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Abstract 

Covid-19 is the first digitally documented pandemic in history, presenting a unique opportunity to 
learn how to best deal with similar crises in the future. In this study we have carried out a model-
based evaluation of the effectiveness of social distancing, using Austria and Slovenia as 
examples. Whereas the majority of comparable studies have postulated a negative relationship 
between the stringency of social distancing (reduction in social contacts) and the scale of the 
epidemic, our model has suggested a sinusoidal relationship, with tipping points at which the 
system changes its predominant regime from ‘less social distancing – more cumulative deaths 
and infections’ to ‘less social distancing – fewer cumulative deaths and infections’. This 
relationship was found to persist in scenarios with distinct seasonal variation in transmission and 
limited national intensive care capabilities. In such situations, relaxing social distancing during low 
transmission seasons (spring and summer) was found to relieve pressure from high transmission 
seasons (fall and winter) thus reducing the total number of infections and fatalities. Strategies that 
take into account this relationship could be particularly beneficial in situations where long-term 
containment is not feasible. 
 
1. Introduction 
 

Following the global spread of the new SARS-CoV-2 coronavirus, most governments have 
decided to impose restrictions on the population (Ebrahim et al., 2020) with the objective of 
reducing social contacts and preventing epidemic peaks with the potential to overwhelm national 
health-care systems (Anderson et al., 2020). These restrictions have involved social distancing 
by, for example, banning large gatherings, closing schools and shops, restricting international 
travel, and limiting internal mobility. Understanding whether or not the social contact reduction 
has had the desired effect is critical not only in view of the large societal and economic costs 
(Flaxman et al., 2020), but also because of the predicted negative impacts on mental health 
(Giuntella et al., 2021). 
 
Previous studies have shown that such measures have been able to restrict the growth of the 
epidemic (Flaxman et al., 2020), that mortality rates have been suppressed as a result of early 
decisions to close schools, public events and state borders (Widimsky et al., 2020), and that 
social distancing has saved lives (Greenstone & Nigam, 2020; Thunström et al., 2020). These 
studies have relied on data collected during the early stages of the pandemic, when the 
stringency and effectiveness of social distancing measures were both high. 
 
Limiting social contacts over the long term may, however, be undermined by the previously-
mentioned negative societal and economic effects associated with strictly enforced social contact 
reduction and isolation. As shown in a previous exploratory study (Neuwirth et al., 2020), if social 
distancing cannot be sustained over a sufficient length of time (i.e. from outbreak until vaccination 
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and herd immunity), a large second wave of outbreaks can negate the mitigating effects of 
previously imposed restrictions. This implies that less stringent social distancing may in some 
instances yield better results than more stringent social distancing in terms of reducing the 
number of fatalities, since less stringent social distancing can be maintained over longer periods 
of time.  
 
The same study also revealed that the magnitude of outbreaks that occur following the lifting of 
restrictions increases according to the stringency of previously applied social distancing, i.e. the 
suppression of outbreaks through social contact reduction preserves the epidemic potential. 
Explosive outbreaks following an untimely termination of stringent social distancing are likely to 
increase case fatality rates if the surge in the number of infected patients exceeds national 
medical capabilities (Rajgor et al., 2020). In such situations, less stringent social distancing 
measures may be more effective in curbing the number of fatalities, not only because they can be 
applied over longer periods of time but also because if they are lifted prematurely the resulting 
outbreaks are likely to be smaller.  
 
We investigated these hypotheses using a model-based systems analysis. The objectives of this 
research were (A) to calibrate a mathematical compartment model against one-year long 
epidemiological time series for Austria and Slovenia, (B) to simulate hypothetical no-social-
distancing scenarios in order to investigate the added value achieved by reducing social contacts, 
and (C) to simulate scenarios with less stringent social distancing (increased number of social 
contacts) during the early stages of the pandemic (spring 2020) in order to evaluate potential 
long-term benefits of such a strategy in terms of reductions in infections and fatalities. 
 
The first section below provides a detailed discussion of the method and the data. This is followed 
by a combined results and discussion section that is structured according to the above-mentioned 
research objectives. 

2. Basic model structure 
 

The Covid-19 outbreaks in Slovenia and Austria were modeled using the same compartmental 
model that was used in a previous exploratory investigation into Covid-19 and social distancing 
(Neuwirth et al., 2020). In order to address the large number of asymptomatic infections (Gao et 
al., 2020; Mizumoto et al., 2020), as well as potential increases in case fatality rates due to an 
excess demand for health facilities (Rajgor et al., 2020; Remuzzi & Remuzzi, 2020), the model 
extends the standard SIR (susceptible-infected-resistant) model and includes the following 
compartments: susceptible 𝑆(𝑡), infected - infection unknown 𝐼(𝑡), infected in isolation 𝐼𝐼(𝑡), 

resistant symptomatic 𝑅𝑆(𝑡), resistant asymptomatic 𝑅𝐴(𝑡), deaths 𝐷(𝑡), deaths caused by 
denied ICU treatment 𝐷𝐿(𝑡). 

 
To calculate the proportions of populations in each compartment we made the simplified 
assumption that the entire population 𝑁 was initially susceptible. Those susceptible become 
infected over time by  
 

d𝐼(𝑡)

d𝑡
= 𝑖𝑟c𝑢𝑖 (1) 

 
with 𝑖𝑟 being the infection rate (i.e. the proportion of contacts between infected and uninfected 
individuals that result in infections) and 𝑐𝑢𝑖 the number of contacts between infected and 

uninfected, which is calculated as 
 

𝑐𝑢𝑖 = 𝐼(𝑡)
𝑐𝑑𝑆(𝑡)

𝑁
 (2) 

 
where 𝑐𝑑 is the number of social contacts per day.  
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Asymptomatic infected become resistant as 
 

d𝑅𝐴(𝑡)

d𝑡
= 𝐼(𝑡)

𝑎𝑓

𝑑𝑎
 (3) 

 
and symptomatic infected are isolated (isolated infected cannot infect others) on confirmation of 
the disease by 
 

d𝐼𝐼(𝑡)

d𝑡
= 𝐼(𝑡)

1−𝑎𝑓

𝑑
 (4) 

 
with 𝑎𝑓 being the fraction of the infected that are asymptomatic, 𝑑𝑎 the duration of asymptomatic 

infection, and 𝑑 the time between infection and isolation.  

 
Isolated individuals (i.e. home quarantined or hospitalized) die (Eq. 5), die due to a shortage of 
ICU capabilities (Eq. 6), or become resistant (Eq. 7). 
 

D𝐷(𝑡)

d𝑡
= 𝐼𝐼(𝑡)

𝐶𝐹𝑅

𝑑𝑠
 (5) 

 
d𝐷𝐿(𝑡)

d𝑡
=

𝐼𝐶𝑈𝑑 −𝐼𝐶𝑈𝑠

𝑑𝑠
         𝑖𝑓 𝐼𝐶𝑈𝑑 > 𝐼𝐶𝑈𝑠; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (6) 

 
d𝑅𝑆(𝑡)

d𝑡
=

𝐼𝐼 (𝑡)

𝑑𝑠
−

d𝐷(𝑡)

d𝑡
−

d𝐷𝐿(𝑡)

d𝑡
 (7) 

 
The new parameters in these equations are 𝑑𝑠: the duration of distinct symptomatic sickness, 

𝐶𝐹𝑅: the case fatality rate, 𝐼𝐶𝑈𝑑: the intensive care demand, and 𝐼𝐶𝑈𝑠: the intensive care supply. 

 
To calculate the intensive care demand, we take the critical fraction of 𝐼𝐼(𝑡) that requires 

admission to intensive care. This fraction is denoted as 𝑐𝑓. 

 
We complemented this simple model realization with Google Mobility inputs and recorded 
ultraviolet light intensities to approximate variations in the number of daily social contacts 𝑐𝑑 and 

variations in seasonal transmissibility. The effects that these inputs had on transmission 
dynamics were systematically parametrized by means of a Powell optimizer, in order to calibrate 
the model against statistical records. To test whether alternative calibrations would yield a similar 
model fit, we conducted 100,000 additional Monte Carlo simulation runs per country. A full 
description of our approach to consider seasonality and social contacts in the model can be found 
in the following sections 2.1 and 2.2. 

 
2.1 Seasonality 
 

Covid-19 seasonality is particularly evident at higher latitudes, where there is greater seasonal 
variation in environmental indicators (X. Liu et al., 2021). However, the causal explanation for 
seasonality remains unclear. For instance, seasonal variations in environmental conditions may 
change the transmissibility of the virus through the germicidal effects of radiation (Seyer & 
Sanlidag, 2020), or through changes in human social behavior, or alternatively by affecting the 
immune response and severity of Covid-19 (Kifer et al., 2021). We implemented seasonal forcing 
as a function of transmissibility and ignored the possible effects of seasonal indicators on 
immunization, severity, and mortality.  
 
The variety of environmental predictors with the potential to affect Covid-19 transmissibility 
presents another challenge to model parametrization. Investigations into Covid-19 seasonality 
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have suggested a significant relationship between ultraviolet (UV) light and rates of spread of 
Covid-19. Multivariate investigations found that UV light had the strongest correlation with Covid-
19 growth (Merow & Urban, 2020) and that UV light was the only statistically significant predictor 
(Carleton et al., 2021) of those investigated (UV light, temperature, and humidity). Similar results 
in favor of UV light have been obtained by comparing the effects of ozone with those of UV light 
(To et al., 2021).  
 
We therefore took into account the effects of UV radiation in the model by modifying the infection 
rate 𝑖𝑟 with 

 

𝑖𝑟𝑈𝑉 = 𝑖𝑟(𝑡=0) −
𝑖𝑟(𝑡=0)∙𝛥𝑈𝑉𝐼∙𝑈𝑉𝐼𝐸

100
 (8) 

 
where 𝑖𝑟(𝑡=0) is the infection rate at model initialization, 𝛥𝑈𝑉𝐼 is the change in the daily measured 

UVI (ultraviolet index) relative to the UVI at model initialization, and 𝑈𝑉𝐼𝐸 is the effect of UVI on 

the infection rate, expressed as a percentage (i.e. per unit increase in UVI, 𝑖𝑟 increases by 𝑈𝑉𝐼𝐸). 

 
The daily UVI in Equation 8 was obtained from OpenWeather API for seven Austrian provincial 
capitals and the Slovenian capital Ljubljana. The requested geographic locations correspond to 
European capitals as provided by EFRAINMAPS. The Austrian local data is arithmetically 
averaged. 
 
2.2 Social contact reduction 
 

The behavior of individuals affects the dynamics of the epidemics, and vice versa. When an 
outbreak occurs, social contacts are often constrained by governmental regulations but 
reductions in social contacts can also occur spontaneously as individuals respond to news from 
public sources about the spread of the disease (Blendon et al., 2004). This behavior change 
reduces the average number of new infections produced by each infected individual and the 
severity of the epidemic, which in turn has an effect on subsequent governmental decisions and 
public social behavior.  
 
To capture these dynamics during the Covid-19 crisis, social contact surveys have been carried 
out for countries such as Luxemburg (Latsuzbaia et al., 2020) and the US (Feehan & Mahmud, 
2021). The use of survey data in a Covid-19 model is, however, constrained by the limited 
geographic and temporal coverage of the surveys. Mobility data presents an important alternative 
proxy for social contacts (Nouvellet et al., 2021). However, uncertainty associated with mobility 
data used as a proxy arises from the possibility of decoupling between mobility volumes and the 
number of social contacts that are infectious. Precautionary measures such as wearing a mask or 
maintaining a distance even when encountering individuals, are likely confounding effects (Gatalo 
et al., 2021). Investigations into the relationship between transmission and mobility have revealed 
significant correlations during the early phase of the pandemic but also yielded evidence for a 
decoupling of transmission from mobility following the relaxation of strict control measures 
(Nouvellet et al., 2021).  
 
In view of these tradeoffs, we decided to use Google Mobility data for reasons of coverage and 
transferability. These data reflect the movement of people under six categories: “Parks”, 
“Residential”, “Grocery and Pharmacy Stores”, “Workplaces”, “Retail and Recreation”, and 
“Transit Stations”. Mobility volumes are represented as positive and negative percentage 
changes with respect to a 5-week baseline period (January 3 - February 6, 2020). The full 
technical details can be obtained from Google's Community Mobility Reports (Google, n. d.). 
 
Of the available mobility classes, “Retail and Recreation” was considered to be the most 
appropriate for use as a proxy for variations in the number of social contacts on a cross-national 
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scale. This category includes environments such as restaurants, cafes, shopping centers, theme 
parks, museums, libraries and movie theatres (Google, n. d.), which are particularly affected by 
cross-national policies of closing non-essential facilities (Redlberger-Fritz et al., 2021; Zadnik et 
al., 2020). We therefore used the “Retail and Recreation” mobility class 𝑚 to scale the initial 
number of social contacts per day 𝑐𝑑(𝑡=0) as 

 
𝑐𝑑 𝑚 = (1 − 𝑚)𝑐𝑑(𝑡=0) (9) 

 
2.3 Model parameters 
 
The basic reproduction 𝑅0 is the most fundamental parameter in our model. It represents the 

number of new infections passed on by an infected person in a completely susceptible population 
(Dietz, 1993). Seasonality, as well as social distancing in response to an outbreak, have a 
modifying effect on 𝑅0, i.e. 𝛥𝑈𝑉𝐼 ≠ 0 and/or 𝑚 < 0. The resulting modified  𝑅0 is referred to as the 

effective reproduction 𝑅, which reduces over time as the pool of susceptible individuals 
decreases as a result of new infections, i.e. 𝑅𝑡 = 𝑅0 𝑆(𝑡) 𝑁⁄ . (10) 

 
Due to insufficient evidence for a reduced infectiousness of asymptomatic carriers (McEvoy et al., 
2021), we assumed equal infectiousness for both symptomatic and asymptomatic carriers and 
modeled 𝑅0 as 

 

𝑅0 =
𝑐𝑑𝑖𝑟𝑑

1−𝑎𝑓+𝑑
𝑎𝑓
𝑑𝑎

    (11) 

 
Estimates of the SARS-CoV-2  𝑅0 vary within a broad range, from 1.4 (Shim et al., 2020) to 8.7 

(Linka et al., 2020), which can in part be explained by factors such as differences in social habits, 
culture (Huynh, 2020; Locatelli et al., 2021), and the methods used to estimate reproductive 
numbers (Najafimehr et al., 2020). While mathematical models tend to overestimate 𝑅0, the 
true 𝑅0 for SARS-CoV-2 is expected to be around 2-3 (Y. Liu et al., 2020). This assumption is 

supported by the results of recent investigations, which suggest a remarkably similar  𝑅0 in most 

European countries, with an average value of 2.2 (95% CI: 1.9-2.6) (Locatelli et al., 2021). We 
initialized our model by this number and systematically varied the parameters 𝑐𝑑(𝑡=0), 𝑈𝑉𝐼𝐸, and 

𝐼(𝑡=0) by means of a Powell optimization to fit the modeled cumulative deaths to national statistical 

records (ECDC, 2020). We then ran Monte Carlo simulations to identify possible alternative 
model fits in three-dimensional parameter space. 
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Apart from the calibration inputs, we distinguished between model inputs and derivatives thereof. 

A complete list of model parameters, together with explanations, is presented in Table 1.  

 
Table 1: Model Parameters 

Parameters Type Value(s) 

Basic reproduction 𝑅0 Derivative 2.2 (Locatelli et al., 2021) 

Infection fatality rate 𝐼𝐹𝑅 Derivative 0.36% 1 

Case fatality rate 𝐶𝐹𝑅 Model input 0.53% 2 

Initial social contacts per day 𝑐𝑑(𝑡=0)  Calibration input 8 3 

Initial infection rate 𝑖𝑟(𝑡=0) Model input 0.0328 4 

Effect of UVI on infection rate 𝑈𝑉𝐼𝐸 Calibration input 13% 5 

Time between infection and isolation 𝑑 Model input 7 days 6 

Duration of distinct symptomatic sickness  𝑑𝑠 Model input 14 days (Xu et al., 2020) 

Duration of asymptomatic infection 𝑑𝑎 Model input 14 days 

Fraction of asymptomatic among infected  𝑎𝑓 Model input 33% (Oran & Topol, 2021)  

Outbreak size 𝐼(𝑡=0) Calibration input AUT 2 SLO 2 7 

Number of ICU beds 𝐼𝐶𝑈𝑠 Model input 
AUT 2000 SLO 133 (Rhodes 
et al., 2012) 

Fraction of confirmed cases that need intensive care 𝑐𝑓  Model input 1% 8 

1 A systematic review by Meyerowitz-Katz & Merone (2020) has indicated that, on average, the IFR is 0.68%. Due to the 
significant dependence of disease severity on age (Wu et al., 2020), we relied on numbers carried out by Streeck et al. (2020) in 
a serological study conducted in Germany; a country whose population has a similar median age (45.9) to Austria (43.5) and 

Slovenia (44.1) (EUROSTAT, n. d.). 2 𝐶𝐹𝑅 =
𝐼𝐹𝑅

1−𝑎𝑓
  

3 This estimate is in line with population surveys conducted in countries such as Germany 7.95, n=1341 (Mossong et al., 2008), 

France 8, n=2033 (Béraud et al., 2015), and Luxembourg 7.1, n=1119 (Latsuzbaia et al., 2020).  
4 We inserted 𝑖𝑟(𝑡=0) = 0.0328 into Equation 11 to obtain an 𝑅0 value of 2.2.  
5 We used estimates obtained in a Canadian study by To et al. (2021), due to expected similar seasonal dependencies at similar 
geographic latitudes. A Pakistan study by Adnan et al. (2021) suggested a 𝑈𝑉𝐼𝐸 value of 18%.  
6 The selection of this parameter was motivated by a notable similarity between two observations: (a) The duration of 
presymptomatic infection (6 days) (Xu et al., 2020), and (b) the time between illness onset and reporting (7.1 days on average) 
(Jung et al., 2020).  
7 The outbreak size corresponds to the number of detected cases at the first emergence of the disease in Austria (Feb. 25th) and 

Slovenia (Mar. 5th 2020), according to ECDC (2020).  
8 In Austria, ICU admissions of known infected dropped from a maximum of 7% during the first wave of the pandemic to about 1% 
from summer 2020 onwards (AGES, n. d.). The high ICU admission rates during the first wave of the pandemic are likely to have 
been a result of the limited testing capabilities. Austrian records show that the number of tests conducted increased by a factor of 
more than 20 between April 2020 and February 2021 (ECDC, 2020). We therefore used the lower benchmark for Austria and 
Slovenia. 

 
 
3. Results and discussion 

 
The calibrated compartment model closely reproduced the trajectories of confirmed daily and 
cumulative deaths in Slovenia and Austria (see Figure 1). Results suggested a higher basic 
reproduction  𝑅0 for Slovenia than for Austria, due to a larger daily number of social contacts. The 

 𝑅0 estimates for both countries appear reasonable when compared with results from a cross-
European study by Locatelli et al. (2021), which proposed 𝑅0 = 2.21 for Western European 
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countries, and with a previously published comprehensive review by Y. Liu et al. (2020), which 
indicated that estimates of  𝑅0 in recent studies appear to have stabilized at between 2 and 3. 

 
Figure 1. Results of Powell optimization for Austria (A, B) and Slovenia (C, D), showing the calibrated model 
outputs (black) together with national statistics on Covid-19 deaths (grey). The fitted model parameters are 
𝑐𝑑(𝑡=0)=8.28, 𝑈𝑉𝐼𝐸=8.77 and 𝐼(𝑡=0)=3829 for Austria with 𝑅𝑀𝑆𝐷 = 121.44, and 𝑐𝑑(𝑡=0)=10.01, 𝑈𝑉𝐼𝐸=11.9 and 

𝐼(𝑡=0)=1379 for Slovenia with 𝑅𝑀𝑆𝐸 = 30.96. See model parameters in Table 1 for explanation of symbols. 

The basic reproduction number R0model is estimated from the model’s average effective reproduction 𝑅𝑡 
between the day of the first detected Covid-19 case and the implementation of national social distancing 
measures, i.e. between February 25th and March 15 th for Austria and between March 5 th and March 12th for 
Slovenia.  

 
Monte Carlo simulations did not yield any better solution in terms of the root mean square deviation 
(RMSD) between model outputs and recorded data. The parameters used in Monte Carlo runs with 
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the lowest RMSD converged towards those identified by the Powell optimization (see Figure 2). 

We therefore stuck with the calibration parameters obtained from the Powell optimization. 

 
Figure 2. Parameter values from 100,000 (each) Monte Carlo simulation runs: red dots for Slovenia and 
blue dots for Austria. Random parameters were generated based on a uniform distribution between a 
minimum value equal to the ′𝐹𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 − 20%′ and a maximum value equal to the 
′𝐹𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 + 20%′. Large dots represent the 100 simulation runs with lowest root mean 
square deviation (RMSD) of modeled from recorded cumulative deaths. Best model fit for Austria: 
𝑅𝑀𝑆𝐷𝑚𝑖𝑛 = 122.87 with 𝑐𝑑(𝑡=0)=8.29, 𝑈𝑉𝐼𝐸=8.80, and 𝐼(𝑡=0)=3799 and for Slovenia: 𝑅𝑀𝑆𝐷𝑚𝑖𝑛 = 31.23 with 

𝑐𝑑(𝑡=0)=10.01, 𝑈𝑉𝐼𝐸=11.89 and 𝐼(𝑡=0)=1329. See model parameters in Table 1 for explanation of symbols. 

 
A simulation using these calibration inputs showed the cumulative number of infections by April 
23rd 2021 to be 2,148,000 in Austria and 1,203,000 in Slovenia. When compared to the national 
records of confirmed cases (ECDC, 2020), our model therefore suggests that 75% of infections in 
Austria and 82% of infections in Slovenia are undocumented. An even lower ascertainment rate of 
approximately 1 identified case in 12 infections was obtained using a combined data and inference 
approach for France over a seven-week period from mid-May to the end of June 2020 (Pullano et 
al., 2021; Shaman, 2020). Other studies (Lau et al., 2021; Li et al., 2020) have estimated similarly 
high levels of undocumented infections in a variety of countries including France, Italy, Spain, 
China, and the United States. Due to the gradual extension of national testing capabilities, the 
proportion of undetected infections to date would now presumably be lower. Nevertheless, our 
results as well as those in other relevant publications suggest high prevalence and a relatively 
moderate severity of SARS-CoV-2.  
 
Other studies (Ahmed et al., 2018; Halloran et al., 2008; Kelso et al., 2009) have reported a decline 
in the effectiveness of social distancing with higher basic reproduction and prevalence. In order to 
investigate the effectiveness of social distancing in controlling the spread of Covid-19, we 
compared the fatality numbers from the data-calibrated model run against those from a simulation 
run without any social distancing. Social contacts in the no-social-distancing scenario were 
modeled using the Google Mobility baseline data as a proxy for the pre-pandemic situation (see 
section 2.2). 
 
Results showed that social distancing in Austria and Slovenia greatly mitigated the initial 
outbreaks (spring outbreaks 2020) but amplified subsequent outbreaks (winter outbreaks 
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2020/21) (see Figure 3, A and C). Although social distancing was shown to be highly effective in 

reducing fatalities during the early stages of a pandemic, these benefits tend to be lost over the 
longer term as evident from U-shaped relative fatality curves in Figure 3, B and D. These curves 

represent the ratio of the number of fatalities in scenarios with social distancing to those in 
scenarios with no social distancing (e.g. a relative fatality value of 0.6 indicates that social 
distancing reduced fatalities by 40%).  

 
Figure 3. Comparison of simulated outbreaks with and without social distancing in Austria (A, B) and 
Slovenia (C, D). A and C: simulated outbreaks with social distancing (calibrated against recorded data) and 
simulated outbreaks with no social distancing. B and D: relative fatalities, i.e. ratio of the number of fatalities 
in social distancing scenarios to those in no-social-distancing scenarios.  

 
A sensitivity analysis revealed a considerable sensitivity of relative fatality curves to variations in 𝑅0. 
The application of social distancing in high 𝑅0 scenarios resulted in multiple waves of outbreaks 

and U-shaped relative fatality curves as depicted in Figure 3, B and D (i.e. benefits are lost over 
the long term), whereas low  𝑅0 scenarios resulted in single outbreaks and L-shaped relative fatality 
curves. In other words, as anticipated by others, social distancing is effective in low  𝑅0 scenarios 

but less effective in high 𝑅0 scenarios. Given the projected 𝑅0 values for Slovenia and Austria, 

social distancing may have reduced fatalities within the study period by about 40% and 63%, 
respectively.  
 
However, because of uncertainties in the modeling, it is important not to overinterpret these figures. 
Our results should be viewed as exploratory rather than predictive. Nevertheless, we interpret the 
observed and modeled patterns as strong indicators that multiple epidemic waves have been 
caused by the application of social distancing policies under high  𝑅0 conditions. A similar 
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explanation has previously been proposed for the multiple waves of the influenza strain seen in 
Sydney, Australia, during the 1919 pandemic (Caley et al., 2008).  
 
Moreover, it is speculated that subsequent outbreaks (winter 2020/21) would have been smaller if 
social distancing during initial outbreaks (spring 2020) was less stringent (i.e. increased number of 
social contacts in spring 2020). In order to investigate this hypothesis, we simulated less stringent 
social distancing by gradually increasing recorded mobility volumes (Google Mobility data) by 1% 
increments in the model for the duration of the initial outbreaks (spring 2020) in Austria and Slovenia 
(see Figure 4, A and D). 

 
These scenarios revealed the existence of tipping points at which the system changes its dominant 
regime from ‘less social distancing – more cumulative deaths’ to ‘less social distancing – fewer 
cumulative deaths’. In order to understand this counterintuitive result, we need to consider the 
effective reproduction numbers. Effective reproduction 𝑅𝑡 is depleted over time as a function of total 

infections (see Equation 10). As a result, low 𝑅𝑡 and small outbreaks follow high 𝑅𝑡 and large 

outbreaks, and vice versa (see Figure 4, B and E). Moreover, due to seasonality, 𝑅𝑡 was lower in 

spring 2020 (small outbreaks) than in fall and winter 2020/21 (large outbreaks). 

Figure 4. Less stringent social distancing (implemented in the model through a mobility increase) during the 
initial outbreak and the corresponding effective reproduction and cumulative deaths for Austria (A, B, C) and 
Slovenia (D, E, F). A and D: Google Mobility volumes, increased in 1% increments (+0%=orange, 
+80%=pink). B and E: effective reproduction 𝑅𝑡 in less stringent (pink) and more stringent (orange) social 
distancing scenarios. C and F: cumulative deaths in less stringent (pink) and more stringent (orange) social 
distancing scenarios. 

 
This causes two independent effects that explain why, in some of the scenarios, less stringent 
social distancing is associated with a smaller cumulative number of deaths (compare Figure 4 A 
with Figure 4 C as well as Figure 4 D with Figure 4 F). The first effect (Effect 1) was that less 

stringent social distancing in spring 2020 led to a balanced allocation of infections among spring 
2020 and winter 2020/21 outbreaks (increased number of infections in spring and reduced number 
of infections in winter), relieving the pressure on national health care systems during the winter of 
2020/21 and reducing the overall infection fatality rates (IFR). The second effect (Effect 2) was that 
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less stringent social distancing in spring mitigated high potential winter outbreaks, which overall 
reduced the total number of infections. 
 

 
Figure 5. Relationship between stringency of social distancing in spring 2020 (implemented in the model 
through a mobility increase during the spring outbreaks) and cumulative deaths for Austria (A) and Slovenia 
(B).   

 
The modeled scenarios showed that these effects are strong enough to reduce the cumulative 
fatality numbers to below the fatality numbers actually recorded in Slovenia, if modeled social 
interactions were greatly increased (see Figure 5). This was mainly due to a distinctly misbalanced 

allocation of Slovenian infections, with a small spring outbreak and a much larger winter outbreak, 
which exceeded national medical capabilities. In model scenarios with less stringent social 
distancing in spring, this misbalance was corrected and both IFR and fatalities were reduced (Effect 
1). Moreover, less stringent social distancing in spring reduced the overall infection numbers in a 
large range of the simulation runs (Effect 2). A similar effect was previously anticipated in a 
modeling study by Engelbrecht & Scholes (2021), who predicted large-scale subsequent outbreaks 
due to initial containment of the disease, the presence of a large pool of susceptible individuals, 
and favorable conditions in the form of a full winter period.  
 
4. Conclusion 

 
In this study we applied methods of model-based systems analysis to investigate the effectiveness 
of social distancing measures in the mitigation of Covid-19, using Austria and Slovenia as 
examples. Our results showed that contact reduction has drastically curbed infections and fatalities 
during the early stages of the pandemic. However, these benefits tend to be lost over the long term 
due to large outbreaks at a later stage of the pandemic, i.e. fatalities in model scenarios with social 
distancing gradually approximated fatality numbers in scenarios without any social contact 
reduction. Declining effectiveness of social distancing can be explained by initial containment and 
the presence of a large pool of susceptible individuals that coincides with elevated transmissibility 
in fall and winter. A sensitivity analysis showed that an increase in the basic reproduction number 
 𝑅0 further diminishes the effectiveness of social distancing, which is highly relevant given the 

presumed gains in transmissibility of newly emerging variant strains of SARS-CoV-2 (Davies et al., 
2021). 
 
In view of these preconditions and the expected ineradicable nature of the pathogen, easing social-
distancing during low-transmission seasons in order to relieve pressure from high-transmission 
seasons was found to mitigate large winter outbreaks. This strategy is particularly effective in 
curbing the overall number of infections and fatalities where health care capabilities are likely being 
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overwhelmed by larger outbreaks, where there is distinct seasonality, and where due to high 𝑅0 

long term containment is not feasible.    
 
This effect is of course subject to the condition that reinfection is ignored by the model. A study 
carried out in the Tyrol (Austria) by Deisenhammer et al. (2021), however, showed a stable and 
persisting antibody response against SARS-CoV-2 six months after infection suggesting that 
reinfections are unlikely to be very significant.  
 
The presented analysis suggests reconsidering greedy mitigation strategies that are aimed at 
minimizing social contacts at all times and that in many cases do not produce an optimal solution. 
Total eradication and prolonged containment strategies have only proved epidemiologically 
successful in the long-term for few countries, some of which are characterized by consistently high 
solar irradiation and negligible seasonality (e.g. Singapore), or by geographic isolation (e.g. New 
Zealand). In order to further investigate the validity of our hypothesis, we plan to transfer our method 
to other geographic regions. 
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