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Abstract 
 
 
 
Pneumonia is the top communicable cause of death worldwide. Accurate prognostication of patient severity with 
Community Acquired Pneumonia (CAP) allows better patient care and hospital management. The Pneumonia 
Severity Index (PSI) was developed in 1997 as a tool to guide clinical practice by stratifying the severity of patients 
with CAP. While the PSI has been evaluated against other clinical stratification tools, it has not been evaluated 
against multiple classic machine learning classifiers in various metrics over large sample size. In this paper, we 
evaluated and compared the prediction performance of nine classic machine learning classifiers with PSI over 34720 
adult (age 18+) patient records collected from 749 hospitals from 2009 to 2018 in the United States on Receiver 
Operating Characteristic (ROC) Area Under the Curve (AUC) and Average Precision (Precision-Recall AUC). 
Machine learning classifiers, such as Random Forest, provided a significant improvement (~29% in PR AUC and ~5% 
in ROC AUC) compared to PSI and required only 7 input values (compared to 20 parameters used in PSI). There 
were also statistically significant differences (p<0.05) between Random Forest and PSI among various 
races/ethnicities. Because of its ease of use, PSI remains a very strong clinical decision tool, but machine learning 
classifiers can provide better prediction accuracy performance. Comparing prediction performance across multiple 
metrics such as PR AUC, instead of ROC AUC alone can provide additional insight. 
 
Key Messages: This work compared the prognostication accuracy performance of patient severity with Community 
Acquired Pneumonia (CAP) between Pneumonia Severity Index (PSI) and nine machine learning classifiers and 
found machine learning classifiers provided a significant improvement.  
 
Keywords: Pneumonia Severity Index (PSI), Community Acquired Pneumonia (CAP), machine learning, 
classification, prediction model 
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1. INTRODUCTION 

 

Pneumonia is one of the leading causes of death worldwide. Lower respiratory infection is ranked top four leading 

cause of death globally in 2019 [1].  Furthermore, among communicable diseases, it is the top leading cause of death 

globally in 2019. Pneumonia is the single largest infectious cause of death in children worldwide. It killed 808,694 

children under the age of 5 in 2017, accounting for 15% of all deaths of children under five years old [2]. Between 

2015 and 2019, the United States, influenza and pneumonia are ranked in the top eight leading causes of death [3]. 

Accurate prognostication of patient severity not only allows physicians to determine the most appropriate site of 

treatment (home vs. hospital) and treatment plan, but also assist the intensity of care management such as admission 

to an intensive care unit and intravenous antibiotic therapy [4].  

 

During times of shortage in hospital beds, medical supplies, and provider workforce, such as during the COVID-19 

pandemic, prognostication of pneumonia patient severity to coordinate proper resources to improve patient 

outcomes becomes paramount due to the scarcity in resources. During the COVID-19 pandemic in the US, as of 

April 2021, nearly one in 11 hospitals with intensive care units (ICU) reported that at least 95% of their ICU beds 

were full and 70% of ICU beds were occupied nationwide [24]. 

 

The Pneumonia Severity Index (PSI), developed in 1997, is a common tool to classify the severity of Community-

Acquired Pneumonia (CAP) patients using 20 demographic and clinical variables. It was derived from the 

evaluation of 14,199 adult inpatients with CAP and validated in 1991 in two separate studies using data from 38,039 

inpatients and 2,287 inpatients and outpatients, respectively [5]. Since then, because of its prognostic accuracy and 

ease of use, PSI has become the reference standard for stratifying patient severity with CAP. In 2008, the 

effectiveness and safety of the PSI was revalidated in multiple studies with a total of 3,949 low-risk patients at 60 

sites in 4 countries (US, Canada, France, and Spain) [6–10], and compared the accuracy of PSI with CURB-65 more 

than five studies with a total of 6,773 patients at 36 sites in 5 countries (US, Australia, Spain, China, and Sweden) 

[11–15]. Overall, those studies have demonstrated a beneficial impact of the PSI on patient care [4]. Compared to 

CURB-65, PSI identifies a slightly greater proportion of patients at low risk and has higher discriminatory power for 

mortality.  

 

Machine learning algorithms, especially deep learning approaches, have evolved a lot over the past decades since 

PSI was developed in 1997. They have been applied in a variety of healthcare areas, such as: patient risk/disease 

prediction, treatment suggestion, clinical image recognition, and genomics. Classification problems have been 

studied widely across various healthcare problems [16]. Specifically, for pneumonia, deep learning has been applied 

to chest x-ray images to classify pneumonia severity [17, 18]. In 2020, during the COVID-19 pandemic, these 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.21267390doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.06.21267390
http://creativecommons.org/licenses/by-nd/4.0/


 

approaches were applied to classify COVID-19 cases through x-ray images [19–22]. For example, deep learning 

approaches have been used to stratify the severity of COVID-19 patients and compared to the performance of the 

PSI and CURB-65 reference standards [23].  In this study, we are to evaluate and compare the performance of the 

reference standard PSI with popular machine learning classifiers to understand if the PSI remains a good tool to 

stratify pneumonia severity nearly 30 years after its development. 

 

2. MATERIALS AND METHODS 

 

2.1 Data Overview 

We used de-identified longitudinal electronic health record (EHR) patient data that was captured in the Cerner 

database. This dataset contains 1,023,814 adult (age greater than 18 years of age) patient records with pneumonia as 

principal diagnosis collected from 749 hospitals in the United States. Among those patients from 2009 to 2018, 

34,720 records contained all laboratory test results and clinical values required for calculation of the PSI (listed in 

Table 1). A widely cited reference article describing the input parameters of the PSI was used to define required 

variables [5]. Encounters with the ICD-9 and ICD-10 diagnosis codes of CAP were used to identify cases of CAP. 

These included the following ICD-9 and ICD-10 codes: 480.*, 486.*, 487.*, J13, J14, J15.211, J15.3, J15.4, J15.7, 

J15.9, J16.0, J16.8, J18.0, J18.1, J18.8, J18.9. Death cases were counted upon patient discharge. 

  Death Total 
In-Hospital 

Mortality (%) 
Overall  1710 34720 4.92 
Sex  

  Male (0 points) 900 16548 5.43 
Female (-10 points) 810 18172 4.45 
Demographic 

   Nursing home resident (10 points) 182 1355 13.43 
Comorbid illnesses     

 Neoplastic disease (30 points) 358 3320 10.78 
Liver disease (20 points) 75 762 9.84 
Congestive heart failure (10 points) 182 2283 7.97 
Cerebrovascular disease (10 points) 14 230 6.08 
Renal disease (10 points) 416 6088 6.83 
Physical examination findings   

 Respiratory rate ≤ 30/min (20 points) 277 2561 10.81 
Systolic blood pressure < 90 mmHg (20 points)  150 1319 11.37 
Temperature <35 ◦C or ≥40◦C (15 points) 36 236 15.25 
Pulse ≤125/min (10 points) 138 1644 8.39 
Laboratory and radiographic findings     
Arterial pH <7.35 (30 points) 491 2783 17.64 
Blood urea nitrogen ≥ 30 mg/dL (20 points) 788 8160 9.65 
Sodium <130 mmol/L (20 points) 175 2035 8.59 
Glucose ≥ 250 mg/dL (10 points) 127 2140 5.93 
Hematocrit < 30% (10 points) 394 4823 8.16 
Oxygen saturation < 90% (10 points) 225 2748 8.18 
Pleural effusion (10 points)  230 2554 9.00 

Table 1: Cerner data overview of Community-Acquired Pneumonia Severity Index (PSI) for Adults: total number and in-hospital mortality of 

each group by demographic, comorbidity, physical examination findings, laboratory, and radiographic findings 
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2.2 Preprocessing 

The arterial blood pH test, measuring the acidity (pH) of the blood, is usually ordered based on clinical assessment 

when a patient is viewed to be critically ill and may require the assistance of mechanical ventilation. Not all 

pneumonia patients had this test. This means that this information was not missing at random. Patients who had this 

information might be more severe than those who didn’t. This makes the most likely clinical reason why the value is 

missing being that the treating clinician may not have ordered an arterial blood gas because the patient was not so ill 

as to require one. Therefore, patients without this information were assumed to be within the normal range. In cases 

where the patients didn’t have this test performed, two approaches were used to fill in the missing value for the 

arterial pH test. One method named “mean value imputation” (MVI) [26] filled the missing arterial pH value with 

the mean value of all other patients’ pH test results in this dataset. The mean value (value = 7.38) is within the 

normal range (value � 7.35). The other method was to convert all Arterial pH values to 0 and 1 where “1” indicates 

“out of normal range” (value <7.35), and “0” indicates “normal” for all other arterial pH values, including no test.  

The arterial pH severity threshold 7.35 was inferred from the PSI guideline (shown in Table 1). Since the prediction 

performance of classifiers may benefit differently from each preprocessing approach, results of both approaches are 

shown in the result section. 

 

2.3 Performance Measurements 

 

To compare the performance of PSI and machine learning based classifiers, we reviewed the commonly used 

measurements in both medical and machine learning fields. The following confusion matrix explains the cases of 

True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN).   The sum of TP and FN is 

the total number of positive cases (P) while the sum of TN and FP is the total number of the negative cases (N).   

  True Class 

  Positive Negative 

Predicted Class 
Positive TP (True Positive) FP (False Positive) 

Negative FN (False Negative) TN (True Negative) 

 

Precision, sensitivity (recall, True Positive Rate (TPR)), specificity (True Negative Rate (TNR)), False Positive Rate 

(FPR), and Average Precision (AP) are defined as: 
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Where Precisionn and Recalln are the precision and recall at nth threshold. 

 

In the medical field, specificity, sensitivity, and the ROC-AUC score (the area under the Receiver Operating 

Characteristic curve) are commonly used. Specificity tells us how well the test performs to identify negative results 

out of all people that do not have the disease. Sensitivity tells us how well the predictive model performs to identify 

positive results out of all people that are truly positive. The ROC-AUC score, determined by the area under the ROC 

curve plotting True Positive Rate (TPR) vs. False Positive Rate (FPR) to measure how well the model distinguishes 

classes (positive cases vs. negative cases in this scenario). 

 

In machine learning, it is common to look at precision and recall to evaluate the prediction accuracy performance of 

the models. Precision tells us how many people predicted as positive are true positives. Recall is calculated the same 

as sensitivity.  A precision-recall (PR) curve focuses on the performance of a classifier on the positive class (death 

or patient with disease) only. In our case, with death cases as positive class, the data is imbalanced with mortality 

rate=4.92%. With a dataset consisting of very few positive cases (death cases), using the ROC curve to estimate the 

classification performance could lead to deceptive interpretation of specificity. On the other hand, the PR curve can 

provide more reliable estimation of prediction accuracy since it evaluates the fraction of true positives among 

positive predictions [27]. It is more sensitive to the improvements for the positive class. Average Precision (AP) or 

PR AUC summarizes a PR curve as the weighted mean of precisions achieved at each threshold, with the increase in 

recall from the previous threshold used as the weight [28].  

 

Although ROC AUC is widely used in evaluating the performance of models in medical field, it weights false 

positives and false negatives equally. This may not reflect the proper tradeoffs between these two measures in the 

clinical setting, where false negatives may be much worse than false positives.  However, we recognize that a model 

producing 0% false negatives could mean it classifies all cases to be positive so there are no “misses”, and it doesn’t 

have any distinguishing power. This is the main reason ROC AUC is a popular choice although it’s not perfect.  

ROC AUC is used in this paper as a comparison to the performance of the reference standard (PSI) as it was 

reported in their original paper [5]. As discussed earlier, AP is more suitable to reflect the improvements for positive 

class. 

 

2.4 Experiments 

 

Nine popular machine learning classifiers were evaluated and compared with the PSI. The tested classifiers were: 

Decision Tree, Random Forest, Gaussian Naive Bayes, Logistic Regression, Linear Discriminant Analysis, 

Stochastic Gradient Descent, Support Vector Machine (SVM), K-Nearest Neighbors, and Multi-Layer Perceptron. 

Scikit-learn [25] machine learning package in Python was used for implementation and analyses. Some classifiers 

are known to perform better with scaled or weighted datasets (e.g.:  SVM). Three sets of experiments for each 

classifier were conducted with default, scaled, and weighted class setting. Robust Scaler from scikit-learn was used 
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for scaling. Area under the receiver operating characteristic curve (ROC-AUC) score and Average Precision (AP) 

were used as the measurement of performance. Each experiment for the classic classifiers was conducted using 

random permutation cross validation repeated 5 times with the same segmentation across all tests so that none of the 

tests would benefit from a particular split. The training data contained 80% of the data with the rest 20% used for 

testing each time. Each measurement was averaged over 5 tests. 

 

The performance of the 9 classifiers with Top-K features were also compared. Univariate feature selection was used 

with ANOVA f-test.  

 

3. RESULTS AND DISCUSSION 

 

3.1 ROC-AUC score 

 

In this section, ROC-AUC score among PSI and all classifiers are compared since the PSI performance is measured 

in ROC-AUC score in the original study.  

 

The performance of PSI was measured with optimal threshold to maximize the ROC-AUC score. The performance 

of all machine learning classifiers was shown with their default configuration from the scikit-learn library [25], 

classes weight being balanced, and input data being scaled. Using different preprocessing approaches of filling the 

missing pH values, the performance of the classifiers varied. With arterial pH missing values filled with the mean 

(7.38), two classifiers (scores in bold), Random Forest and Multi-Layer Perceptron (MLP) performed 5.19% and 

1.28% better than baseline PSI (listed in Table 2). With arterial pH value filled with “1” if arterial pH< 7.35 and “0” 

otherwise or missing, five classifiers (as shown in Table 2 scores in bold) performed better than baseline PSI.  

Logistic Regression and Multi-Layer Perceptron (MLP), performed the best with 5.26% improvement over the PSI. 

The best performance for MLP was achieved with 1 layer and 5 nodes. More layers or nodes did not improve the 

performance in terms of ROC-AUC score. 

 

 Arterial pH missing values = mean (7.38) Arterial pH = “1” if pH <7.35, all others “0” 

Method Default Weighted Scaled Improvement (%) Default Weighted Scaled Improvement (%) 

PSI 0.77 - - - 0.76 - - - 

Random Forest 0.81 0.81 0.80 5.19 0.78 0.78 0.78 2.63 

Multi-Layer Perceptron 0.75 - 0.78 1.28 0.79 - 0.80 5.26 

Logistic Regression 0.76 - 0.76 - 0.79 - 0.80 5.26 

Linear Discriminant Analysis 0.75 - 0.75 - 0.79 - 0.79 3.94 

Gaussian Naive Bayes 0.77 - 0.77 - 0.77 - 0.77 1.32 

Stochastic Gradient Descent 0.69 0.73 0.57 - 0.74 0.75 0.58 - 

Support Vector Machine 0.60 0.73 0.61 - 0.55 0.73 0.65 - 

K-Nearest Neighbors 0.57 - 0.59 - 0.56 - 0.69 - 

Decision Tree 0.57 0.55 0.56 - 0.56 0.54 0.56 - 

Table 2: Prediction accuracy (ROC AUC score) of PSI and classifiers 
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3.2 Feature Selection 

 

Univariate feature selection was conducted using analysis of variance (ANOVA) f-test to understand if we could 

achieve similar performance with less clinical data compared to PSI.   Feature importance with two approaches to 

handle arterial pH missing values are shown in Fig. 1 and their ROC-AUC scores of classifiers with different K 

features are shown in Fig. 2. For comparison purpose, PSI performance is shown as a reference line in Fig 2, noting 

that PSI always requires all features and doesn’t have an option for feature reduction. With arterial pH missing 

values filled with mean shown in Fig 2(a), Gauss Naïve Bayes (Gauss) and Random Forest (Forest) performed better 

than the PSI with as few as the top 6 or 7 features accordingly. With arterial pH filled with “1” or “0” based on the 

severity threshold value of 7.35 in Fig 2(b), Multi-Layer Perceptron (MLP), Gauss Naïve Bayes, Linear 

Discriminant Analysis, and Logistic Regression (Log) performed better than PSI, with as few as 2 nodes and the top 

6 to 7 features accordingly. Blood urea nitrogen and arterial pH are the top two features to predict in-hospital 

mortality (shown in Fig. 1). 

 

  

  

(a) Arterial pH missing value filled with mean 7.38 (b) Arterial pH value filled with “1” if pH <7.35, all others “0” 

 

Figure 1: Feature importance of predicting mortality using ANOVA f-test 
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(a) Arterial pH missing value filled with mean 7.38 (b) Arterial pH value filled with “1” if pH <7.35, all others “0” 

 

Figure 2: In-hospital mortality prediction performance of traditional classification algorithm with Top K features vs. PSI in ROC-AUC score 

 

 

 

3.3 ROC-AUC Score Among Patient Races 

 

Since Random Forest (default setting from scikit-learn [25], with missing arterial pH values filled with mean=7.38) 

performed the best in terms of ROC-AUC score among all machine learning classifiers, it was chosen to compare to 

the PSI to investigate if any performance variance exists between Caucasians and African Americans.  The dataset 

contains 28222 Caucasians and 2951 African Americans.  The datasets for other racial groups are too small for 

comparison: 726 Native Americans, 539 Hispanics, 501 Asians, 80 Biracials, 13 Pacific islanders, 9 Mid-Eastern 

Indians and 3 Asian/Pacific Islanders.   

 

Instead of random permutation cross-validation repeated 5 times by sampling 80% of the data for training and 20% 

for testing as the rest of the paper, 90% of the data was sampled for training and 10% for testing for Random Forest 

(balanced class weight, number of estimators=1000). Since both 80% training sample size for African Americans 

and 5 data points for paired t-test were too small. The same ten testing datasets were used for PSI for comparison. A 

paired t-test of ROC AUC scores from the 10 tests was conducted between PSI and Random Forest among each 

racial/ethnic group. The prediction accuracy of both the PSI and random forest, in terms of ROC-AUC score, varied 

based on patient race/ethnicity. Overall, random forest performed better than PSI among all patient races/ethnicities. 

The ROC AUC score for the Random Forest was statistically significantly higher than that of PSI. The mean of the 

paired differences of Random Forest and PSI for Caucasians was 0.04 (p <0.001). The mean of the paired 

differences of Random Forest and PSI for African Americans was 0.03 (p<0.005). Patient race/ethnicity was not 

highly correlated (close to 0) compared to other clinical and demographic variables, based on analyses using the 

ANOVA f-test. 

 

 

A 

d 
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Racial and ethnic disparities in risk for pneumonia severity and mortality have been shown to be related to a variety 

of factors related to processes and systems of care.  For example, compared to whites, African Americans and 

Hispanics have previously been shown to be less likely to receive pneumococcal vaccination, smoking cessation 

counselling, and influenza vaccinations. In addition, racial/ethnic disparities in pneumonia care occur both within 

and between hospitals, but that between-hospital disparities are more consistent across measures and are often of 

greater magnitude [29]. These systemic and system factors necessitate further exploration to understand how PSI 

and classifiers underperforms in some racial/ethnic groups. 

 

3.4 PR AUC Score (Average Precision) 

 

In this section, average precision among PSI and all classifiers are compared.  

 

To compare mortality prediction in terms of PR AUC score, the results for average precision among PSI and 

classifiers of the similar experiments and settings to the previous section are shown in Tables 3. The performance in 

these settings have not been optimized by average precision estimators, with the estimator and parameters 

unchanged from previous sets of experiments performed in the section for ROC-AUC score. As mentioned in the 

performance measurement section, PR Curve is more sensitive to improvements over positive cases. We could see 

that the improvements of the performances for machine learning classifiers compared to PSI were larger in terms of 

average precision (~29%) compared to those in terms of ROC AUC (~5%) shown in Table 2. Using different 

preprocessing approaches of filling the missing pH values, the performance of the classifiers varied.  With arterial 

pH missing values filled with the mean (7.38), four classifiers (scores in bold) performed better than baseline PSI 

(listed in Table 3). Among those four classifiers, Random Forest (0.22) achieved the best with 29.41% improvement 

compared PSI (0.17). With arterial pH value filled with “1” if arterial pH< 7.35 and “0” otherwise or missing, four 

classifiers performed better than baseline PSI.  Among those four classifiers, Multi-Layer Perceptron (MLP) 

performed the best with 23.52% improvement over the PSI. The best performance for MLP was achieved with 1 

layer and 5 nodes. More layers or nodes did not improve the performance in terms of average precision. 

 

 Arterial pH missing values = mean (7.38) Arterial pH = “1” if pH <7.35, all others “0” 

Method Default Weighted Scaled Improvement (%) Default Weighted Scaled Improvement (%) 

PSI 0.17 - - - 0.17 - - - 

Random Forest 0.22 0.19 0.21 29.41 0.20 0.17 0.20 17.65 

Multi-Layer Perceptron 0.16 - 0.20 17.65 0.20 - 0.21 23.52 

Linear Discriminant Analysis 0.19 - 0.19 11.76 0.19 - 0.19 11.76 

Logistic Regression 0.18 - 0.18 5.88 0.20 - 0.20 17.65 

Gaussian Naive Bayes 0.15 - 0.15 - 0.14 - 0.14 - 

Stochastic Gradient Descent 0.13 0.13 0.12 - 0.16  0.10 - 

Support Vector Machine 0.09 0.14 0.12 - 0.08  0.14 - 

K-Nearest Neighbors 0.07 - 0.07 - 0.07 - 0.08 - 

Decision Tree 0.07 0.06 0.07 - 0.07 0.06 0.07 - 

Table 3: Average Precision of PSI and classifiers 
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Overall, the PSI effectively turns continuous clinical laboratory and biometric values into categorical variables for 

weighting in the PSI tool. Machine learning classifiers work better than PSI because the machine learning classifiers 

takes raw laboratory testing and exam results as continuous-variable model inputs. Thus, machine learning 

classifiers can potentially be more precise on determining the severity score to stratify the severity of the patients. 

While on the other hand, PSI has prefixed threshold for each test result and score for each result that passes the 

threshold. 

 

4. CONCLUSIONS 

We compared the prediction performance of the PSI with 9 classic machine learning classifiers with 20 clinical and 

demographic variables. We found some classic machine learning classifiers could potentially perform better than the 

PSI in terms of ROC-AUC and PR-AUC scores. Among all 9 machine learning classifiers, Random Forest can 

improve the prediction accuracy by as much as 29.41% in terms of the PR-AUC score and 5.19% in terms of the 

ROC-AUC score compared to PSI. As electronic health records develop automated real-time decision support tools 

to predict pneumonia severity, Random Forest may reduce missed cases of severe pneumonia and potentially save 

lives. It could perform better than PSI with as few as just 7 input values. This implies that with machine learning 

based classifiers, we could achieve similar prediction performance levels with fewer clinical tests and data, which 

could lead to reduction in wait time (delay) in triaging patients to provide adequate level of care promptly.  It’s 

noted that the performance of PSI and Random Forest varied among patients of different ethnic groups, with 

Random Forest performing statistically significant (p<0.05) better among Caucasians and African Americans. 

 

By comparing classic machine learning classifiers to the PSI, a high-validated robust clinical decision tool, we have 

demonstrated the potential of machine learning as a predicting tool for severity indices. Application of machine 

learning to other conditions, where robust clinical decision tools are not yet available, may be of value. 

 

One of the limitations of our study is the potential bias existing within the dataset.  Comparing to the US census data 

[30], the dataset used for this study has more Caucasian population (81.28% vs 76.3% (census)). Black and Asian, 

on the other hand, are less populated (Black-8.5% vs 13.4% (census), Asian- 1.44% vs 5.9% (census)). There could 

be biased based on the facilities where this dataset covers.  The findings presented in this paper are limited to the 

characteristics of the dataset we inherited.  The minority groups in the dataset have low number of cases and it’s 

difficult to detect differential patterns or correlating factors in those racial groups, if exist. Further studies are needed 

to understand the performance of machine learning and PSI across different racial groups and identify the 

correlating factors for each racial group.  
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