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Background: Electrocardiographic (ECG) Heart Age conveying cardiovascular risk has been 39 

estimated by both Bayesian and artificial intelligence approaches. We hypothesized that 40 

explainable measures from the 10-second 12-lead ECG could successfully predict Bayesian 41 

ECG Heart Age. 42 

Methods: Advanced analysis was performed on ECGs from healthy subjects and patients 43 

with cardiovascular risk or proven heart disease. Regression models were used to predict a 44 

Bayesian 5-minute ECG Heart Age from the standard resting 10-second 12-lead ECG. The 45 

difference between 10-second ECG Heart Age and chronological age was compared.  46 

Results: In total, 2,771 subjects were included (n=1682 healthy volunteers, n=305 with 47 

cardiovascular risk factors, n=784 with cardiovascular disease). Overall, 10-second Heart Age 48 

showed strong agreement with the 5-minute Heart Age (R2=0.94, p<0.001, mean±SD bias 49 

0.0±5.1 years). The difference between 10-second ECG Heart Age and chronological age was 50 

0.0±5.7 years in healthy individuals, 7.4±7.3 years in subjects with cardiovascular risk factors 51 

(p<0.001), and 14.3±9.2 years for patients with cardiovascular disease (p<0.001).  52 

Conclusions: ECG Heart Age can be accurately estimated from a 10-second 12-lead ECG in 53 

a transparent and explainable fashion based on known ECG measures, without artificial 54 

intelligence techniques. The difference between ECG Heart Age and chronological age 55 

increases markedly with cardiovascular risk and disease. 56 

Keywords: vascular age; electrocardiography cardiovascular risk prediction; advanced 57 

electrocardiography; vectorcardiography 58 
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Background 61 

Cardiovascular disease is a significant contributor to mortality, and pathological processes 62 

begin early and can progress silently for many years1-3. Many of the risk factors for 63 

developing cardiovascular disease are lifestyle-related4. Fortunately, several of these are 64 

modifiable, and risk can therefore be reduced for example by smoking cessation, dietary 65 

changes and increased physical activity5,6. To accomplish this, an individual must fully 66 

understand their risk and become motivated to act upon it. One way of communicating risks 67 

to the patient is to present the risk as a “Heart Age”, which can be contrasted to the patient’s 68 

chronological age. A Heart Age can either be determined by translating risk factor scores to 69 

what age that score would represent in an individual with no risk factors, or it can be based on 70 

electrocardiographic changes7-12. Describing the risk to the patient using Heart Age has been 71 

reported to reduce metabolic risk factors and may have the advantage of being easily 72 

understood by the patient11,13. A similar approach has been applied when conveying risk to 73 

smokers by describing how ‘old’ their lungs are, and such an approach increased the chance 74 

of smoking cessation14. 75 

Moving beyond but not excluding basic ECG measurements such as heart rate and waveform 76 

amplitudes and durations, the diagnostic output from the ECG can be further substantially 77 

improved by using combinations of advanced ECG measures from 12-lead-ECG-derived 78 

vectorcardiography and waveform complexity15-17. An accurate ECG Heart Age using 79 

advanced, 5-minute, 12-lead ECG was developed in 2014, based on Bayesian statistics9. The 80 

Bayesian approach was transparent in so much as the advanced ECG measures contributing to 81 

the ECG Heart Age were well-described. After being trained on a set of healthy individuals, 82 

this approach yielded increased ECG Heart Ages for subjects at risk of cardiovascular disease 83 

and even higher ECG Heart Ages for those with established cardiovascular disease9. 84 

However, the reliance on 5-minute, high-fidelity 12-lead ECG recordings lessens the 85 
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likelihood of widespread clinical use. If standard 10-second ECG recordings could be used 86 

instead, the clinical impact might be enhanced. Moreover, artificial intelligence has been used 87 

to estimate ECG Heart Age using the 10-second resting 12-lead ECG7,8,10. However, artificial 88 

intelligence techniques are limited by their “black box” approach, whereby the clinician does 89 

not have transparency as to the exact source(s) of the changes in the ECG that can affect an 90 

ECG Heart Age or other output18,19.Therefore, the aim of the study was to predict 5-minute 91 

ECG Heart Age from measures available by 10-second 12-lead ECG, and to compare the 10-92 

second ECG Heart Age to chronological age in healthy subjects, subjects with cardiovascular 93 

risk factors, and patients with established cardiovascular disease. We hypothesized that 10-94 

second 12-lead ECG recordings could accurately predict Bayesian ECG Heart Ages derived 95 

from 5-minute 12-lead ECG recordings. 96 

 97 

Methods 98 

A database of de-identified patients with both 5-minute and 10-second 12-lead ECG 99 

recordings was utilized for the study9. Within that database, healthy individuals, patients at 100 

cardiovascular risk, and patients with established cardiovascular disease were included. All 101 

healthy subjects were low-risk asymptomatic volunteers with absence of any cardiovascular 102 

or systemic disease, based on clinical history and physical examination. Exclusion criteria for 103 

the healthy subjects included increased blood pressure at physical examination (≥140/90 mm 104 

Hg), treatment for hypertension or diabetes, or active smoking. Patients with established 105 

cardiovascular disease were included based on the presence of either coronary heart disease 106 

(determined by coronary angiography with at least one obstructed vessel (≥50%) in at least 107 

one major native coronary vessel or coronary graft, or, if coronary angiography was either 108 

unavailable or clinically not indicated, one or more reversible perfusion defects on 99m-Tc-109 

tetrofosmin single-photon emission computed tomography (SPECT)20-22), left ventricular 110 
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hypertrophy (LVH) based on imaging evidence of at least moderate, concentric wall 111 

thickening according to guidelines of the American Society of Echocardiography23, left 112 

systolic dysfunction (left ventricular ejection fraction ≤50%) at echocardiography, cardiac 113 

magnetic resonance imaging (CMR) or SPECT, or findings suggestive of 114 

dilated/hypertrophic/ischemic cardiomyopathy at echocardiography or CMR16. Finally, 115 

subjects at cardiovascular risk were included based on the presence of cardiovascular risk 116 

factors such as hypertension or diabetes but no confirmed established cardiovascular disease9.  117 

Based on the above, three groups of study participants were included: healthy subjects, 118 

subjects at cardiovascular risk, and patients with established cardiovascular disease. By 119 

methodological design, onlyhealthy subjectswere initially included when considering optimal 120 

measures of ECG available from 10-second 12-lead ECG for predicting the 5-minute ECG 121 

Heart Age. The 10-second ECG measures considered for the prediction model included: (1) 122 

From the conventional ECG: heart rate, R-to-R, P-wave, PR, QRS, QT, QTc, and TQ interval 123 

durations, as well as the conventional ECG amplitudes and axes; (2) From the transformation 124 

of the 12-lead ECG to the Frank X, Y and Z lead vectorcardiogram (VCG) via Kors’ 125 

transform24-28: the spatial means and peaks QRS-T angles, the spatial ventricular gradient and 126 

its individual QRS and T components, the spatial QRS- and T-wave axes (azimuths and 127 

elevations), waveform amplitudes and areas, including those in the three individual 128 

vectorcardiographic planes, and spatial QRS-and T-wave velocities; and (3) measures of 129 

QRS-and T-wave waveform complexity based on singular value decomposition after signal 130 

averaging29-31. 131 

For all study participants, the difference between the 10-second ECG Heart Age and the 132 

chronological age was also calculated. Results were then compared between the three groups 133 

defined above. All participants gave written informed consent. All recordings were obtained 134 

under Institutional Review Board (IRB) approvals from NASA's Johnson Space Center and 135 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.08.21267378doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.08.21267378


partner hospitals that fall under IRB exemptions for previously collected and de-identified 136 

data. The study was performed in accordance with the Declaration of Helsinki. 137 

Statistical analysis 138 

Continuous variables were described using mean and standard deviation (SD). The chi-139 

squared test was used to test for proportional differences between groups. Student’s t test was 140 

used to compare group means. The 10-second ECG Heart Age was first derived only in the 141 

healthy subject group through a process of feature selection, via optimized stepwise 142 

procedures, of measures available from 10-s, standard-fidelity ECG recordings, first using 143 

univariable linear regression, and finally as multivariable linear regression, to best predict the 144 

5-minute ECG Heart Age9. The best model was defined as the model with highest R2 value 145 

that was also the most parsimonious, i.e., a model with statistically equal performance that 146 

incorporated a lesser number of measures was considered more parsimonious due to less 147 

proneness to over-fitting. The best model from the healthy volunteers was then applied 148 

forward to an expanded population that also included the other two groups (cardiovascular 149 

risk and cardiovascular disease, respectively), while not changing any of the included 150 

variables, and only allowing optimization of the included coefficients. The final sex-specific 151 

model was then applied across all three groups as the 10-secondECG Heart Age, and 152 

comparisons with 5-minute ECG Heart Age are presented as scatter plots and Bland-Altman 153 

plots. A two-sided p-value of 0.05 was used as to define statistical significance. Statistical 154 

analyses were performed using SAS JMP version 11.0, SAS Institute Inc, Cary, NC, USA, 155 

and R version 3.5.3R, R Foundation for Statistical Computing, Vienna, Austria, 156 

https://www.R-project.org/. 157 

 158 

 159 
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Results 160 

In total, 2,771 patients were included (n=1682 healthy volunteers, n=305 subjects with 161 

cardiovascular risk factors, n=784 with cardiovascular disease). Baseline characteristics are 162 

presented in Table 1. The ECG measures included in the final prediction models are presented 163 

in Table 2 (males) and Table 3 (females). 164 

The 10-second ECG Heart Age showed excellent agreement with the 5-minute Heart Age 165 

(R2=0.94, p<0.001, mean±SD bias 0.0±5.2 years), Figure 1. Agreement was strong for both 166 

males and females (R2=0.91, p<0.001, and R2=0.92, p<0.001 respectively). In healthy 167 

subjects, there was no difference in ECG Heart Age and chronological age (0.0±5.7 years). In 168 

subjects with cardiovascular risk factors, the difference was higher (7.4±7.3 years, p<0.001). 169 

Patients with cardiovascular disease showed the largest difference between ECG Heart Age 170 

and chronological age (14.3±9.2 years, p<0.001 when compared to subjects at cardiovascular 171 

risk), Figure 2. 172 

Discussion 173 

We found that ECG Heart Age based on measures of advanced ECG can be accurately 174 

predicted from standard resting 10-second 12-lead ECG recordings. This facilitates 175 

widespread use of ECG Heart Age in routine clinical settings, since neither specialized ECG 176 

machines nor unusually lengthy recordings are necessary. Also, if digital ECG raw data are 177 

available and the recording is of acceptable quality, ECG Heart Age can be retrospectively 178 

determined. Further, we found ECG Heart Age to be similar to chronological age in healthy 179 

individuals, while the ECG Heart Age was increasingly older with increasing cardiovascular 180 

disease status. This suggests that the ECG Heart Age is likely to provide accurate 181 

cardiovascular risk prediction, although validation in other datasets is necessary.  182 

 183 
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Explainability and transparency of variables that contribute to ECG Heart Age 184 

For an estimation of Heart Age to be accurate in predicting an age that is similar to the 185 

chronological age when the heart is healthy, and increased when the heart is diseased, it is 186 

desirable that the included ECG measures change with age, and that the change is augmented 187 

with increasing cardiovascular risk or disease severity. Beyond age itself, the two ECG 188 

measures that had the strongest influence (highest t ratio) on the model were P-wave duration 189 

and spatial QT duration, and these measures fit this description well. P-wave duration 190 

increases with age32, and increased P-wave duration can be seen in advanced cardiovascular 191 

pathologies, e.g. heart failure and cardiac amyloidosis33. Similarly, QT duration increases 192 

with age34. Further, QT prolongation is associated with increased of cardiovascular risk, even 193 

beyond the rare long QT syndromes35, and with incrementally increased risk in advanced 194 

ages36. These general characteristics are also true for increased heart rate and for leftward 195 

shifting of the frontal plane QRS axis37-40. The other measures included in the score track 196 

changes in the vectorcardiographic QRS and T, and in T-wave complexity by singular value 197 

decomposition. Such changes are also known to occur in conditions associated with increased 198 

cardiovascular risk, such as hypertension and diabetes41, and in established cardiovascular 199 

disease, in which they often provide strong diagnostic and prognostic information24-27,29-31. 200 

Notably, these changes are not easily detectable by visual interpretation of a standard 12-lead 201 

ECG. How these ECG measures can affect the ECG Heart Age is exemplified in Figure 3. 202 

Taken together, the described ECG measures that contribute in a multivariable fashion to the 203 

ECG Heart Age all have physiologically reasonable associations with age and disease in a 204 

way that is transparent to the assessing clinician, thus providing important explainability to 205 

the model. 206 

 207 

 208 
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Differences compared to Bayesian 5-minute ECG Heart Age 209 

The original, Bayesian 5-minute ECG Heart Age requires information from measures of beat-210 

to-beat heart rate and QT variability,9 and of the root-mean square voltage or other aspects of 211 

high-frequency (high fidelity) components of the QRS complex42-44. However, 10-second-212 

duration recordings of standard fidelity do not allow for such measures, and therefore they 213 

were not included in the 10-second ECG Heart Age. However, unlike the original Bayesian 5-214 

minute ECG Heart Age, the 10-second ECG Heart Age should be derivable from any standard 215 

12-lead ECG machine, as long as it is sufficiently equipped with software that can measure 216 

the included measures and calculate the 10-second ECG Heart Age. The presented 10-second 217 

ECG Heart Age might therefore be anticipated to contribute to more widespread clinical 218 

penetration and use. 219 

 220 

Comparison with other Heart (or Vascular) Ages 221 

Different means of expressing cardiovascular risk by translating it into a heart or vascular age 222 

have recently been published13. Attia, et al, showed that by using a deep neural network 223 

(DNN) artificial intelligence (AI) technique, a patient’s chronological age could be predicted, 224 

and that if the difference between the predicted and actual age was small, prognosis was good 225 

8. When Heart Age by Attia et al’s technique was older than the chronological age, the risk of 226 

future death was increased7. This corresponds well to the findings in our study that ECG 227 

Heart Age increased with increasing burden of cardiovascular risk. However, the prognostic 228 

value of the ECG Heart Age presented in the current study requires additional validation. 229 

Furthermore, another AI method similar to that of Attia et al reported similarly encouraging 230 

results10. However, although the results of such AI studies are promising, DNN-based AI 231 

techniques are inherently problematic in several respects, especially in relation to their lack of 232 

transparency and explainability, i.e., the ‘black box’ of AI18,19.Without the ability to know the 233 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.08.21267378doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.08.21267378


exact features of the 12-lead ECG that are most important in a given DNN model’s output, 234 

both interpretability and ethical accountability are compromised45. Moreover, it is effectively 235 

impossible for a clinician to identify, when critically evaluating the diagnostic output of a 236 

DNN-based AI model, the possible contribution to the result from methodological artifact or 237 

bias merely related to noise or to differing technical specifications between different ECG 238 

machines46. Alternatively, it is not possible to know if unanticipated results are possibly just 239 

related to excess dependency on the particular characteristics of a given DNN AI model’s 240 

training set47. In addition, a major flaw in both DNN-based AI models is that the age 241 

predictions were made using datasets including individuals with both cardiovascular risk 242 

factors and established disease8,10. For ECG Heart Age to be used as a marker of 243 

cardiovascular risk, it is imperative that ECG Heart Age agrees with chronological age in 244 

healthy populations, since it is the deviations from the line of identity in this relationship that 245 

form the basis of the assumed risk increase8.  246 

Hence, we believe that the pursuit of an ECG Heart Age developed from heart-healthy 247 

subjects of varying ages, but without a black-box DNN or related AI methodology is valuable, 248 

and that the present results provide sufficient confirmation of accuracy to encourage further 249 

development. In addition, models in which the assessments were based on age predictions in 250 

healthy subjects will likely outperform models that were not. And finally, the use of more 251 

transparent regression models will also increase the ability of clinicians to better understand 252 

the origin of any unexpected result, and to thereafter relay it to the patient with a more 253 

convincing sense of trust and ethical accountability45. 254 

 255 

Limitations 256 

Using the same dataset for training and validation, our results can only be considered as 257 

proof-of-concept. Although the difference between ECG Heart Age and the subjects’ 258 
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chronological age increased with increasing cardiovascular risk and/or disease, the prognostic 259 

value is unknown. Also, although ECG Heart Age was highly accurate, the precision cannot 260 

be reliably defined in this study. These aspects therefore need to be addressed in future 261 

studies. 262 

 263 

Conclusion 264 

We show that ECG Heart Age can be accurately, transparently, and explainably estimated 265 

from a standard 10-s, resting 12-lead ECG utilizing multiple, discrete conventional and 266 

advanced ECG measures. The difference between ECG Heart Age and subjects’ 267 

chronological age increases with increasing cardiovascular risk and disease. The prognostic 268 

value of our transparent and explainable 10-second ECG Heart Age requires prospective 269 

evaluation in future studies. 270 

 271 
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Table 1. Baseline characteristics 
 

All 
(n=2,771) 

Healthy 
(n=1,682) 

Subjects at 
CV risk 
(n=305) 

Patients with 
CV disease 

(n=784) 
p 

Age, years 46.2 (16.0) 38.6 13.0) 54.8 (11.2) 59.0 (13.2) <0.001 

Male sex, n (%) 1645 (59.4) 999 (59.4) 163 (53.4) 483 (61.6) 0.048 

5-minute ECG 
Heart Age, years 

51.1 (21.7) 38.3 14.1) 61.9 (13.2) 74.2 (15.6) <0.001 

CAD, n (%) 421 (15.2) - - 421 (53.7) - 

ICM, n (%) 120 (4.3) - - 120 (15.3) - 

HCM, n (%) 92 (3.3) - - 92 (11.7) - 

LVH, n (%) 96 (3.5) - - 96 (12.2) - 

NICM, n (%) 53 (1.9) - - 53 (6.8) - 

Age and 5-minute ECG Heart Age are presented as mean (standard deviation).  
Abbreviations: CAD: coronary artery disease; ICM: ischemic cardiomyopathy; HCM: 
hypertrophic cardiomyopathy; LVH: left ventricular hypertrophy; NICM: non-ischemic 
cardiomyopathy 
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Table 2. Measures included in the 10-second ECG Heart Age (male patients) 

Measure Estimate Standard 
error 

t ratio 

(Intercept) -60.575 2.353 -25.73 

Age, years 0.820 0.007 113.73 

P-wave duration, ms 0.288 0.007 39.99 

Spatial QT interval, ms 0.081 0.004 22.86 

Heart rate, min-1 0.242 0.012 20.02 

QRS max amplitude in VCG lead Y, µV -0.007 0.000 -18.20 

Frontal plane QRS axis, radians -5.834 0.395 -14.75 

T-wave complexity, Ln ∑(EV3:8) / (EV1–EV2), 
unitless 

2.152 0.164 13.12 

Spatial ventricular gradient minus Spatial mean QRS, 
mV*s 

-55.841 4.464 -12.51 

Male sex (value=1) 1.996 0.215 9.27 

QRS RMS in VCG vector magnitude lead, mV 10.315 1.612 6.40 

QRS average spatial velocity in VCG vector 
magnitude lead, mV/s 

0.106 0.017 6.30 

Portion of QRS loop in posterior superior quadrant of 
left sagittal plane by VCG, % 

0.033 0.009 3.55 

Abbreviations: Ln: Natural logarithm; EV: Eigenvalues; VCG: vectocardiographic; RMS: root mean square  
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Table 3. Measures included in the 10-second ECG Heart Age (female patients) 

Measure Estimate Standard 
error 

t ratio 

(Intercept) -70.477 2.662 -26.47 

Age, years 0.850 0.008 104.26 

P-wave duration, ms 0.331 0.008 40.73 

Spatial QT interval, ms 0.095 0.004 23.58 

Heart rate, min-1 0.281 0.014 20.57 

QRS max amplitude in VCG lead Y, µV -0.009 0.000 -18.54 

Frontal plane QRS axis, radians -6.354 0.447 -14.21 

Spatial ventricular gradient minus Spatial mean QRS, 
mV*s 

-67.642 5.049 -13.40 

T-wave complexity, Ln ∑(EV3:8) / (EV1–EV2), 
unitless 

2.359 0.185 12.72 

QRS RMS in VCG vector magnitude lead,mV 11.701 1.822 6.42 

QRS average spatial velocity in VCG vector magnitude 
lead, mV/s 

0.116 0.019 6.10 

Portion of QRS loop in posterior superior quadrant of 
left sagittal plane by VCG, % 

0.034 0.010 3.22 

Abbreviations: Ln: Natural logarithm; EV: Eigenvalues; VCG: vectocardiographic; RMS: root mean square 
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Figure 1. Left panel: Scatter plot showing the relation between the 10-second ECG Heart Age 439 

and the 5-minute ECG Heart Age in all participants. The R2 value was 0.94 (p<0.001). Right 440 

panel: Bland-Altman plot showing the difference between the 10-second and 5-minute ECG 441 

Heart Age in relation to the mean of both ECG Heart Ages. The agreement between methods 442 

is strong, with minimal deviation from the identity line (dashed) or bias (0.0±5.2 years). 443 

 444 

Figure 2. 445 

Panel A: The difference between the 10-second ECG Heart Age and chronological age in 446 

healthy subjects (left, dark green), subjects at cardiovascular (CV) risk (middle, light blue), 447 

and patients with CV disease (right, yellow).On average, there is no difference between ECG 448 

Heart Age and chronological age in healthy subjects. ECG Heart Age is higher in subjects at 449 

CV risk, and highest for those with overt CV disease. 450 

Panel B: Scatter plots showing the relationship between the 10-second ECG Heart Age and 451 

chronological age in healthy subjects (left, dark green), subjects at CV risk (middle, light 452 

blue), and patients with CV disease (right, yellow). The dashed diagonal line is the identity 453 

line, i.e. indicating no difference between ECG Heart Age and chronological age. 454 

 455 

Figure 3. Example of the transparency and explainability of the ECG Heart Age from two 456 

subjects with equal chronological age but different ECG Heart Ages, illustrated by a 457 

commensurately aged female heart, but a disproportionately aged male heart. The ECG 458 

measures for each of the two patients are shown in the table in the middle of the figure, 459 

presented in the order of the relative strength (strongest first, based on t ratio [not shown]) of 460 

contribution to the ECG Heart Age. Notably, P-wave duration is markedly different between 461 

these two patients, and heart rate is higher for the male than the female, helping drive the 462 

ECG Heart Age higher in the male. The R-wave amplitude in lead Y is also much larger in the 463 
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female, and the difference between the spatial ventricular gradient and the spatial mean QRS 464 

in the female is also larger, likely due to preserved T-wave amplitudes, contributing to her 465 

relatively younger ECG Heart Age. Furthermore, likely due to ischemic myocardial injuries, 466 

T-wave complexity is increased in the male, suggesting thatincreased myocardial 467 

repolarization heterogeneity also contributes to driving ECG Heart Age higher in the male, in 468 

spite of his shorter QT interval. 469 
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