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SUMMARY 

Identifying individuals at high risk of heart failure during precursor stages could allow for 

earlier initiation of treatments to modify disease progression. We performed a GWAS meta-

analysis to generate a heart failure (HF) polygenic risk score (PRS) then tested the association 

with phenotypic subtypes (reduced ejection fraction [HFrEF] and preserved ejection fraction 

[HFpEF]) to evaluate the value of polygenic risk prediction. Results from the European-ancestry 

analysis showed that an ancestry-matched PRS, calculated from GBMI meta-analysis 

outperformed the previous HF GWAS (HERMES), yielding an adjusted odds ratio (aOR) of 2.27 

(95% CI: 2.05-2.51; p: 1.76x10-56) from GBMI compared to 1.30 (95% CI: 1.18-1.44; p: 1.42x10-

7) from HERMES, and 1.49 (95% CI: 1.33-1.66; p: 8.38x10-13) compared to 1.17 (95% CI: 1.05-

1.31; p: 0.004) for HFrEF and HFpEF, respectively. Next, we evaluated the performance 

differences between ancestry-matched and multi-ancestry PRS in the African American cohort. 

The GBMI multi-ancestry GWAS-based PRS had a significant aOR of 1.49 (p: 0.006). Findings 

suggest that a PRS for heart failure derived from the GBMI multi-ancestry study is useful in 

predicting HFrEF, but less powerful in predicting HFpEF in an independent cohort. The difficulty 

in predicting HFpEF could result from the GBMI HF phenotype, preferencing HFrEF over 

HFpEF, and/or greater genetic heterogeneity in the HFpEF phenotype. 

 

Keywords: Prediction, polygenic risk score, heart failure with reduced ejection fraction, 

preserved ejection fraction   
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INTRODUCTION 

More than 26 million individuals globally are living with heart failure, which is a highly 

heterogeneous and progressive syndrome, resulting in the heart’s inability to deliver adequate 

blood flow to the body at normal filling pressures1,2. Heart failure is typically classified into 

phenotypic subtypes: (i) heart failure with a reduced ejection fraction (HFrEF) and (ii) heart 

failure with a preserved ejection fraction (HFpEF), based upon the left ventricular ejection 

fraction as a key distinction3. This classification provides a useful clinical distinction when 

diagnosing and managing patients with heart failure, given evidence-based therapies unique to 

each subtype.  

Identifying individuals at a high risk of heart failure at early or precursor stages could 

allow for earlier initiation of treatments to modify disease progression3. Prior work suggests a 

genetic basis for heart failure secondary to varied etiologies, ranging from ischemic disease, 

hypertension, or cardiac arrhythmias4, but the genetics of heart failure is not fully understood. 

Utilization of large biobanks with genetic data, integrated with electronic health records, has the 

potential to identify large numbers of cases to improve statistical power, introduce greater 

genetic diversity, and balance varying etiologies.  

To expand upon our current understanding of the genetics underpinning heart failure we 

calculated a polygenic risk score (PRS) derived from a new genome-wide association study 

(GWAS) for overall heart failure from the Global Biobank Meta-analysis Initiative (GBMI)5. GBMI 

is a global collaboration among 21 biobanks across the world with diverse ancestries. Next, we 

subtyped heart failure cases using a previously validated phenotyping algorithm3 to separately 

evaluate the association between the heart failure PRS and subtypes (HFrEF and HFpEF) in a 

large electronic health record-linked biobank. Findings from this study will elucidate the potential 

need for heart failure subtype-specific GWAS studies.   
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RESULTS 

The GBMI multi-ancestry heart failure meta-analysis marks the largest diverse heart 

failure genome-wide association study to date6,7. The meta-analysis included a total of 68,408 

heart failure patients and 1,286,331 controls (5.1% cases) across six ancestral populations: 

24.7% of the samples were of non-European-ancestry. Supplementary Table 1 describes the six 

ancestral populations included in the analysis. The prevalence of heart failure in our study 

cohorts ranged from 0.36% to 22.83%, with hospital-based biobanks contributing a larger 

number of cases (e.g., Mass General Brigham: 22.83%), compared to population-based cohorts 

(e.g., UKBB: 1.79% and HUNT: 0.36%), which are more representative of heart failure rates in 

the general population (0.3% to 2.1%, Supplementary Figure 1). 

GBMI Meta-Analysis Yields 14 Potentially Novel Loci for Heart Failure 

Twenty-two independent loci reached genome-wide significance (p-value < 5x10-8) in 

the heart failure meta-analysis. Of the 22, 14 are putatively novel loci (Table 1) based on 

literature review and overlap with variants in the NHGRI-EBI GWAS Catalog8. Two of these loci, 

rs147288039 and rs373205748, were significant only in the multi-ancestry meta-analysis, likely 

due to higher allele frequency in East Asians (rs147288039: 0.23%) and South Asians 

(rs147288039: 0.75%; rs373205748: 0.08%) according to gnomAD.9 The inclusion of non-

European ancestry samples has aided the genetic discovery for heart failure, demonstrating the 

power of genetic diversity and the importance of including multi-ancestry individuals to account 

for the genetic heterogeneity across populations. 

GBMI Polygenic Risk Score  

  We next compared PRS generated from the present GBMI HF meta-analysis with the 

PRS generated from the previous HERMES GWAS (47,309 cases and 930,014 controls) to 

examine the change in PRS prediction with increasing GWAS sample size and evaluate the 

performance of genetic research utilizing large scale EHR-linked biobank5. The GBMI PRS 

outperformed the HERMES PRS, which is the largest publicly available heart failure GWAS to 
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date. We restricted our validation cohort to European American individuals only in our Michigan 

Genomics Initiative (MGI)/ Cardiovascular Health Improvement Project (CHIP) combined cohort 

to compare the model performance of ancestry-matched PRS from GBMI (GBMI-EUR) and 

HERMES (HERMES-EUR) and multi-ancestry PRS from GBMI (GBMI-ALL). Both phenotyping 

driven HFrEF and HFpEF outcomes were significantly associated with all three PRSs in EA; 

furthermore, the ancestry-matched PRS built from GBMI meta-analysis performed best (Figure 

1). To predict HFrEF, GBMI-EUR PRS yielded an adjusted odds ratio (aOR) of 2.27 (95% CI: 

2.05-2.51; p-value: 1.76x10-56) per one standard deviation of normalized PRS increased, which 

was a significantly stronger predictor (non-overlapping confidence intervals) compared to 

HERMES-EUR PRS (aOR: 1.30 [95% CI: 1.18-1.44; p-value: 1.42x10-7]). Similar results were 

obtained in HFpEF: GBMI-EUR PRS had an aOR of 1.49 (95% CI: 1.33-1.66; p-value: 8.38x10-

13), compared to the HERMES-EUR PRS with an aOR of 1.17 (95% CI: 1.05-1.31; p-value: 

0.004). 

 Second, all PRSs better predicted cases of heart failure with reduced ejection fraction 

(HFrEF) than for preserved ejection fraction (HFpEF). In Figure 1, higher aORs were observed 

for HFrEF compared to HFpEF. Notably, the PRS derived from GBMI-EUR yielded a 

significantly stronger association with HFrEF (aOR: 2.26 [95% CI: 2.05-2.51]) compared to 

HFpEF (aOR: 1.49 [95% CI: 1.33-1.66]).  

The Effect of Genetic Diversity in Genome-wide Association Studies of Heart Failure 

Given the determination that the GBMI PRS performed reasonably well in Americans 

with primarily European ancestry. We opted to further evaluate the ancestry transferability of 

PRS in the African American cohort, three separate PRS were created using the GBMI meta-

analysis from different ancestral populations (1) multi-ancestry cohort (GBMI-ALL), (2) 

European ancestry-only cohort (GBMI-EUR), and (3) African ancestry-only cohort (GBMI-AFR) 

GWAS meta-analyses. We observed that the multi-ancestry score improved the model 

performance in the AA cohort (Figure 2). The same trend of ancestry-matched PRS yielding the 
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best performance in the EA cohort was not observed in the AA cohort, possibly due to smaller 

sample size in GBMI-AFR GWAS (n=31,202) (Supplementary Figure 2; Supplementary Table 1 

& 2). The best performing PRS in the AA cohort was the multi-ancestry score, which had a 

significant aOR of 1.49 (95% CI: 1.12-1.98; p-value=0.006) in HFrEF and the highest, although 

nonsignificant aOR of 1.33 (95% CI: 0.94-1.87; p-value: 0.11) in HFpEF. Neither the ancestry-

matched score (GBMI-AFR) nor the EA-best performing score (GBMI-EUR) were significantly 

associated with heart failure outcome in AA. These findings demonstrate that the trans-ancestry 

based PRS is useful in predicting HFrEF in both EA and AA cohorts. Consistently, a less 

predictive trend using general HF PRS to predict HF subtype was observed for HFpEF in the 

African American cohort, as well.  

Pleiotropic Effect of Heart Failure Genetic Variants  

Phenome wide association study (PheWAS) in UK Biobank white British cohort revealed 

association between the heart failure PRS and other cardiovascular diseases. The result 

showed that the heart failure PRS was associated with increased risk of: hypertension 

(aOR=1.05; p=1.72x10-26), coronary atherosclerosis (aOR=1.05; p=1.33x10-9), and atrial 

fibrillation (aOR=1.04; p=6.89x10-7).  Additionally, the PheWAS demonstrated pleiotropy 

between the PRS for heart failure and increased risk of complex, systemic disease processes 

including obesity (aOR=1.04; p=5.36x10-6) and diabetes mellitus (aOR=1.03; p=7.97x10-6).  

 

DISCUSSION  

Genome-wide discovery for heart failure traits based on 68,408 cases and 1,286,331 

controls from six ancestry groups identified 22 index variants (14 novel) reaching genome-wide 

significance. A high proportion of the 22 index variants identified in our study were previously 

reported in GWAS Catalog to be associated with cardiovascular diseases. We further 

investigated the effect of genetically-predicted heart failure outcome on other diseases and 

conditions in the PheWAS, and confirmed known pleiotropic associations were confirmed with 
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other cardiovascular phenotypes, such as hypertension, atrial fibrillation, and coronary 

atherosclerosis (Figure 3). These likely occur through a combination of both biological-pleiotropy 

(the genetic underpinning influences more than one phenotype) and mediated-pleiotropy (the 

phenotype itself is causally related to a second phenotype).10 

Heart failure may result from varied etiology, including: (i) ischemic disease, (ii) valvular 

abnormalities (as can be caused by rheumatic heart disease, bicuspid aortic valve, senile 

calcific stenosis, or endocarditis), (iii) arrhythmias, and (iv) hypertension.11 Therefore, the 

pleiotropic clustering with each of these diseases likely mediating heart failure is also not 

surprising. Additionally, identified phenotypes may themselves be both precipitating and 

secondary processes, as with the pathophysiologic cycle between atrial fibrillation and heart 

failure (a complex association, explored in depth by Anter, Jessup, and Callans).12 The link 

between diabetes mellitus, obesity, and disorders of lipid metabolism with heart failure likely 

results from biological-pleiotropy and is more complex than a sample causal association.13  

Evidence from genetic epidemiology suggest genomic loci exert pleiotropic effects on multiple 

cardiovascular risk factors, including: (i) diabetes mellitus,14–16 (ii) obesity,17,18 and (iii) 

dyslipidemia.19,20  Therefore, the clustering demonstrated in our PheWAS between heart failure 

and a variety of cardiovascular diseases (and risk factors for cardiovascular diseases) is 

expected and explainable through a overlapping mechanisms. 

Next, in comparison with a PRS constructed from the previous largest heart failure 

GWAS -- HERMES -- we show that increased GWAS sample sizes generate a heart failure 

PRS that can better identify heart failure cases of both subtypes, HFrEF and HFpEF, 

highlighting the additive power of large sample sizes. The GBMI PRS outperformed HERMES at 

identifying heart failure cases of both subtypes, although we observed enhanced diagnostic 

accuracy for HFrEF compared to HFpEF within our validation dataset. This could be due to a 

combination of factors, including: (i) the GBMI heart failure phenotype capturing HFrEF over 

HFpEF, (ii) greater statistical power to test the PRS due to a larger number of cases in the 
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HFrEF cohort, and (iii) a stronger genetic association with HFrEF versus HFpEF (i.e., greater 

genetic heterogeneity in the HFpEF population). First, to test our hypothesis for phenotype 

preferencing, we sub-categorized heart failure subtypes within BioVU and BioMe (GBMI study 

cohorts) using phecode 428.3 for HFrEF and 428.4 for HFpEF. We found by using ICD code 

classification in two discovery cohort that approximately 58% of the heart failure cases were 

HFrEF patients. Similarly, we observed a higher proportion of HFrEF cases (55%) within our 

MGI/CHIP combined cohort. Second, our findings that PRS predicts HFrEF may be due to a 

large number of cases in MGI/CHIP (453 cases of HFrEF versus 369 cases of HFpEF) and 

larger sample size in the European American cohort (29,231 EA versus 1,383 AA individuals), 

leading to greater statistical power to distinguish between those with a high or low genetic risk. 

However, given the approximate similarity in case numbers with HFrEF and HFpEF in the 

discovery and testing cohorts, we expect that these issues may not be the factors driving the 

substantial difference in PRS performance by heart failure subtypes.  

Third, studies have shown that disease subtypes could potentially have distinct genetic 

risk21,22 or different effect sizes among disease sub-category. According to Pividori et al.,21 

genetic variants identified from an adult-onset asthma GWAS overlap with loci identified from 

childhood-onset asthma GWAS, but the effect sizes were significantly different by asthma 

endotypes.21 They observed larger genetic effects related to childhood-onset asthma, 

suggesting that genetic risk plays an important role in childhood-onset asthma, whereas 

environmental risk contributes to adult-onset asthma. Disease endotypes having distinct genetic 

architecture were also reported for polycystic ovary syndrome by Dapas et al.22 GWAS findings 

show independent loci associated with reproductive (4 loci) and metabolic (1 locus) polycystic 

ovary syndrome subtypes, respectively.22 These studies highlight the importance of using 

phenotypic subtyping to understand genetic nuances underlying various diseases. Thus, we 

postulate that there may be a stronger genetic association with HFrEF versus HFpEF (or 

greater genetic heterogeneity in the HFpEF population). 
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 HFpEF is a heterogeneous disease with multiple different phenotypes.23,24 First, several 

comorbid conditions such as hypertension, diabetes mellitus, obesity, and others have been 

implicated in the pathophysiologic mechanisms driving HFpEF development and progression.25–

27 Patients with HFpEF can have some but not all of these comorbid conditions. These 

conditions each may have their own genotypic characteristics that could make isolating any one 

HFpEF genotype more difficult. Second, numerous pathophysiologic mechanisms have been 

implicated in the disease involving abnormalities in the left ventricular myocardium, left atrium, 

pulmonary vasculature, arterial stiffness, and skeletal muscle.26,28–33 Lastly, the diagnostic 

criteria used in guidelines and clinical trials have varied.34 Patients can have HFpEF despite not 

meeting all diagnostic criteria for the disease.35,36 For example, patients with obesity may have 

HFpEF without elevated natriuretic peptide levels.37–39 Unlike HFrEF, the diagnosis of HFpEF 

cannot rely on a reduced ejection fraction as a defining characteristic of the disease. For all of 

the above reasons, many have argued that treatments for this heterogeneous disease must be 

targeted to specific phenotypes.23–25 Thus, it is reasonable to conclude that specific HFpEF 

phenotypes may have specific genetic causes. However, identifying these genotypes requires a 

granular classification of HFpEF phenotypes not easily achieved in retrospective analyses of 

large datasets. Taken together, any or a combination of these factors may have contributed to 

the PRS in our study being less powerful in predicting HFpEF. 

Limitations 

Beyond the limitations noted above, this study is also limited by reduced sample size in 

the GBMI African ancestry meta-analysis (supplementary figure 2) and reduced sample size in 

the MGI/CHIP combined cohort. Moreover, we do not have enough individuals with East Asian, 

South Asian, or Admixed/ Latino American ancestry in our dataset to validate PRS 

transferability in different ancestral cohorts. The low performance of ancestry-matched PRS 

score in AA (AFR meta-analysis [1,230 cases; 27,092 controls]; AFR individuals in MGI/CHIP 

[50 HFrEF; 34 HFpEF]) could potentially be due to lower discovery GWAS sample size, 
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compared to EA ancestry (EUR meta-analysis [51,274 cases; 922,900 controls]; EUR 

individuals in MGI/CHIP [403 HFrEF; 335 HFpEF]). Studies with comparable sample sizes in 

both training and testing sets are needed to examine the effect from ancestry-match and multi-

ancestry PRS. 

Also, the low performance in HFpEF for AA potentially could be due to lower proportion 

of HFpEF in AA. We observed that AA have a higher proportion of HFrEF (59% HFrEF) 

compared to EA (54% HFrEF). All three biobanks (MGI/CHIP, BioVU, and BioME) consistently 

contributed a higher proportion of HFrEF cases in AA than EA. 

Outlook/Conclusion  

This study investigated genetic-based prediction of heart failure within subtypes and the 

power of sample size and diverse ancestry in GWAS. In the future, generating higher quality 

phenotypes (perhaps more defined than just ICD-9/10 codes) could further unravel the genetic 

underpinnings of subtype-specific genetic risks, particularly in the case of heart failure where the 

two subtypes show substantial differences in performance of genetic prediction tools. Secondly, 

GWAS with larger sample sizes could likely increase the loci discovered and improve our 

understanding of the biology at established loci. Together, these approaches may more 

efficiently identify traits in early or precursor stages, allowing for early initiation of treatments to 

augment disease progression.  
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FIGURE AND FIGURE LEGENDS  

 

Figure 1. Forest plot of adjusted odds ratio comparison between heart failure PRS derived 

from GBMI-ALL, GBMI-EUR, and HERMES-EUR meta-analysis for HFrEF and HFpEF in 

European American. 

The GBMI PRS outperformed the HERMES PRS. Both HFrEF and HFpEF outcomes were 

significantly associated with heart failure PRS in European American; furthermore, ancestry-

matched PRS built from GBMI meta-analysis performed optimally. GBMI-EUR PRS predicts 

cases of HFrEF, but notably less for cases of HFpEF. 

 

Figure 2. Forest plot of adjusted odds ratio comparison between heart failure PRS derived 

from GBMI-ALL, GBMI-EUR, and HERMES-AFR meta-analysis for HFrEF and HFpEF in African 

American. 

Multi-ancestry score improved the model performance in the African American cohort, 

compared among (1) multi-ancestry cohort (GBMI-ALL), (2) European ancestry-only cohort 

(GBMI-EUR), and (3) African ancestry-only cohort (GBMI-AFR) meta-analysis GWAS results. 

 

Figure 3. Manhattan plot of heart failure PRS PheWAS presenting  the association between 

heart failure PRS and 1,688 phecode. 

Phenome-wide association study in the UK Biobank white British cohort revealed pleiotropic 

clustering between the heart failure PRS and other cardiovascular diseases. Positive 

associations were indicated by upward pointing triangles and negative associations were 

indicated by downward pointing triangles. Phecode 428.2 (heart failure), primary outcome of this 

study, was highlighted in red. Significance level was indicated by red dotted line with bonferroni 

correction for 1,688 tests, at 4.53, -log10(0.05/1688).  
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Supplementary Figure 1. Sample sizes and heart failure prevalence across studies and 

ancestries 

Left panel: prevalence of heart failure by biobank, recruitment strategies were indicated by the 

colors. Right panel: sample size within each ancestry by biobank. Biobanks were sorted by 

heart failure prevalence.  

 

Supplementary Figure 2. Barplot of GWAS sample sizes and proportion of heart failure 

cases, total numbers of individuals in GWAS were indicated on the top of the bar. 

Comparison between sample size for GBMI (i) multi-ancestry, (ii) European ancestry, (iii) 

African ancestry, and HERMES (iv) European ancestry meta-analysis. 
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TABLES WITH TITLES AND LEGENDS 

 

Table 1. Variants significantly associated with heart failure outcome in GBMI.  

Twenty-two independent loci reached genome-wide significance, and of those, 11 are 

potentially novel loci. 

 

Supplementary Table 1. Sample size across ancestries in all biobanks contributed to 

heart failure GWAS. 

* GBMI cohort contributed to HF: BioBank Japan, BioMe, BioVU, China Kadoorie Biobank, 

Estonian Biobank, FinnGen, Genes & Health, HUNT, Lifelines, Michigan Genomics Initiative, 

Partners Biobank, UCLA Precision Health Biobank, and UK Biobank. 

1 Percentage by total number of samples within each ancestry 

2 Percentage by total number of individuals across all ancestries   

 

Supplementary Table 2. Sample size across ancestries in all biobanks, but MGI, 

contributed to heart failure GWAS. 

* GBMI cohort: GBMI cohort contributed to HF: BioBank Japan, BioMe, BioVU, China Kadoorie 

Biobank, Estonian Biobank, FinnGen, Genes & Health, HUNT, Lifelines, Partners Biobank, 

UCLA Precision Health Biobank, and UK Biobank. 

1 Percentage by total number of samples within each ancestry 

2 Percentage by total number of individuals across all ancestries   

 

Supplementary Table 3. Sample size by heart failure subtypes and demographic 

characteristics in MGI/ CHIP cohort. 
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STAR Methods  

Multi-Ancestry Meta-Analysis 

Global Biobank Meta-analysis Initiative (GBMI) is a global collaboration among 21 

biobanks across the world that aims to equitably impact people of diverse ancestries. Biobanks 

in GBMI reach across 4 continents and have more than 2.6 million individuals with electronic 

health record linked genetic information. Biobanks that contributed to heart failure study include 

BioBank Japan, BioMe, BioVU, China Kadoorie Biobank, Estonian Biobank, FinnGen, Genes & 

Health, HUNT, Lifelines, Michigan Genomics Initiative, Partners Biobank, UCLA Precision 

Health Biobank, and UK Biobank (Supplementary Figure 1). Heart failure cases in the GBMI 

training dataset were defined based upon ICD codes (phecode 428.2: heart failure, not 

otherwise specified), which did not distinguish between heart failure subtypes (Reference to 

GBMI flagship).5  In the GBMI discovery dataset, genetic data was analyzed from a total of 

67,049 HF patients from 1,305,592 samples from 6 ancestral populations: 25.4% of the samples 

were of non-European ancestry (Supplementary Figure 1; Supplementary Table 1). 

Polygenic Risk Score  

We aimed to compare the prediction accuracy of PRS derived from GBMI heart failure 

GWAS and the largest published heart failure GWAS conducted by Heart Failure Molecular 

Epidemiology for Therapeutic Targets (HERMES) Consortium.6 HERMES comprises 977,323 

individuals of European ancestries, and of those, 4.8% are heart failure cases. Three PRSs 

were generated to compare the performance between GBMI and HERMES in European 

American: (i) GBMI with multi-ancestries cohort (GBMI - ALL; n=1,354739 [5.0% cases]), (ii) 

GBMI with European ancestry cohort (GBMI - EUR; n=1,020,441 [5.1% cases]), and (iii) 

HERMES with European ancestry cohort (HERMES - EUR; n=977,323 [4.8%]) (Supplementary 

Figure 2; Supplementary Table 1). 

Additional analysis on PRS transferability was performed in the AA subset of MGI/CHIP 

to compare the model performance between PRS built from ancestry-specific and trans-
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ancestry meta-analysis. Three sets of PRS were derived from (i) GBMI multi-ancestry, (ii) GBMI 

European-ancestry, and (iii) GBMI African-ancestry (GBMI - AFR; n=31,202 [4.4% cases]) 

meta-analysis (Supplementary Figure 2; Supplementary Table 1). 

Polygenic risk score weights were calculated using PRS-CS40 with a reference panel 

from the combined cohort of 1000 Genomes and UK Biobank. For multi-ancestry and European-

ancestry GWAS, a LD panel from individuals of European-ancestry was used. For African-

ancestry GWAS, a LD panel from the African-ancestry cohort was used. The summary statistics 

used to generate PRS weights in our main analysis excluded our testing cohort, MGI, and in 

phenome-wide association study to evaluate the pleiotropic effect of HF genetic risk excluded 

UK Biobank (Supplementary Table 2). To control for possible population structure, each of the 

six raw PRSs were further regressed on the top 10 principal components (PC) derived from the 

genotype data within each ancestry group. The resulting residuals were further transformed to 

normal distribution using inverse normalization within each ancestry group to generate the final 

heart failure PRSs for each individual. . 

Statistical Analysis 

Model performance for prediction accuracy of PRS derived from GBMI heart failure 

GWAS to one derived using the previously largest published summary statistics from HERMES 

were evaluated using European ancestry samples in MGI/CHIP. PRS ancestral transferability 

was tested in AA subset of MGI/CHIP by comparing the model performance between trans-

ancestry, ancestry-matched, and ancestry-mismatched PRSs. 

We evaluated logistic regression models with PRS adjusted for age and sex separately 

for both HFrEF and HFpEF phenotypes to compare the odds ratio of different PRSs. The 

significance levels were adjusted for multiple tests correction using Bonferroni adjustment. The 

corrected p-value threshold 0.008 (0.05/6) was corrected for the number of outcomes (2 

subtypes; HFrEF and HFpEF) and the number of GWAS summary statistics (2 GWAS; GBMI 
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and HERMES) and the number of ancestry-specific cohort (2 cohorts; European American and 

African American).  

Phenome-Wide Association Study (PheWAS) 

Phenome-wide association study was conducted in 408,155 white British individuals 

from United Kingdom Biobank (UKBB).41 Logistic regression was performed to examine the 

association between disease status for 1,688 phecodes42 as dependent variable and heart 

failure PRS as independent variable. Models were adjusted for sex, birth year, and top four PCs 

derived from genotype file of the participants. Heart failure PRS calculated in UK Biobank was 

derived from leave UK Biobank cohort out meta-analysis from GBMI. Bonferroni correction was 

applied to account for multiple tests in PheWAS. Significance level was set to 2.96*10-5 for 

adjusting 1,688 tests (0.05/1688) in total. 

Combined Cohort  

Michigan Genomics Initiative (MGI), a longitudinal biorepository within Michigan 

Medicine, from 2014 to 2020. MGI has integrated genetic data with electronic health records 

(EHR) on adult patients (≥18 years) undergoing surgery within Michigan Medicine. The 

Cardiovascular Health Improvement Project (CHIP) Biorepository is a longitudinal observational 

cohort study of patients at Michigan Medicine, from 2013 to 2021, with a clinical diagnosis of 

cardiovascular disease (predominantly, thoracic/abdominal aortic disease or HFpEF).43 The 

University of Michigan’s Institutional Review Board approved these protocols (HUM00128472 

and HUM00052866) and all study participants signed informed consent. 

Individuals in the combined cohort with both electronic health records and genetic 

information available were included in our study. Patients with age or sex missing data were 

excluded. GWAS summary statistics were used to generate PRSs from the Michigan Genomics 

Initiative and Cardiovascular Health Improvement Project (MGI/CHIP). A total of 27,848 EA 

individuals (403 HFrEF cases and 335 HFpEF cases) were included in the primary analysis to 

compare the model performance among PRS built from GBMI-ALL, GBMI-EUR, and HERMES-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.21267389doi: medRxiv preprint 

https://paperpile.com/c/Cf6iiy/VMPd
https://paperpile.com/c/Cf6iiy/meuY
https://paperpile.com/c/Cf6iiy/C113
https://doi.org/10.1101/2021.12.06.21267389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

EUR. For PRS transferability analysis, 1,383 AA samples (50 HFrEF and 34 HFpEF) were 

included. (Supplementary Table 3)    

Subtype Definition 

We integrated two sources of label curation from MGI and CHIP to define a total of 453 

HFrEF cases and 369 HFpEF cases. Electronic health record data enabled further classification 

of the patients into HFrEF, HFpEF, and healthy controls; using the previously validated 

methodology.3 In MGI, we used the previously published phenotyping algorithm3 and defined 

453 and 279 patients with HFrEF and HFpEF, respectively. In CHIP, 90 HFpEF patients were 

assigned with a gold-standard label by manual label curation from HFpEF specialists (S.L.H. 

and M.C.K.). 

The inclusion criteria for methodology applied in MGI for heart failure subtype definition 

was adult patients, > 40 years of age, who had at least 2 episodes of care at Michigan Medicine 

from 2010 to 2019, and were enrolled within MGI. In brief, patients with a qualifying heart failure 

ICD-9/10 code (or code for cardiomyopathy or cardiomegaly) and LVEF < 40% on cardiac 

imaging were classified as HFrEF.  Patients with (i) a qualifying HF diagnostic code,* (ii) all 

LVEF > 50% (at least one LVEF available), and (iii) positive mention of heart failure keyword** 

within the EHR were classified as HFpEF.  Patients with (i) no qualifying ICD-9/10 codes,*1 (ii) 

LVEF > 50% on all available cardiac imaging (no requirement for LVEF study), (iii) no mention 

of heart failure keywords in EHR, and (iiv) not on any uniquely heart failure medications *** were 

classified as healthy controls.  Data quality and heart failure subtype veracity were confirmed 

with adjudication by expert clinician review (N.J.D. and M.R.M.).3 

 
1 * Defined by Elixhauser Enhanced ICD-9-CM and ICD-10 Indices: Congestive Heart Failure 
(428.X (ICD-9) or I50.X (ICD-10), X = wildcard), as well as ICD-9 and ICD-10 codes for 
cardiomyopathy (425.X, I42.X) and cardiomegaly (429.3, I51.7) 
** Heart Failure Keywords: “HF”, “heart fail*”, “cardiac fail*”, “ventricular fail*”, “cardiomyop*”, or 
“*ICM”; * = wildcard 
*** Uniquely Heart Failure Medications: Digoxin (Lanoxin), sacubitril/valsartan (Entresto) 
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The diagnosis of HFpEF in CHIP was made by cardiologists, sub specializing in HFpEF, 

based on the the 2016 European Society of Cardiology guidelines: i) Signs and/or symptoms of 

heart failure, ii) left ventricular ejection fraction ≥50%, at least mild elevation in natriuretic 

peptide levels, and iii) cardiac structural (e.g. left atrial enlargement) and/or functional 

abnormalities (e.g. diastolic dysfunction) associated with HFpEF46. Participants may have been 

diagnosed with HFpEF following hospitalization for decompensated HF requiring intravenous 

diuresis and/or if increased left ventricular filling pressures were documented on catheterization, 

regardless of natriuretic peptide level.  
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FIGURES AND FIGURE LEGENDS 

 

Figure 1. Forest plot of adjusted odds ratio comparison between heart failure PRS derived from 

GBMI-ALL, GBMI-EUR, and HERMES-EUR meta-analysis for HFrEF and HFpEF in European 

American. 
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Figure 2. Forest plot of adjusted odds ratio comparison between heart failure PRS derived from 

GBMI-ALL, GBMI-EUR, and HERMES-AFR meta-analysis for HFrEF and HFpEF in African 

American. 
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Figure 3. Manhattan plot of heart failure PRS PheWAS presenting the association between heart 

failure PRS and 1,688 phecode.  
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Table 1. Variants significantly associated with heart failure outcome in GBMI 

rsid chr pos (hg38) ref alt nearest gene function beta se novel 
 

1 10736490 G A CASZ1 intronic 0.037861 0.0066375 1 

rs74853338 2 200306928 C T SPATS2L intronic 0.043398 0.0077942 0 
 

3 27450659 G C SLC4A7 intronic -0.035517 0.0064919 0 
 

4 45173674 C T GNPDA2;GABRG1 intergenic 0.040491 0.0067802 0 

rs201194999 4 65801177 C T EPHA5-AS1;MIR1269A intergenic 0.11876 0.017742 0 

rs59788391 4 110780277 A G PITX2;MIR297 intergenic 0.084207 0.0082364 1 

rs144757939 6 32638945 A G HLA-DQA1 intronic 0.17803 0.028075 0 
 

6 36665292 A G MIR3925;PANDAR intergenic 0.053251 0.0066481 1 

rs10455872 6 160589086 A G LPA intronic 0.11551 0.015208 1 

rs7857118 9 22124141 A T CDKN2B-AS1;DMRTA1 intergenic 0.043202 0.0064814 1 

rs147288039 9 95006476 A G AOPEP intronic 0.40002 0.070586 0 

rs600038 9 133276354 C T ABO;SURF6 intergenic -0.051976 0.0074204 1 

rs373205748 10 103575604 C T NEURL1 intronic 0.46961 0.081342 0 
 

10 119665450 A T BAG3 intronic -0.051487 0.0086631 1 

rs10774624 12 111395984 G A PHETA1;SH2B3 intergenic -0.043648 0.0074662 1 
 

12 131295306 C T LINC02415 downstream 2.0587 0.35494 1 

rs62048402 16 53769311 G A FTO intronic 0.050284 0.0065836 1 

rs61208973 16 72991194 C T ZFHX3 intronic 0.045775 0.0073977 1 
 

18 1821016 A T LINC00470;METTL4 intergenic 0.066938 0.012151 0 

rs1788784 18 23579666 A G NPC1 intronic -0.044129 0.0072417 0 

rs145478347 19 49671626 G A BCL2L12 intronic 0.72167 0.11751 0 

rs558658474 20 49472840 TC T 
  

-0.2957 0.050571 0 
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Supplementary Figure  

 

 

Supplementary Figure 1. Sample sizes and heart failure prevalence across studies and 

ancestries 
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Supplementary Figure 2. Bar plot of total GWAS sample sizes and proportion of heart failure 

cases, total numbers of individuals in GWAS were indicated on the top of the bar. 
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Supplementary table 1. Sample size across ancestries in all biobanks contributed to heart 

failure GWAS. 

Ancestries 

GBMI* 

Cases1 Controls1 Total2 

African (AFR) 1,367 (4.4%) 29,835 (95.6%) 31,202 (2.3%) 

American (AMR) 1,179 (8.1%) 13,217 (91.9%) 14,387 (1.1%) 

East Asian (EAS) 12,665 (4.9%) 245,263 (95.1%) 257,928 (19.0%) 

Finnish (FIN) 23,701 (10.8%) 195,091 (89.2%) 218,792 (16.1)) 

Non-Finnish European (NFE) 28,795 (3.6%) 772,854 (94.4%) 801,649 (59.2%) 

South Asian (SAS) 710 (2.3%) 30,071 (97.7%) 30,781 (2.3%) 

Total 68,408 (5.1%) 1,286,331 (94.9%) 1,354,739 

 

* GBMI cohort contributed to HF: BioBank Japan, BioMe, BioVU, China Kadoorie Biobank, 

Estonian Biobank, FinnGen, Genes & Health, HUNT, Lifelines, Michigan Genomics Initiative, 

Partners Biobank, UCLA Precision Health Biobank, and UK Biobank. 

1 Percentage by total number of samples within each ancestry 

2 Percentage by total number of individuals across all ancestries   
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Supplementary Table 2. Sample size across ancestries in all biobanks, but MGI, contributed to 

heart failure GWAS. 

Ancestries 

GBMI (leave MGI out)* 

Cases1 Controls1 Total2 

African (AFR) 1,230 (4.3%) 27,092 (95.7%) 28,322 (2.1%) 

American (AMR) 1,179 (8.1%) 13,217 (91.9%) 14,387 (1.1%) 

East Asian (EAS) 12,665 (4.9%) 245,263 (95.1%) 257,928 (19.8%)) 

Finnish (FIN) 23,701 (10.8%) 195,091 (89.2%) 218,792 (16.8%) 

Non-Finnish European (NFE) 27,573 (3.7%) 727,809 (96.3) 755,382 (57.8%)) 

South Asian (SAS) 710 (2.3%) 30,071 (97.7%) 30,781 (2.4%) 

Total 67,049 (5.1%) 1,238,543 (94.9%) 1,305,592 

 
* GBMI cohort: GBMI cohort contributed to HF: BioBank Japan, BioMe, BioVU, China Kadoorie 

Biobank, Estonian Biobank, FinnGen, Genes & Health, HUNT, Lifelines, Partners Biobank, 

UCLA Precision Health Biobank, and UK Biobank. 

1 Percentage by total number of samples within each ancestry 

2 Percentage by total number of individuals across all ancestries   
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Supplementary Table 3. Sample size by heart failure subtypes and demographic 

characteristics in MGI/ CHIP cohort. 

 

  
Overall (n=29,231) AA (n=1,383) EA (n=27,848) 

HFrEF 453 50 403 

HFpEF 369 34 335 

Age 60.27 ± 11.08 56.69 ± 10.21 60.44 ± 11.09 

Female 14,995 833 14,162 

Male 14,236 550 13,686 
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