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Abstract—Objective: Fontan surgical planning involves
designing grafts to perform optimized hemodynamic performance
for the patient’s long-term health benefit. The uncertainty of
post-operative boundary conditions (BC) and graft anastomisis
displacements may significantly affect the optimized graft designs
and lead to undesired outcomes, especially for hepatic flow
distribution (HFD). We aim to develop a computation framework
to automatically optimize patient-specific Fontan grafts with
the maximized possibility of keeping the post-operative results
within clinical acceptable thresholds.

Methods: The uncertainties of BC and anastomosis
displacements were modeled by using Gaussian distributions
according to prior research studies. By parameterizing the
Fontan grafts, we built surrogate models of hemodynamic
parameters by taking the design parameters and BC as inputs.
A two-phased reliability-based robust optimization (RBRO)
strategy was developed by combining deterministic optimization
(DO) and optimization under uncertainty (OUU) to reduce the
computation cost.

Results: We evaluated the performance of the RBRO
framework by comparing it with the DO method on four
Fontan patient cases. The results showed that the surgical
plans computed from the proposed method yield up to 79.2%
improvement on the reliability of HFD than those from the
DO method (p < 0.0001). The mean values of iPL and %WSS
satisfied the clinically acceptable thresholds.

Conclusion: This study demonstrated the effectiveness of
our RBRO framework to address uncertainties of BC and
anastomosis displacements for Fontan surgical planning.

Significance: The technique developed in this paper
demonstrates a significant improvement in the reliability of
predicted post-operative outcomes for Fontan surgical planning.
This planning technique is immediately applicable as a building
block to enable technology for optimal long-term outcomes for
pediatric Fontan patients and can also be used to other pediatric
and adult cardiac surgeries.

Index Terms—Fontan surgery, patient specific vascular graft,
design optimization, optimization under uncertainty.
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I. INTRODUCTION

Fontan surgery is the hallmark operation in the surgical
management of single ventricle congenital heart disease
patients. In order to establish passive pulmonary blood flow,
the surgery involves directing systemic venous blood flow
into the pulmonary artery via vascular grafts bypassing the
heart [1], [2]. The shape and implantation of Fontan grafts,
as shown in Fig. 1A, affect indexed power loss (iPL), hepatic
flow distribution (HFD), and wall shear stress (WSS), which
correlate to post-surgical complications including decreased
exercise capacity [3], pulmonary arteriovenous malformations
(PAVM) [4], and thrombosis risk [5], respectively. Tissue-
engineered vascular grafts (TEVG) made by three-dimensional
(3D) printing and electrospinning nanofibers [6] open the
door to enabling personalized vascular grafts that provide
optimized hemodynamic performance to reduce the patient’s
complications for long-term health benefits. Surgical planning
of patient-specific hemodynamically optimized vascular grafts
have not yet translated into broad clinical acceptance. In
one aspect, the surgical planning processes are primarily
operated by engineering teams, and surgical planning has thus
been relegated to retrospective post-hoc analysis in a limited
number of research centers. The current manual iterative
design processes between engineering and clinical teams to
optimize patient-specific grafts take a few weeks for the
clinical workflow [7], [8]. In another aspect, the accuracy and
reliability of predicting post-surgical outcomes require further
improvements [9].

Research efforts have been made to reduce the turnaround
time, minimize engineering effort, and improve the
hemodynamic performance of the vascular graft surgical
planning procedure. Interactive vascular graft modeling
tools [10], [11] were developed to substitute general-purpose
computer-aided design (CAD) software for speeding up
the modeling process of alternative surgical plans. Various
computation strategies of Fontan hemodynamics were
investigated for improving the computation efficiency while
preserving the hemodynamic prediction accuracy [12].
Automatic segmentation methods were developed by taking
computed tomography (CT) or magnetic resonance images
(MRI) [13] as input to construct 3D cardiovascular structure
for reducing manual effort on the image segmentation task.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.07.21267426doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.12.07.21267426
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUBMITTED TO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, UNDER REVIEW 2

(B) Pre-operative BC

Planned 
anastomosis 

location
Actual 

anastomosis
location

SVC

IVC

LPA

RPA

(A) Fontan graft planning

Optimized graft

Possible Fontan 
pathways

(C) Post-operative BC

Fig. 1. Illustration of Fontan surgical planning and graft implantation under uncertainty. (A) 3D reconstructed patient-specific Fontan model with various
possible pathways. Deoxygenated blood flow were directed from the superior vena cava (SVC) and the inferior vena cava (IVC) to the lungs via the left
pulmonary artery (LPA) and the right pulmonary artery (RPA). (B) Pre-operative BC, including blood flow rates QSVC, QIVC, and pulmonary artery flow split
FLPA were used for setting up the hemodynamic computation. HFDLPA represents the hepatic flow distribution (HFD), which is the percentage of IVC flow
to the LPA for the optimized graft at the planned anastomosis location. The blue graft shows the actual ananstomosis location. (C) HFDLPA +� represents
the change of HFD due to the uncertainties of the post-operative BC (Q0

SVC, Q
0
IVC, F

0
LPA) and the anastomosis displacement.

Instead of manually exploring surgical plans and running
post-hoc analysis, automatic Fontan graft optimization
techniques were initially developed for idealized models [14],
and more recently developed for patient-specific models [15]
by parameterizing the graft geometry, building surrogate
functions based on the graft parameters to represent high-
fidelity Fontan hemodynamics, and searching for the set of
graft parameters that can optimize the objective surrogate
function. Our prior work [15] has demonstrated that the
hemodynamic performance of automatically optimized
patient-specific Fontan grafts can match or exceed that of
manually optimized grafts, and have a significant reduction
of turnaround time (15 hours versus over two weeks).
However, current Fontan surgical planning strategies rely on
the assumption that the post-operative boundary conditions
(BC) are identical to the pre-operative BC, as shown in
Fig. 1B. Prior research study [16] has demonstrated that the
uncertainty of post-operative BC has a significant impact on
HFD of an optimized Fontan graft, as illustrated in Fig. 1C.
In addition, even though surgeons can try their best to suture
a graft according to the optimized surgical plan, anastomosis
displacements are unavoidable, which may also significantly
affect HFD.

The objective of this work is to develop a reliable automatic
Fontan surgical planning and TEVG shape optimization
method, which can tolerate the uncertainties of BC and
anastomosis displacements and maximize the possibility of
having the hemodynamic parameters of an TEVG implantation
within clinically acceptable ranges. Optimization strategies
based on the concepts of robustness and reliability have
been widely applied in designing engineering systems
under uncertainties [17]. Robust optimization (RO) provides
solutions presenting less sensitivity to the variability of the
design variables [18]. Reliability-based optimization (RBO)
computes solutions less prone to failure under the variability
constraints of the design parameters [19]. In both approaches,
uncertainty quantification (UQ) of the engineering system
is performed by sampling-based methods [20], expansion-

based methods [21], or most probable point (MPP)-based
methods [22]. To reduce the computation cost of UQ process,
surrogate modeling methods have been used to substitute
high-fidelity simulations [23]. In cardiovascular engineering,
the impacts of uncertainties of BC and vessel geometries
were investigated for coronary blood flow simulations [24].
To improve the probabilistic distribution modeling of BC,
coefficients in parameterized BC models were determined by
using clinical data [25]. Different sampling-based strategies
were investigated to reduce the computation cost for
uncertainty quantification of cardiovascular systems [26], [27].
Despite the advances in UQ for cardiovascular simulation
and deterministic optimization (DO) for surgery planning,
there is a need of developing a patient-specific cardiovascular
graft design that considers various sources of uncertainty and
automatically computes optimal surgical plans for surgeons to
balance hemodynamic performance, robustness and reliability.

In this work, we develop a reliability-based robust
optimization (RBRO) framework for patient-specific
Fontan surgical planning by leveraging the deterministic
TEVG optimization framework developed in our previous
work [15]. We introduce uncertain flow split of the left and
right pulmonary arteries (LPA, RPA), uncertain flow rate
measurements at the inferior vena cava (IVC) and superior
vena cava (SVC), and uncertain anastomosis location and
orientation of Fontan conduit on the pulmonary artery (PA).
We perform constrained optimization to find an optimal set of
conduit design parameters that can maximize the probability
of keeping HFD within the clinically acceptable thresholds
while constraining the mean response values of iPL, WSS
within their thresholds.

The main contributions of this work include:
1) We develop the RBRO computation framework of

patient-specific Fontan graft planning and optimization under
uncertainty for the first time, which moves one step forward
towards providing surgeons a reliable tool for pre-operative
Fontan surgical planning.

2) We study the effect of warm-starting in the RBRO
framework to improve the computation efficiency while
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preserving the performance of optimal solutions by feeding
initial guesses of design parameters, which were computed
from the DO solutions.

3) We demonstrate the effectiveness of the RBRO
computation framework for Fontan surgical planning on four
patient-specific models (n=4) by comparing the performance
of Fontan conduits computed from the RBRO method with the
performance of conduits obtained from the DO method.

4) We investigate how the RBRO framework works for
Fontan patients with highly unbalanced PA flow splits to
compute reliable surgical plans. We found that the framework
tends to work better for pediatric patients than adult patients.

5) We study how different objective functions in DO affects
the warm-start graft designs, and subsequently affects the
RBRO results. The objective functions used in DO aim to
compute graft designs with balanced HFD or minimized iPL.

II. PROBLEM FORMULATION

A. Research Objective
Given the patient-specific Fontan models, optimization

thresholds of hemodynamic parameters, and uncertainty
models of BC and anastomosis displacements, our research
objective is to automatically design Fontan grafts that
maximize the possibility of having all hemodynamic
parameters within the clinically acceptable thresholds, which
are presented in below.

B. Hemodynamic Parameters and Optimization Thresholds
The hemodynamic performance of the Fontan pathway is

defined by three parameters: 1) HFD; 2) iPL across the Fontan
pathway; 3) the percentage of Fontan surface area with non-
physiologic wall shear stress, %WSS.

1) Hepatic flow distribution HFD: We use HFDLPA to
define HFD. HFDLPA represents the ratio of blood flow from
the IVC to the LPA and the total IVC flow.

2) Indexed power loss iPL: iPL is a dimensionless resistive
index that correlates with exercise capacity [3]. It is calculated
based on the patient’s body surface area (BSA) and the
absolute power loss (PL) between the total hemodynamic
energy at the inlets (IVC, SVC) and the total hemodynamic
energy at the outlets (LPA, RPA):
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where QI and QO are flow rates at the inlets and outlets
respectively, p̄ is static pressure, ⇢ is the blood density, ū is
flow velocity.

3) Percentage of non-physiologic wall shear stress %WSS:
Oversized Fontan conduits can lead to low WSS that correlates
with neoinitimal hyperplasia and thrombosis [28]. To prevent
conduit oversizing, %WSS was introduced to measure the
percentage of low WSS area on the luminal surface of Fontan
conduits [8]:

%WSS =
ArealowWSS

AreaConduit
(2)
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Fig. 2. Three-dimensional representation and hemodynamic results of original
Fontans. A cohort of Fontan patients (n=4) were retrospectively collected and
digitally processed into 3D models for CFD simulation. The cohort consisted
of 2 extracardiac-type Fontans (F1, F2), and 2 lateral tunnel-type Fontans
(F3, F4). The original Fontan conduits were removed from the model for the
surgical planning task. The highlighted hemodynamic parameters in red color
were considered outside the thresholds.

4) Thresholds for Fontan Graft Optimization:
• HFDbalanced: 40% < HFDLPA < 60%. The ideal HFD

with 50% IVC flow to LPA is not always feasible. Based
on Haggerty et al.’s computational fluid dynamics (CFD)
study of hemodynamic parameters in 100 Fontan patients
[29], the mean LPA split is 44% with interquartile range
31% to 57%. We aimed to have an acceptable HFD range
to match this cohort as 40% ⇠ 60%. In the following text,
we use HFDbalanced to represent 40% < HFDLPA < 60%.

• iPL < 0.03. Based on [29], the mean iPL was 0.037, and
the median iPL was 0.031. We set the iPL threshold at
0.03.

• %WSS < 10%. The normal physiologic range of WSS
for venous flow is 1 ⇠ 10 dynes/cm2 (0.1 ⇠ 1Pa) [30].
ArealowWSS in (2) represents the surface areas with WSS
below 1 dynes/cm2.

C. 3D Fontan Modeling and CFD Simulation
This study was approved by the Institutional Review Boards

(IRBs) of all institutions with the IRB Protocol Number
Pro00013357. Cardiovascular magnetic resonance imaging
(CMR) datasets from four patients who had undergone
Fontan operation were anonymized and exported. By using
angiography data with late-phase, non-gated, breath-held
acquisition with pixel size 1.4⇥1.4 mm, 3D anatomic replicas
of the Fontan and proximal thoracic vasculature were created,
as illustrated in Fig. 2. Phase contrast images were used to
extract flow curves for the inlet and outlet BC for each patient.

CFD simulation methodology is as detailed in our prior
study [15]. We employed the open source CFD software
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OpenFOAM [31] to compute the Fontan hemodynamics.
Time-averaged IVC and SVC flow rates QIVC, QSVC were
derived from the extracted flow curves and prescribed at the
inlets. Time-averaged LPA and RPA flow rates were calculated
by using the PA flow split F LPA = QLPA/QTotal with total
venous flow

QTotal = QIVC +QSVC (3)

and prescribed at the outlets, as shown in Fig. 1B. Each
patient’s BC are listed in the supplementary material. Massless
infinitesimal particles were released at IVC to trace the hepatic
blood flow. The HFD can be represented by the ratio of particle
numbers that arrive at LPA (NLPA) and RPA (NRPA):

HFDLPA =
NLPA

NLPA + NRPA
. (4)

iPL and %WSS were calculated based on (1), (2), and the
solved computation domain. The parameters highlighted in red
color in Fig. 2 were considered beyond the threshold.

D. Uncertainty Modeling
For surgical planning, the original Fontan conduits shown

in Fig. 2 were removed from the models to create a superior
cavopulmonary connection (SCPC) model. The studies in [9],
[32] demonstrate that the change in post-operative BC
significantly affects the hemodynamic results, especially for
HFD. Approximate ±20% differences between pre- and post-
operative BC were demonstrated in a short-term study [9]. In
a long-term study [32], the changes in BC were much larger
due to the patient’s growth. In this study, we only focus on the
uncertainty of post-operative BC in the short term. We assume
the post-operative BC follow the Gaussian distribution with the
pre-operative BC values as mean and the standard deviation
3�BC = 20%. The cardiac output QTotal is constant.

Based on the pre-operative BC and the uncertainty model,
the post-operative BC are

F 0
LPA =

Q0
LPA

QTotal
, (5)

Q0
LPA ⇠ N (QLPA,�BC), (6)

Q0
RPA = QTotal �Q0

LPA, (7)
Q0

IVC ⇠ N (QIVC,�BC), (8)
Q0

SVC = QTotal �Q0
IVC (9)

In addition to the BC uncertainty, anastomosis
displacements of Fontan conduits also degrade the
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Fig. 3. Simplified Fontan models to illustrate the translational and rotational
anastomosis displacements. (A) �d represents the uncertainty of translational
displacement. (B) �� represents the uncertainty of rotational displacement.

hemodynamic performance of an optimized Fontan pathway.
Fig. 3A and Fig. 3B illustrate two types of displacements,
i.e., translational displacement �d and rotational displacement
��, respectively. The grafts in gray color represent the
prescribed surgical plan, while the blue ones demonstrate
the actual surgical implantation. The graft implementation
accuracy relies on the surgeon’s skill and assistive tools, such
as paper rulers. Clinical data about surgical implantation
accuracy are currently unavailable. Based on the suggestion
from our medical co-authors, we assume that the maximum
translational displacement is �max

d =5mm and the maximum
rotational displacement is �max

� = 10�. We use Gaussian
distribution to model the anastomosis uncertainty:

�d ⇠ N (0,�2
d), (10)

�� ⇠ N (0,�2
�), (11)

where 3�d = �max
d and 3�� = �max

� .

III. RELIABILITY-BASED ROBUST OPTIMIZATION
FRAMEWORK

A. Overview of Computation Framework
The RBRO framework consists of four main components,

as shown in Fig. 4: (A) framework input; (B) Fontan
pathway parameterization; (C) surrogate model generation for
hemodynamic parameters; and (D) optimization of Fontan
pathways. 3D patient-specific models were pre-processed to
remove the existing Fontan pathways for new graft planning.
The pre-operative BC include the percentage of outflow
to the LPA F LPA, inlet flow rates QIVC and QSVC, and
the estimated post-operative BC F 0

LPA, Q
0
IVC, Q

0
SVC, Q

0
LPA and

Q0
RPA. The Fontan pathway parameterization defines the

design space of grafts to explore various surgical plans.
Computing the hemodynamic parameters directly from high-
fidelity simulations is computationally expensive, which makes
the optimization process formidable. Surrogate models of
high-fidelity hemodynamic simulation significantly reduce the
computation time while preserving the prediction accuracy.
By taking the graft design space, surrogate models and the
uncertainty models as the inputs, we developed a two-step
optimization strategy, including a DO step and an OUU step,
to explore the reliability and robustness of the Fontan graft
designs.

B. Fontan Conduit Parameterization
We created a 10-dimensional design space to parameterize

a patient-specific Fontan conduit in our prior study [15]
as shown in Fig. 4B. The design parameters x =
{a, b,↵,�,�L,D12, D45, v1, v2, ✓} 2 Dx are highlighted
in the red boxes. a and b define the size of the conduit
on the side of the superior cavopulmonary connection
(SCPC). ↵ and � define the conduit’s anastomosis
angle. �L represents the anastomosis location on the
PA. The conduit pathway is defined by a fourth-order
Bézier curve, whose shape is controlled by spatial points
P1(�L),P2(�L,↵,�, D12),P3(v1, v2, ✓),P4(D45),P5. The
conduit 3D reconstruction is detailed in [15].
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Fig. 4. Schematic of the RBRO computation framework. (A) The inputs of the framework include 3D Fontan models, the pre-operative BC, and the uncertainty
models of BC. (B) Fontan pathway parameterization creates the design space x for automatically exploring the conduit geometry, anastomosis location and
orientation. The uncertainty models of anastomosis can also be considered as the inputs of the framework. (C) The surrogate model generation involves
sampling in the design space and the space of uncertain parameters, computing the hemodynamic results, and applying Gaussian process regression to learn
the hemodynamic responses of different inputs. (D) The RBRO optimization process includes two optimizers. The optimizer 1 performs DO to generate warm
starts for the optimizer 2. The optimizer 2 performs OUU to compute the final optimal surgical plans.

Three parameters �L,↵,� in the design space are subjected
to uncertainty. According to (10) and (11), the probability
distributions for each set of sampled parameters �Ls,↵s,�s

are represented by

�L ⇠ N (�Ls,�
2
d), (12)

↵ ⇠ N (↵s,�
2
�), (13)

� ⇠ N (�s,�
2
�). (14)

C. Surrogate Model Generation
To reduce the computation cost for evaluating hemodynamic

performance and graft implantation feasibility for various
conduit designs, Gaussian process regression with radial-basis
functions (RBFs) was used to generate surrogate models for
HFD, iPL, %WSS as well as the geometrical interference
between the conduit and the heart model (InDep) and
the conduit model quality (Nv) [15]. Maximum Likelihood
Estimation (MLE) is used to find the optimal values of the
hyper-parameters of RBFs governing the trend and correlation
functions. In addition to the 10 design parameters x, two
uncertainty variables of BC FLPA and QIVC are added as input
arguments of the surrogate models. By representing

x0 = [x, F LPA, QIVC], (15)

the surrogate models are formulated as

fe(x
0) = ⇣̂e + cTe (x0)C�1

e (̂fe � ⇣̂ef), (16)

where e = {iPL,HFDLPA,%WSS,Nv, InDep}, Ce is the
covariance matrix, ce(x0) is covarance vector, f̂e is the vector
of training data. f is a unity vector. ⇣̂e is the generalized least
squares estimate of the mean response [33].

Latin hypercube sampling (LHS) was employed to sample
x0. We have investigated the surrogate model accuracy based
on the 10-dimentional design space in our prior study [15].
The results indicated that 2000 training samples can provide a
good trade-off between surrogate prediction accuracy and the
data scale. Although two additional parameters are added in
this study, the cross-validation results for the surrogate models
with 12 input parameters demonstrated similar accuracy
to the results for the surrogate models with 10 design
parameters. Therefore, in this study, 2000⇠3000 samples that
require running high-fidelity hemodynamic simulations for
each sample were used to train the surrogate models for each
patient.

D. Optimization Under Uncertainty
We aim to compute Fontan conduits that can resist the

influence of the uncertainties of BC and anastomosis
displacements to satisfy the thresholds of Fontan
hemodynamics presented in Section II-B4. Because HFD is
the most sensitive Fontan hemodynamic parameter under the
presence of uncertainties, the objective of the Fontan conduit
optimization is to search for conduit design parameters that
maximize the probability of HFDbalanced.
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Fig. 5. Block diagram of the optimizer 1 and the optimizer 2. The optimizer
1 represents the DO process, which does not consider the uncertainty of BC
and anastomosis. The optimizer 2 performs uncertainty quantification (UQ)
with the uncertainty space u on each set of explored design parameters xk
to generate statistic responses of the hemodynamic parameters.

1) Optimization Strategy: To search for globally optimal
solutions under uncertainty, an intuitive optimization strategy
is to first sample a sufficient number (N = 600 [15]) of
initial guesses distributed in the design space. Starting from
each initial guess x0 as shown in Fig. 5, an optimizer then
searches in different directions and generates a new xk at
the kth iteration with the maximum iteration number K.
This UQ process generates M samples in the uncertainty
space, which when combined with the design parameters
xk, can compute the statistics of the response functions
Sr. Assuming M = 100, K = 200, the total number
of simulations is approximately N ⇥ M ⇥ K=12, 000, 000.
Our high performance computing cluster is unable to handle
that many files for each run. To improve the computation
efficiency, an alternative optimization strategy is to employ DO
to compute optimal solutions as the warm starts for OUU. An
estimated number of the total simulations is N⇥K+10⇥K⇥
M = 320, 000 which is 37.5 times more efficient than the first
strategy. Fig. 4D shows the optimization workflow. The first
optimizer solves the DO problem, and the second optimizer
solves the OUU problem with warm starts from DO.

2) Deterministic Optimization: The optimizer 1 shown in
Fig. 4D and detailed in Fig. 5 performs DO on a set of initial
conduit designs (N = 600) generated by the LHS method.

The DO problem is formulated as:

min
x2Dx

|fHFDLPA(x, F LPA, QIVC)� 0.5|

s.t. fiPL(x, F LPA, QIVC) < 0.03

f%WSS(x, F LPA, QIVC) < 10%

fInDep(x, F LPA, QIVC) < 2mm

fNv(x, F LPA, QIVC) < 2

xL < x < xU

(17)

where the objective function aims to find conduit designs
with HFDLPA = 0.5, F LPA and QIVC are with deterministic
values, the surrogate functions fHFDLPA , f%WSS, fInDep, fNv are
defined in (16), the thresholds in the constraints are defined in
Section II-B4, xL and xU are the lower and upper bounds of x.
We employed the asynchronous parallel pattern search (APPS)
method [34] to generate new search points xk, as shown in
Fig. 5, in the design space for finding the optimal solutions.

3) Optimization Under Uncertainty: The best 10 solutions
from DO are used as the warms starts for the optimization
formulated as:

min
x2Dx

� P (0.4 < fHFDLPA(x, F LPA, QIVC) < 0.6)

s.t. E(fiPL(x, F LPA, QIVC))  0.03

E(f%WSS(x, F LPA, QIVC)) < 10%

E(fInDep(x, F LPA, QIVC)) < 2mm

xL < x < xU

�L,↵,�, F LPA, QIVC : Normal distribution

(18)

We converted the maximization problem to a minimization
problem by adding a minus sign to P (0.4 < fHFDLPA < 0.6).
E(·) represents the expectation operator.

In each optimization iteration in the optimizer 2 shown in
Fig. 5, the uncertainty space

u = [�L,↵,�, F LPA, QIVC] = [u1, u2, u3, u4, u5] (19)

is sampled to evaluate the statistics at xk. We employ the
stochastic collocation method for uncertainty quantification
because of its higher efficiency and faster convergence rate
than that of sampling-based methods [21].

The stochastic collocation (SC) is represented by Lagrange
interpolation functions with known coefficients from the
sampled uncertain variables U = [u1,u2, ...,un] (n represents
the sample number) and their corresponding response vector
r. We used the Smolyak-type sparse grid method with the
grid level at 2 for generating the samples [35]. Defining ri
as the ith element in r that represents the response values at
interpolation points, the SC is formulated as

R(u) ⇠=
nX

i=1

ri(ui)Li(u), (20)

where Li(u) is the ith Lagrange polynomial:

Li(u) =
nY

k=1,k 6=i

(u1 � uk
1)(u2 � uk

2) · · · (u5 � uk
5)

(ui
1 � uk

1)(u
i
2 � uk

2) · · · (ui
5 � uk

5)
, (21)

the superscripts of u represent the sample index, and Li(uj) =
�i,j , and �i,j is the Kronecker Delta.
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Fig. 6. The probability of having balanced HFD P (HFDbalanced) of optimized graft designs by using deterministic optimization (DO) and optimization under
uncertainty (OUU) methods for each patient. The result for the patient F1 is shown in (A). The y-axis represents the probability of HFDLPA within the
thresholds. The x-axis represents DO design order ranking from the most reliable HFD to the least reliable HFD by using UQ. The 10 DO designs are the
warm starts for OUU. The circled numbers above the bars represent the original ranking of the DO designs according to the objective function of (17). The
same analysis for the patients F2, F3 and F4 are shown in (B), (C), and (D), respectively. (E) illustrates how the uncertain parameters u affect HFDLPA for
the optimized designs in the groups #1 and #10 of F4. The three rows show HFDLPA(F LPA, QIVC,x), HFDLPA(�L,↵,x), HFDLPA(�L,�,x). x represents
the graft design parameters x⇤

DO1
, x⇤

OUU1
, x⇤

DO10
, x⇤

OUU10
in the four columns, respectively.

The moments of (20) can be derived in closed form:

µR = E(R) ⇠=
nX

i=1

riE(Li(u)), (22)

�R = E(R2)� µ2
R =

nX

i=1

nX

j=1

rirjE(Li(u))E(Lj(u))� µ2
R,

(23)
To evaluate the probabilities, 105 samples were applied to
the stochastic expansion in (20). The RBRO framework was
implemented based on the Dakota software package [36].

IV. RESULTS

A. Comparison of Results from DO and OUU

We first examine the performance of Fontan conduit designs
computed from DO, and compare them with the performance
of the conduit designs from OUU to evaluate the effectiveness
of the RBRO framework. Fig. 6A-D show reliability of HFD
P (HFDbalanced) of the optimized conduit designs by using
UQ for the four patient cases. The 10 best designs from
DO as the warm starts were computed for OUU by ranking
|HFDLPA � 0.5| of each optimized conduit design. The design
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TABLE I
DESIGN PARAMETERS AND FONTAN HEMODYNAMIC RESPONSES OF OPTIMAL DESIGN. TOP-RANKED DO DESIGN, TOP-RANKED OUU DESIGN, AND THE

BEST ORIGINAL DO DESIGN FOR EACH PATIENT ARE PRESENTED.

Optimal designs Design parameters Responses
a (mm) b (mm) ↵ (rad) � (rad) �L D12 D45 v1 (mm) v2 (mm) ✓ (rad) P (HFDbalanced) E(iPL) E(%WSS) (%)

F1, top-ranked DO 12.29 10.44 1 -0.66 85.54 1 1 40.74 14.67 3.37 0.99 0.026 0.97
F1, top-ranked OUU 11.44 10.02 1 -0.66 84.50 1 0.75 40.74 14.67 3.37 1 0.023 0.98
F1, best original DO 10.23 7.77 0.45 -0.52 86.32 0.30 0.92 21.79 38.05 3.83 0.92 0.028 1.62
F2, top-ranked DO 7.35 9.57 0.76 -0.03 186.36 0.36 0.98 39.62 17.57 5.15 0.92 0.022 3.05
F2, top-ranked OUU 8.49 10 0.01 0.53 186.36 0.30 0.85 39.62 17.27 5.35 0.96 0.019 2.83
F2, best original DO 9.84 7.57 1 -0.38 166.54 1 0.25 38.82 11.60 1.02 0.86 0.017 2.63
F3, top-ranked DO 8.61 10 1 -0.06 73.11 1 0.48 37.99 35.89 4.36 1 0.014 0.91
F3, top-ranked OUU 8.61 10 1 -0.06 73.11 1 0.48 37.99 35.89 4.36 1 0.014 0.91
F3, best original DO 7.82 6.99 0.64 -0.26 58.21 0.48 0.21 44.60 29.38 4.07 0.99 0.024 0.76
F4, top-ranked DO 8.32 9.65 0.96 0.03 146.37 0.57 0.47 46.75 22.85 3.28 0.93 0.015 3.5
F4, top-ranked OUU 8.32 10.65 1 0.03 146.37 0.57 0.47 46.75 22.85 3.28 0.97 0.014 3.8
F4, best original DO 8.85 9.11 0.79 -0.93 127.01 0.1 1 8.89 21.99 0.96 0.48 0.018 5.5

F1 F2 F3 F4

DO design OUU design

Fig. 7. Illustration of the top-ranked DO and OUU designs for the 4 patients.
It is hard to tell the geometrical differences between DO and OUU designs
for F3 and F4, because the design parameters are identical for DO and OUU
in F3 (see Table I) and the graft diameter of the OUU design in F4 is slightly
larger than that of the DO design with all the other design parameters almost
the same.

orders were descendingly sorted according to P (HFDbalanced).
The original order indices of DO design are labeled on the top
of each bar group. The gray and red bars represent the results
from DO and OUU, respectively. The result demonstrates the
original rankings of DO designs are unable to guarantee their
reliability. For certain patients, such as F4, the best original
DO design has the worst reliability. The RBRO framework
can improve the reliability of DO solutions up to 56.7%, 9.3%,
6.6%, and 79.2% for the four patients, respectively.

Fig. 6E demonstrates how HFDLPA changes under the
uncertain parameters u at x⇤DO and x⇤OUU, which are the
optimized design parameters from DO and OUU, respectively.
In this example, we compared four conduit designs from the
groups #1 (top-ranked DO design) and #10 (best original DO
design) in F4. In each column of Fig. 6E, the three rows from
top to bottom represent functions of HFDLPA(F LPA, QIVC,x),
HFDLPA(�L,↵,x), and HFDLPA(�L,�,x). In the contour
map, the white color indicates HFDLPA close to or higher than
0.6, and the black color indicates HFDLPA close to or lower
than 0.4. The OUU solutions x⇤OUU exhibits significantly wider
range of HFDLPA within the thresholds than x⇤DO, especially
for the group #10, by comparing Fig. 6E-3a and Fig. 6E-
4a, Fig. 6E-3b and Fig. 6E-4b, and Fig. 6E-3c and Fig. 6E-
4c. The DO solution in the group #1 already provided high
reliability of HFD, OUU demonstrates minor improvement
on the reliability against ↵,�,�L, as shown in Fig. 6E-
1b, Fig. 6E-2b, Fig. 6E-1c, and Fig. 6E-2c. However, a
small improvement on the handling uncertainty of BC can
be observed in Fig. 6E-1a and Fig. 6E-2a.

F1

F2

F3
F4

T1

T2

Fig. 8. The feasibility of designing grafts with HFDLPA = 50% under
different patients’ blood flow conditions. The x-axis represents the percentage
of QIVC in the total systemic venous flow (QIVC+QSVC). The range 0.5⇠0.8
represents the patient spectrum from pediatric to adult. The y-axis represents
FLPA. The HFDLPA map is calculated by using (24). The locations of F1, F2,
F3, and F4 correspond with their pre-operative BC. T1 and T2 represent two
extreme cases with highly unbalanced PA flow splits.

The top-ranked conduit designs from DO and OUU as well
as the best original DO designs for the four patients are
presented in Table I. The top-ranked design parameters of
DO and OUU for each patient are close to small adjustments
in conduit size (F1, F2, F4), anastomosis angle (F2, F4),
anastomosis location (F1). The best original DO designs have
lower HFD reliability and higher iPL than the top-ranked
DO designs. Fig. 7 shows the top-ranked DO and OUU
conduit designs, which are represented in gray and red colors,
respectively. The similar design parameters lead to comparable
hemodynamic performance with 0%⇠4% improvements on
P (HFDbalanced), 0%⇠9.4% improvements on E(iPL) by using
RBRO framework.

B. OUU for Patients with Highly Unbalanced FLPA

It is not always feasible to design Fontan conduits with
HFDLPA = 0.5 if the patient has highly unbalanced PA split
F LPA. We are interested in investigating the performance of
RBRO framework for applying to these extreme cases.
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Fig. 9. Fontan graft optimization results for the patient cases T1 and T2 with
highly unbalanced pulmonary artery flow splits. Each black dot represents an
optimized graft design that was computed from DO. Each red dot represents
an optimized graft design that was computed from OUU with a DO solution
as a warm start. The dash lines indicate that specific DO designs were used
for OUU computation.

HFDLPA can be reformulated by:

HFDLPA =
F LPA(QIVC +QSVC)� SLPAQSVC

QIVC
(24)

where F LPA(QIVC +QSVC) represents the venous flow rate to
the LPA, SLPAQSVC represents the flow rate from SVC to LPA.
The best HFDLPA can be found by varying the fraction SLPA
from 0 to 1 [37].

Fig. 8 visualizes the best possible HFDLPA by giving specific
F LPA and the percentage of IVC flow in the total systemic
venous flow QIVC/(QIVC + QSVC) based on (24). We used
0.5 ⇠ 0.8 as the range of QIVC/(QIVC + QSVC) to represent
the spectrum from pediatric patients to adult patients. The
red, white, and blue regions indicate that the best HFDLPA is
higher than 0.5, equal to 0.5, and lower than 0.5, respectively.
We marked the locations of the four patient cases in Fig. 8
according to their BC. It shows that the best theoretical
HFDLPA for F1, F3, and F4 are 0.5. Although F2 is at the
boundary line with the value slightly higher than 0.5, we were
able to compute conduit designs with HFDLPA = 0.5 most
likely because of the imperfection of the Lagrangian particle
tracking algorithm for the HFD computation. To prepare the
extreme cases with highly unbalanced F LPA, we employed the
Fontan geometry of F1 and changed its original BC to the
values indicated in T1 (F LPA = 0.74, QIVC/(QIVC +QSVC) =
0.72) and T2 (F LPA = 0.2, QIVC/(QIVC + QSVC) = 0.54), as
illustrated in Fig. 8.

Fig. 9 shows DO (black dots) and OUU (red dots) results for
T1 and T2. The dash lines indicate the DO solutions that the
OUU solutions were computed from. As shown in Fig. 9A,
OUU can hardly improve the conduit designs based on the
DO solutions for T1 even though the P (HFDbalanced) values
are below 0.7. But for T2, OUU significantly improves the
reliability of the conduit designs by comparing with the DO
results. We also noticed that all the conduit designs yields
much higher power loss (exceeded the 0.03 iPL threshold) in
T2. There is minor concern about %WSS since all values are
far below the threshold 0.1.

C. OUU with Different Objective Function in DO

We formulated the optimizer 1 by optimizing HFD in the
objective function (17) for the RBRO framework. We are
interested in studying the influence of using a different DO
formulation, i.e., minimizing iPL as the objective function:

min
x2Dx

fiPL(x, F LPA, QIVC)

s.t. 0.4 < fHFDLPA(x, F LPA, QIVC) < 0.6

f%WSS(x, F LPA, QIVC) < 10%

fInDep(x, F LPA, QIVC) < 2mm

fNv(x, F LPA, QIVC) < 2

xL < x < xU

(25)

Instead of pursuing a perfectly balanced HFD in DO, (25)
minimizes iPL while constraining HFD within the threshold.

Fig. 10 demonstrates how the changing of objective function
in DO affect DO and OUU results. Fig. 10A and Fig. 10D
compare the reliability of HFD and robustness of iPL in
DO designs with min |HFDLPA � 0.5| (red bars) and min iPL
(gray bars) as the objective functions. We represent mean and
standard deviation of each data group as mean ± standard
deviation in the following text. The unpaired 2-tailed t-
tests were used to compare the results between the red and
gray groups. A p-value < .05 was considered statistically
significant. In Fig. 10A, we found except for the patient F1
(red: 0.86 ± 0.03, gray: 0.80 ± 0.03, p = 0.49), the red
groups statistically perform better than the gray groups. The
result for F4 demonstrates the most significant difference with
p = 0.00097 (red: 0.73 ± 0.02, gray group: 0.51 ± 0.01).
Although the p values of F2 and F3 groups were slightly higher
than the significance level, the means of the red groups are
higher than the those of the gray groups, and the standard
deviations of the red groups are much lower than those of the
gray groups (F2: red 0.87± 0.0008, gray 0.73± 0.04; F3: red
0.91± 0.0009, gray 0.84± 0.03). In Fig. 10D, the mean iPL
of the gray groups are significantly lower than those of the red
groups. The results in Fig. 10A and Fig. 10D generally fall in
our expectation.

The OUU performance of different DO objective functions
shown in Fig. 10B is mixed for P (HFDbalanced). No significant
difference between red and gray groups for the patients F1
(p = 0.95) and F3 (p = 0.30). The gray group in F2
significantly performs better than the red group (p = 0.0016).
In contrast, the red group significantly performs better than the
gray group in F4 (p = 0.0045). In Fig. 10E for E(iPL), the
gray groups show significantly better performance than the red
groups in F3 (p = 0.031) and F4 (p = 0.0009). No significant
differences between the red and gray groups are shown in F1
(p = 0.083) and F2 (p = 0.18). According to the results, the
OUU algorithm does not seem to have a strong preference on
the DO objective function.

To demonstrate the effectiveness of the RBRO framework,
we combined DO and OUU results of all patients to perform
a statistical analysis with 80 conduit designs in each group
(n=80). Our results indicate that the conduit designs computed
from OUU significantly outperform the designs computed
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DO with the objective function min |HFDLPA-0.5|

DO with the objective function min iPL

OUU with Optimizer1's objective as min |HFDLPA-0.5|

OUU with Optimizer1's objective as min (iPL)

p=0.49 p=0.052 p=0.059

p=0.00097

p=0.95
p=0.0016 p=0.30

p=0.0045

p<0.0001

p=0.50
p=0.0048 p < 0.0001

p < 0.0001

p =0.083
p =0.18 p =0.031

p =0.0009

(A) (B) (C)

(D) (E) (F)

p=0.021

DO with the objective function min |HFDLPA-0.5|

DO with the objective function min iPL

OUU with the objective function min |HFDLPA-0.5| in DO

OUU with the objective function min iPL in DO

OUU with the objective function min |HFDLPA-0.5| in DO

OUU with the objective function min iPL in DO

Fig. 10. Effect of changing the objective function in DO as minimizing iPL. (A) HFD reliability comparison between DO designs computed from the objective
functions min |HFDLPA � 0.5| and min iPL. (B) HFD reliability comparison between OUU designs computed from the two different objective functions in
DO. (C) HFD reliability comparison between DO and OUU designs. (D) E(iPL) comparison between DO designs computed from the two different objective
functions in DO. (E) E(iPL) comparison between OUU designs computed from the two different objective functions in DO. (F) E(iPL) comparison between
DO and OUU designs. A p < 0.05 is considered statistically significant.

from DO for P (HFDbalanced) with p < 0.0001 and E(iPL)
with p = 0.021, as shown in Fig. 10C and Fig. 10F.

D. Comparison of Manually Designed Conduit with DO and
OUU designs

We compare the reliability of a manually performed
randomized search of conduit design with the best DO and
OUU conduit designs for the patient case F2. The procedure of
manual conduit design involves creating a spectrum of conduit
models by using computer-aided design (CAD) software and
evaluating them by using CFD software. The conduit with the
best performance was selected for manually generating a new
group of conduit designs in the next iteration. Three iterations
were used to select the best conduit design [8].

To measure P (HFDbalanced), E(iPL), and E(%WSS) for
the manual conduit design, we generated a parameterized
duplicate by minimizing the geometrical difference between
the conduits, as shown in Fig. 11A. In Fig. 11B and Fig. 11C,
we compare the manually optimized conduit with DO design
and OUU design, respectively. As shown in Table II, the
manually optimized conduit exhibits lowest reliability in HFD
and highest iPL while the OUU design demonstrates 14%

(A) (B) (C)

Manual 
design

Parameterized 
duplicate

Manual 
design

DO 
design

Manual 
design

OUU 
design

Fig. 11. Illustration of Fontan grafts from manual optimization, DO and OUU.
(A) Manually optimized graft duplication by minimizing the geometrical
difference with the parameterized graft for the patient F2. (B) Comparison
between the top-ranked DO design and the manually optimized design for
F2. (C) Comparison between the top-ranked OUU design and the manually
optimized design for F2.

improvement on P (HFDbalanced). The OUU design also shows
the lowest mean iPL among the three designs.

V. DISCUSSION

Virtual surgical planning of Fontan graft implantation
involves predicting post-operative outcomes and searching
for patient-specific optimal solutions. The uncertainties
of cardiovascular system modeling and anastomosis
displacements significantly affect the HFD performance
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TABLE II
HEMODYNAMIC PERFORMANCE COMPARISON OF GRAFT DESIGNS FROM
MANUAL OPTIMIZATION, TOP-RANKED DO AND TOP-RANKED OUU FOR

F2.

Metrics Manual DO OUU
P (HFDbalanced) 0.82 0.92 0.96

E(iPL) 0.028 0.022 0.019
E(%WSS) (%) 1.4 3.1 2.8

of optimal surgical plans that were computed by DO methods
[9], [16]. To tackle this challenge, we developed a RBRO
framework by actively taking these uncertainties in the Fontan
pathway design optimization process and maximizing the
probability of keeping HFD within the thresholds for making
reliable surgical plans. The study demonstrates that the RBRO
framework can significantly improve the reliability of HFD
for the optimized Fontan conduits by comparing with the DO
framework (p < 0.0001).

In Section IV-A, we confirmed that the DO designs
of Fontan conduits were unable to reliably provide good
hemodynamic performance under the uncertainties. We also
noticed that the top-ranked DO designs by using the UQ
method demonstrated comparable performance with the top-
ranked OUU designs in the four patient cases. It is worth
noting that the re-ranking process of DO solutions is inherently
an OUU procedure, but with significantly smaller computation
cost than a full OUU process. The UQ-based re-ranking of DO
solutions could potentially be a more efficient computation
strategy for Fontan conduit designs.

The cases of T1 and T2 in Section IV-B represent Fontan
patients with highly unbalanced flow split of PA. We found that
for T1, which represent an adult patient with QIVC/(QIVC +
QSVC) = 0.72 as shown in Fig. 8, OUU provides little
improvement on the reliability of HFD even though the best
DO solution of T1 was below 0.7 due to the highly unbalanced
PA flow split. When we checked on the other adult patient case
F3, the DO and OUU solutions were close as well, as shown in
Fig. 6C. The results imply that the dominant systemic venous
flow from IVC may reduce the uncertainty of HFD and leave
OUU little room to improve the reliability of DO solutions.
In contrast, the IVC and SVC flow rates of the T2 case are
close (QIVC/(QIVC +QSVC) = 0.54). The flow competition of
IVC and SVC not only results in high power loss [38], but it
may also contribute to the low DO design reliability that can
be significantly improved by OUU.

The results in Fig. 10 demonstrate that the different
objective functions in DO, i.e., min�P (HFDbalanced) and
min iPL, were not consistently preferred by OUU in different
patient cases. It is most likely because the DO solutions only
serve as warm starts of OUU. Depending on the profile of
HFD functions related to the design parameters and uncertain
parameters, OUU final solution could be adjacent to or far
from the initial warm start for searching more reliable conduit
designs with a few hundreds iterations.

As we stated in Section II-D, this paper focuses on
investigating short-term post-operative OUU results, which
means vessel growth, cardiac output changes, increase of
QIVC/QSVC for pediatric patients were not considered. Due

to the lack of data on the uncertain parameters, we assumed
that these parameters follow Gaussian distribution according
to prior studies [39], [26]. In addition, there is currently a lack
of data in the literature characterizing the surgical implantation
accuracy. In the current clinical practice, surgeons rely on
their experience and using rulers to identify the anastomosis
location as prescribed in the virtual surgical planning. A future
research study will consider the patient growth in the OUU of
Fontan pathway for pediatric patients. The quantification of
surgical implantation accuracy is also important to demonstrate
the level of conduit implantation error in the current practice.

VI. CONCLUSION

Virtual surgical planning and optimization of Fontan
grafts could help in improving post-operative hemodynamic
performance of the patients. The uncertainties of post-
operative blood flow conditions and graft anastomosis
displacement may significantly degrade the performance
of the prescribed surgical plans that are computed from
deterministic patient-specific models. Aiming to address this
problem, we developed a RBRO framework for patient-
specific Fontan surgical planning. The RBRO framework is
capable of automatically computing the patient-specific Fontan
conduit with the maximized possibility of keeping all the
hemodynamic prameters, including HFD, iPL, and %WSS,
in the clinically acceptable range under the presence of
uncertain post-operative BC and anastomosis displacements.
We tested the proposed RBRO method on four Fontan models
that require revision. Compared to the DO conduit designs,
the conduit design computed from the proposed method
demonstrated significantly improved reliability (up to 79.2%)
of HFD, while constraining the mean iPL and %WSS below
the threshold. The effectiveness of the proposed method
encourages its application to accounting for more challenging
conditions, such as the growth of pediatric patients.
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