Godin leisure-time exercise questionnaire. <i>Med Sci Sports Exerc</i> . 1997;29(6):36-38.

- 343 13. Greisberg J, Prince D, Sperber L. First ray mobility increase in patients with metatarsalgia.
 344 Foot Ankle Int. 2010;31(11):954-958. doi:10.3113/FAI.2010.0954
- 345 14. Gribble PA, Delahunt E, Bleakley C, et al. Selection criteria for patients with chronic ankle
 346 instability in controlled research: a position statement of the International Ankle
- 347 Consortium. Br J Sports Med. 2014;48(13):1014-1018. doi:10.1136/bjsports-2013-093175
- 348 15. Gribble PA, Hertel J. Considerations for normalizing measures of the star excursion balance
 349 test. *Meas Phys Educ Exerc Sci.* 2003;7(2):89-100. doi:10.1207/S15327841MPEE0702_3
- 16. Hashimoto T, Sakuraba K. Assessment of effective ankle joint positioning in strength
 training for intrinsic foot flexor muscles: a comparison of intrinsic foot flexor muscle
 activity in a position intermediate to plantar and dorsiflexion with that in maximum plantar
 flexion using needle electromyography. *J Phys Ther Sci.* 2014;26(3):451-454.
 doi:10.1589/jpts.26.451
- 17. Hays RD, Bjorner JB, Revicki DA, Spritzer KL, Cella D. Development of physical and
 mental health summary scores from the patient-reported outcomes measurement
 information system (PROMIS) global items. *Qual Life Res.* 2009;18(7):873-880.
 doi:10.1007/s11136-009-9496-9
- 18. Hertel J, Braham RA, Hale SA, Olmsted-Kramer LC. Simplifying the star excursion balance
 test: analyses of subjects with and without chronic ankle instability. *J Orthop Sports Phys Ther*. 2006;36(3):131-137.
- 362 19. Hoch MC, Andreatta RD, Mullineaux DR, et al. Two-week joint mobilization intervention
 363 improves self-reported function, range of motion, and dynamic balance in those with
 364 chronic ankle instability. *J Orthop Res.* 2012;30(11):1798-1804. doi:10.1002/jor.22150
- 365 20. Kinzey SJ, Armstrong CW. The reliability of the star-excursion test in assessing dynamic
 366 balance. *J Orthop Sports Phys Ther*. 1998;27(5):356-360.
- 367 21. Martin RL, Irrgang JJ, Burdett RG, Conti SF, Van Swearingen JM. Evidence of validity for
 368 the foot and ankle ability measure (FAAM). *Foot Ankle Int.* 2005;26(11):968-983.
- 369 22. McPoil TG, Vicenzino B, Cornwall MW, Collins N, Warren M. Reliability and normative
 370 values for the foot mobility magnitude: a composite measure of vertical and medial-lateral
 371 mobility of the midfoot. *J Foot Ankle Res.* 2009;2(1):6. doi:10.1186/1757-1146-2-6
- 372 23. Moher D, Schulz KF, Altman D, Group C, others. The CONSORT Statement: revised
 373 recommendations for improving the quality of reports of parallel-group randomized trials
 374 2001. *Explore J Sci Heal.* 2005;1(1):40-45.
- 375 24. Norman G. Likert scales, levels of measurement and the "laws" of statistics. *Adv Health Sci*376 *Educ.* 2010;15(5):625-632. doi:10.1007/s10459-010-9222-y

- 25. Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system
 for scoring standing foot posture: The Foot Posture Index. *Clin Biomech*. 2006;21(1):89-98.
 doi:10.1016/j.clinbiomech.2005.08.002
- 26. Rhemtulla M, Brosseau-Liard PÉ, Savalei V. When can categorical variables be treated as
 continuous? A comparison of robust continuous and categorical SEM estimation methods
 under suboptimal conditions. *Psychol Methods*. 2012;17(3):354-373. doi:10.1037/a0029315
- 27. Woby SR, Roach NK, Urmston M, Watson PJ. Psychometric properties of the TSK-11: A
 shortened version of the Tampa Scale for Kinesiophobia: *Pain*. 2005;117(1):137-144.
 doi:10.1016/j.pain.2005.05.029

386

387

388 List of Tables

402

389	Table 1. Demographic, injury history, and patient-reported outcome measures in
390	individuals with chronic ankle instability
391	Table 2. Comparison of treatment on change in patient-reported outcome measures in
392	individuals with chronic ankle instability
393	Table 3 . Comparison of treatment on change in ankle-foot joint morphological and
394	mobility outcome measures in individuals with chronic ankle instability
395	Table 4. Comparison of treatment on change in neuromotor and dynamic balance
396	outcome measures in individuals with chronic ankle instability
397	
398	List of Figures
399	Figure 1. CONSORT Flow Diagram.
400	Figure 2. Home exercise program. From Fraser JJ, Hertel J. Preinjury to postinjury
401	disablement and recovery after a lateral ankle sprain: A case report. Journal of Athletic Training.

2018;53(8):776-781. doi:10.4085/1062-6050-114-17. Used with permission of the publisher.

	Participants	Participants allocated					
	allocated to receive	to receive midfoot					
	sham intervention	mobilization first					
	first (n=11)	(n=9)					
	4 males 7 females	4 males 5 females					
Mean \pm SD							
Age (years)	21.3±6.3	20.3±1.3	.64				
Height (cm)	163.8±6.9	171.7±10.4	.07				
Weight (kg)	70.5±13.6	70.3±16.1	.98				
BMI (kg/m ²)	26.3±4.8	23.7±4.0	.21				
Foot Posture Index	4.6±4.2	4.2±2.9	.84				
Ankle sprains (n)	$6.0{\pm}7.5$	4.4±2.1	.52				
IdFAI	23.8±3.6	23.3±3.5	.77				
Kinesiophobia (TSK-11) 23.7±5.6 21.2±6.6							
cm=centimeters, kg=kilograms, BMI=body mass index, IdFAI=Identification of							
Functional Ankle Instability, TSK=Tampa Scale Kinesiophobia							

Table 1. Demographic, injury history, and patient-reported outcome measures in individuals with chronic ankle instability

	Group	Baseline 1 Baseline 2				Pre to 1-week Post Change				
Mean±SD					Mean±SD	Group Effect	Order Effect	Model Fit		
Pain VAS (cm)	Sham	$2.3{\pm}2.5^{*}$		0.7±	=0.9 [†]	-0.3±1.1	β: -0.3	β: 0.3	Adj R ² : 0.00	
At Present	Tx	$1.1{\pm}1.3^{\dagger}$		1.7±	=2.3*	-0.7±1.2	p=0.30	p=0.32	p=0.38	
Worst in the Past	Sham	$3.4{\pm}2.7^{*}$		2.5±	=2.5 [†]	-1.2±1.7	β: 0.4	β: 0.7	Adj R ² : 0.00	
Week	Tx	$3.2{\pm}1.7^{\dagger}$		2.3±	=2.5*	-0.8±1.8	p=0.48	p=0.25	p=0.37	
PROMIS	Sham	$50.1{\pm}5.9^{*}$		53.2	±7.1 [†]	-0.2±2.3	β: 0.5	β: -0.3	Adj R ² : -0.05	
Physical Health	Tx	$53.0\pm5.6^{\dagger}$		49.5	$\pm 5.0^*$	0.3 ± 5.1	p=0.73	p=0.79	p=0.91	
Mental Global	Sham	$53.5{\pm}8.9^*$		57.2	$\pm 8.2^{\dagger}$	1.6±4.5	β: -1.7	β: -0.9	Adj R ² : -0.02	
Health	Tx	$58.0{\pm}7.6^{\dagger}$		54.8	$\pm 7.9^{*}$	-0.1±5.3	p=0.31	p=0.60	p=0.43	
Godin Leisure	Sham	$71.7 \pm 53.8^{*}$		85.1±	=55.6 [†]	10.7±26.6	β: -10.0	β: 3.2	Adj R ² : -0.01	
Time Activity	Tx	$83.3{\pm}47.8^{\dagger}$	76.1±62.4*			1.0±20.5	p=0.22	p=0.69	p=0.45	
<u>FAAM (%)</u>	Sham	$88.6{\pm}8.0^{*}$		91.9	$\pm 7.8^{\dagger}$	-0.5±5.3	β: 2.2	β: 0.6	Adj R ² : -0.01	
ADL Score	Tx	$89.8{\pm}5.6^{\dagger}$		88.0	$\pm 8.8^{*}$	1.7±5.0	p=0.22	p=0.75	p=0.43	
Sport Score	Sham	$69.0{\pm}17.3^{*}$		76.9±	=19.1 [†]	-1.25±11.4	β: 6.8	β: 0.8	Adj R ² : 0.01	
	Tx	$70.9 \pm 14.3^{\dagger}$		65.2±	-18.1*	5.6±15.2	p=0.14	p=0.87	p=0.32	
		Imn	nediate Pre-t	o-Post Inter	vention	Pre to 1-week Post Intervention				
Treatment Rea	sponse	Mean±SD	Group	Order	Model Fit	Mean±SD	Group	Order	Model Fit	
	~1		Effect	Effect			Effect	Effect		
Perceived	Sham	5.0 ± 10.2	β: 6.8	β:-0.5	Adj R ² : 0.17	28.9 ± 31.0	β: 6.9	β: 9.8	Adj R^2 : -0.02	
SANE (%)	Tx	43.9±26.2	p<0.001	p=0.70	p=0.02	36.5±33.7	p=0.52	p=0.37	p=0.52	
Global Rating of	Sham	-0.1±1.1	β: 1.8	β:-0.47	Adj R ² : 0.12	2.1±1.8	β: -0.6	β: -0.1	Adj R ² : -0.04	
Change Tx 1.1±3.0 p=0.01 p=0.50 p=0.04		$2.7{\pm}2.00$	p=0.39	p=0.90	p=0.69					
VAS = visual analogue scale. PROMIS=Patient Reported Outcome Measures Information System, FAAM=Foot and Ankle Ability Measure.										

Table 2. Comparison of treatment on change in patient-reported outcome measures in individuals with chronic ankle instability

ιy

ADL=activities of daily living, SANE=single assessment numeric evaluation, Tx = Treatment Group

*Received sham intervention first, †Received midfoot joint mobilization first. Bolded values depict statistical significance.

Immediate Pre-to-Post Change in Pain VAS in the Sham (Mean±SD: 0.1 ± 0.6) and Treatment (Mean±SD: -0.2 ± 1.3) groups was non-significant for group (β : -0.3, p=0.30) or order effects (β : 0.3, p=0.30; Model fit: Adjusted R²=-0.00, p=0.38).

	Group	Baseline 1	Baseline 2	Immedia	Immediate Pre to Post Change			Pre to 1-week Post Change			
Foot Morphological Measures		Mean±SD		Mean±SD	Group Effect	Model Fit	Mean±SD	Group Effect	Order Effect	Model Fit	
Arch Height Index	Sham	1.59±0.65 *	$1.77{\pm}0.74$ [†]	1.76 ± 1.84	β: 0.02	Adj R ² :-0.04	1.19 ± 2.12	β:0.59	β:0.32	Adj R ² :-0.05	
$(\mathrm{cm \ kg^{-1}})$	Tx	1.77±0.74 [†]	1.59±0.65 *	1.75 ± 1.54	p=0.97	p=0.70	1.71 ± 1.61	p=0.42	p=0.67	p=0.70	
Foot Mobility	Sham	$0.5{\pm}0.3$ *	$0.4{\pm}0.1$ [†]	$0.0{\pm}0.2$	β: 0.14	Adj R ² : 0.05	0.0 ± 0.2	β: 0.07	β:-0.02	Adj R ² :-0.03	
Magnitude (cm)	Tx	$0.6{\pm}0.2$ [†]	$0.5{\pm}0.2$ *	0.1±0.3	p=0.06	p=0.16	0.1±0.3	p=0.41	p=0.79	p=0.69	
Joint Mobility Measure	S										
Weightbearing	Sham	11.4±3.7 *	15.5±1.3 [†]	$0.42{\pm}0.94$	β: 0.04	Adj R ² :-0.02	0.35 ± 1.20	β: 0.08	β:-0.12	Adj R ² :-0.06	
Dorsiflexion (cm)	Tx	15.0±1.6 [†]	11.5±4.3 *	$0.44{\pm}0.56$	p=0.88	p=0.51	0.42 ± 0.78	p=0.81	p=0.74	p=0.92	
Rearfoot	Sham	14.6±6.1 *	19.1±5.7 [†]	1.0±1.9	β: 0.41	Adj R ² :-0.01	1.9 ± 3.0	β: -1.62	β: -1.27	Adj R ² :0.09	
Dorsiflexion (°)	Tx	19.9±4.7 [†]	15.5±5.4 *	$1.4{\pm}1.8$	p=0.51	p=0.47	0.2 ± 2.7	p=0.09	p=0.18	p=0.08	
Diantanflarian (?)	Sham	65.7±11.3 *	66.7±14.1 [†]	2.1±5.0	β: -1.59	Adj R ² :-0.03	2.7±6.4	β: -4.36	β: -0.65	Adj R ² :0.10	
Plantarnexion ()	Tx	$68.7{\pm}12.0^{\dagger}$	68.8±9.4 *	0.5 ± 4.6	p=0.33	p=0.58	-1.7±4.3	p=0.02	p=0.73	p=0.07	
I	Sham	41.0±12.6 *	38.9±6.5 [†]	-0.5±4.2	β:0.18	Adj R ² :0.05	4.4±8.4	β: -6.37	β:4.76	Adj R ² :0.19	
Inversion (°)	Tx	$37.9{\pm}6.9^{\dagger}$	43.9±12.5 *	-0.1±6.5	p=0.92	p=0.17	-1.6±6.1	p=0.01	p=0.05	p=0.01	
Europeinon (°)	Sham	$11.5{\pm}6.0$ *	11.9±4.4 †	0.5±4.2	β: -0.25	Adj R ² :-0.03	0.5 ± 4.9	β: 0.74	β: -1.70	Adj R ² :-0.02	
Eversion ()	Tx	12.2±4.9 [†]	11.8±4.2 *	$0.3{\pm}2.8$	p=0.84	p=0.64	1.1 ± 4.2	p=0.63	p=0.27	p=0.49	
Forefoot	Sham	40.1±9.8 *	37.1±7.9 [†]	2.3±2.1	β: -0.42	Adj R ² : -0.04	2.1±5.6	β: -0.50	β: 0.92	Adj R ² :-0.05	
Inversion (°)	Tx	$39.3{\pm}14.4^{\dagger}$	41.0±12.2 *	1.8 ± 3.7	p=0.67	p=0.75	1.7 ± 5.0	p=0.78	p=0.61	p=0.85	
Europeion (°)	Sham	18.5 ± 5.4	18.5 ± 7.0 [†]	1.7 ± 4.1	β: -0.30	Adj R ² :-0.01	-0.4±4.4	β: 0.98	β: -0.02	Adj $R^2 = -0.04$	
Eversion ()	Tx	$17.4 \pm 7.3^{\dagger}$	$18.0{\pm}4.3$ *	1.2 ± 3.5	p=0.82	p=0.48	0.6 ± 3.7	p=0.48	p=0.99	p=0.78	
1 st Metatarsal	Sham	6.1±2.1 *	6.2±1.3 [†]	$0.2{\pm}0.6$	β: -0.24	Adj R ² :-0.01	$0.2{\pm}1.1$	β:-0.33	β: -0.22	Adj $R^2 = -0.01$	
Dorsiflexion (mm)	Tx	$6.4{\pm}1.5^{\dagger}$	6.6±2.4 *	-0.1 ± 0.8	p=0.30	p=0.48	$0.1{\pm}1.0$	p=0.34	p=0.52	p=0.48	
Diantarfloxion (mm)	Sham	$7.7{\pm}1.1$ *	$8.33 \pm 2.1^{\dagger}$	$0.4{\pm}1.0$	β: -0.47	Adj $R^2 = -0.24$	$0.1{\pm}1.7$	β: 0.36	β:-0.68	Adj R ² =0.01	
	Tx	7.7±3.1 [†]	8.2±2.4 *	-0.1±1.3	p=0.23	p=0.30	0.4±1.2	p=0.47	p=0.32	p=0.32	
Tx, Treatment Group; *Received sham intervention first, †Received midfoot joint mobilization first. Bolded values depict statistical significance.											

Table 3.	Comp	arison of tre	eatment on cha	nge in ank	cle-foot	joint mor	pholog	gical and	mobility	y outcome measures	in in	dividu	als wit	h chronic	: ankle	instab	ility
----------	------	---------------	----------------	------------	----------	-----------	--------	-----------	----------	--------------------	-------	--------	---------	-----------	---------	--------	-------

		Baseline 1	Baseline 2	Immediate Pre to Post Change			Pre to 1-week Post Change				
		Mean	n±SD	Mean ±SD	Group Effect	Model Fit	Mean ±SD	Group Effect	Order Effect	Model Fit	
Handheld Dynamometry (normalized)											
Dorsiflexion	Sham	2.56±0.45 *	3.18±0.70 [†]	-0.10 ± 0.22	β:-0.11	Adj R ² :0.04	0.12 ± 0.34	β:-0.17	β:-0.01	Adj R ² :0.02	
$(Nm kg^{-1})$	Tx	$3.23{\pm}0.76$ [†]	2.25±1.16*	-0.21±0.16	p=0.10	p=0.20	-0.05 ± 0.31	p=0.12	p=0.94	p=0.29	
Plantarflexion	Sham	4.13±0.95 *	5.75±1.48 [†]	-0.13±0.57	β:-0.11	Adj R ² :-0.05	0.23±0.98	β:0.04	β: 0.01	Adj R ² :-0.06	
$(Nm kg^{-1})$	Tx	5.61±1.23 [†]	4.56±1.60 *	-0.23 ± 0.56	p=0.57	p=0.83	0.27 ± 0.86	p=0.90	p=0.98	p=0.99	
Inversion	Sham	$1.73{\pm}0.50$ *	$2.39{\pm}0.48^{\dagger}$	0.05±0.30	β:-0.05	Adj R ² : -0.05	0.16±0.33	β:-0.06	β:-0.14	Adj R ² :0.02	
$(Nm kg^{-1})$	Tx	$2.33{\pm}0.47^{\dagger}$	2.01±0.51 *	0.01 ± 0.25	p=0.63	p=0.89	0.09 ± 0.25	p=0.55	p=0.17	p=0.29	
Eversion	Sham	$1.79{\pm}0.42$ *	2.35±0.56 [†]	0.06 ± 0.28	β:-0.03	Adj R ² : -0.02	0.11 ± 0.29	β:0.07	β:-0.15	Adj R ² :0.05	
$(Nm kg^{-1})$	Tx	2.19±0.56 [†]	2.09±0.49 *	0.03±0.19	p=0.75	p=0.52	0.17±0.21	p=0.38	p=0.08	p=0.17	
Hallux Flexion	Sham	$0.66{\pm}0.25$ *	$0.98{\pm}0.19$ [†]	$0.04{\pm}0.12$	β:-0.04	Adj R ² : -0.01	0.07 ± 0.15	β:-0.03	β:-0.07	Adj R ² :0.02	
$(Nm kg^{-1})$	Tx	$0.93{\pm}0.20$ [†]	$0.80{\pm}0.20$ *	0.00±0.15	p=0.36	p=0.48	0.03±0.14	p=0.50	p=0.16	p=0.27	
Lesser Toe	Sham	0.66±0.32 *	$0.88{\pm}0.17$ [†]	$0.02{\pm}0.09$	β: -0.02	Adj R ² : -0.05	0.08 ± 0.14	β:0.02	β:-0.08	Adj R ² :0.00	
kg^{-1}	Tx	0.82±0.23 [†]	0.73±0.13 *	0.01±0.15	p=0.71	p=0.83	0.09±0.19	p=0.75	p=0.16	p=0.36	
Star Excursion Ba	alance Te	est (normalized)								
Antonian $(0/)$	Sham	$65.1 \pm 8.1^*$	$74.7{\pm}6.4^{\dagger}$	-1.5 ± 3.6	β: 2.41	Adj R ² :0.04	0.6 ± 5.2	β: 2.00	β: 0.11	Adj R ² :-0.01	
Anterior (70)	Tx	$71.2 \pm 8.2^{\dagger}$	$64.8 \pm 6.6^*$	0.9 ± 4.4	p=0.08	p=0.20	2.5±4.1	p=0.23	p=0.95	p=0.48	
Posteromedial	Sham	$73.3{\pm}10.2^{*}$	$85.5 \pm 11.9^{\dagger}$	-0.7 ± 3.8	β: 2.22	Adj R ² :0.04	2.4±5.9	β: 3.88	β:-2.63	Adj R ² :0.10	
(%)	Tx	79.8±10.3 [†]	74.6±11.7*	1.5±3.9	p=0.09	p=0.20	6.0±5.4	p=0.04	p=0.16	p=0.06	
Posterolateral	Sham	$83.1 {\pm} 8.3^*$	90.6±10.6 [†]	-2.1±4.2	β: 1.20	Adj R ² :-0.03	1.2 ± 3.4	β: 1.52	β: -0.12	Adj R ² :-0.03	
(%)	Tx	88.1±11.0 [†]	83.4±10.2 *	0.9±3.2	p=0.35	p=0.65	2.7±5.2	p=0.30	p=0.93	p=0.57	
Tx = Treatment Group, *Received sham intervention first, †Received midfoot joint mobilization first. Bolded values depict statistical significance.											

Table 4. Comparison of treatment on change in neuromotor and dynamic balance outcome measures in individuals with chronic ankle instability

