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Genome-wide association study and multi-trait analysis of opioid use disorder identifies novel
associationsin 639,709 individuals of European and African ancestry.
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Abstract
Background: Despite the large toll of opioid use disorder (OUD), genome-wide association

studies (GWAYS) of OUD to date have yielded few susceptibility loci.

Methods: We performed a large-scale GWAS of OUD in individuals of European (EUR) and
African (AFR) ancestry, optimizing genetic informativeness by performing MTAG (Multi-trait
analysis of GWAS) with genetically correlated substance use disorders (SUDs). Meta-analysis
included seven cohorts: the Million Veteran Program (MVP), Psychiatric Genomics Consortium
(PGC), iIPSY CH, FinnGen, Partners Biobank, BioVU, and Yale-Penn 3, resulting in atotal
N=639,709 (Ncases=20,858) across ancestries. OUD cases were defined as having lifetime OUD
diagnosis, and controls as anyone not known to meet OUD criteria. We estimated SNP-
heritability (h’syp) and genetic correlations (rg). Based on genetic correlation, we performed

MTAG on OUD, alcohol use disorder (AUD), and cannabis use disorder (CanUD).

Results: The EUR meta-analysis identified three genome-wide significant (GWS; p<5x10®) lead
SNPs—one at FURIN (rs11372849; p=9.54x10'%) and two OPRM1 variants (rs1799971,
p=4.92x10%; rs79704991, p=1.37x10"%; r*=0.02). Rs1799971 (p=4.91x10 %) and another
OPRM1 variant (rs9478500; p=1.95x10®, r’=0.03) were identified in the cross-ancestry meta-
analysis. Estimated h’sye Was 12.75%, with strong ry with CanUD (r=0.82; p=1.14x10"*") and
AUD (rg=0.77; p=6.36x10"). The OUD-MTAG resulted in 18 GWS loci, some of which map to
genes or gene regions that have previously been associated with psychiatric or addiction

phenotypes.

Conclusions: We identified multiple OUD variant associations at OPRM1, single variant
associations with FURIN, and 18 GWS associationsin the OUD-MTAG. OUD islikely

influenced by both OUD-specific loci and loci shared across SUDs.
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I ntroduction

Opioid use disorder (OUD) has a serious negative impact on public health and isa
leading cause of preventable death(1). Although opioid misuse and progression to OUD(2) are
influenced by heritable factors, discovery of OUD risk loci has been limited(3-7). Difficultiesin
advancing OUD genetic discovery are largely dueto lack of adequately powered cohorts of

genetically informative samples(8,9).

Genome-wide association studies (GWAS) of OUD have been underpowered(8,9).
Nevertheless, recent progressin GWAS of OUD include the identification and confirmation of a
genome-wide significant (GWS) functional variant (rs1799971) in OPRM1(7). Earlier OUD
GWAS identified associations with variation in several genes including KCNG2, KCNC1,
APBB2, CNIH3, RGMA, and OPRM1(3-6), but the validity of those associations remains largely
untested due to the lack of statistically powerful independent OUD cohorts. In addition to
specific genetic loci, OUD GWAS have aso demonstrated genetic correlations (rg) with other
substance use disorders (SUDs) (e.g. alcohol use disorder [AUD]; rg=0.73) and psychiatric

disorders (e.g. attention-deficit hyperactivity disorder; [rg=0.36])(7).

Large-scale GWAS meta-anal ytic techni ques have proven valuable in advancing
discovery of novd loci for other SUDs (e.g., AUD, problematic alcohol use (PAU), cannabis use
disorder (CanUD)(10-12). This study applies similar meta-analytic methods for OUD by

combining GWAS effects across multiple studies and two ancestral groups.

Multi-trait methods (e.g., MTAG; Multi-trait analysis of GWAS)(13) have the potential
to increase power for OUD gene discovery. MTAG capitalizes on the ry between genetically-

related traits (e.g., rq >0.70) to increase the equivalent sample size. MTAG is an attractive option
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for boosting power for sets of similar traits (e.g., SUDs)(11,14), and holds particular promise for
disorders such as OUD for which only alimited number of cases are available for analysis.
MTAG can generate estimates of trait-specific effects that leverage information from multiple
GWAS summary statistics while accounting for both known and unknown sample overlap across
the discovery samples(13). Thus, MTAG can maximize the genetic information available for
OUD by leveraging the statistical power of GWAS of non-opioid SUDs, to advance our

understanding of the genetic etiology of OUD and shared genetic liability across SUDs.

We conducted a large-scale GWAS meta-analysis of OUD in samples of African (AFR)
and European (EUR) ancestry individuals. We maximized the informativeness of the available
samples by performing amulti-trait analysis that incorporates SUDs that are highly genetically

correlated with OUD.

Methods

Data and Participants

The GWAS meta-analysis includes summary statistics across seven cohorts examining
OUD case vs. OUD control statusin AFR and EUR ancestry individuals. We included both
published and unpublished OUD GWAS. Previously published GWAS include data from Yale-
Penn(3,6,7), PGC-SUD(6), and the Partners Biobank(15). For MVP Releases 1 and 2 (the data
releases used in the present analysis), a previous GWAS of OUD cases vs. opioid-exposed
controls was reported(7). MV P dataincluded in the current meta-analysis use a different control
definition (unscreened controls) to align better with the control definitions available in most

other samplesincluded in the meta-analysis. GWAS summary data for FinnGen(16) was
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accessed viaa publicly available repository (https://r5.finngen.fi/). GWAS of OUD from
iPSYCH(17), BioVU(18), and newly-available data from Y ale-Penn subjects (Yae-Penn 3),
previously unpublished, were performed by analysts at their respective study sites
(Supplemental Note). We thus had atotal AFR sample of 84,877 (Ncase=5,435 Nefrecive=20,032),
atotal EUR sample size of 554,832 (Ncase=15,423; Nerecive=56,991), and an overall sample of
639,709 (Ncase=20,858; Nesteciive=77,023). Other than Y ale-Penn, this study involved de-identified
data. The work was approved as appropriate by the Central VA ingtitutional review board (IRB)
and site-specific IRBs, including Y ale University School of Medicineand VA CT, and was
conducted in accordance with all relevant ethical regulations. Cohort-specific summaries of
OUD cases and controls across AFR and EUR ancestry individuals are presented in Table 1.

Additional phenotyping considerations are described in Supplemental Note.

Ancestry-specific and cross-ancestry GWAS meta-analysis

GWAS samples were combined using an effective sample-size weighted meta-analysisin
METAL (19). Ancestry-specific and cross-ancestry meta-analyses were performed. M easures of
cross-sample heterogeneity (Cochran’s Q, 1?) and genomic inflation (Acc) Were used to evaluate
whether results were unduly influenced by heterogeneity between cohorts or by population
stratification. GWAS summary statistics included in the meta-analysis were limited to variants
present in at least 80% of the analysis-specific effective sample size (e.g., 80% of EUR
Nesreciive=45,593). The 80% effective sample size inclusion threshold ensured that variant effects
present only in smaller cohorts did not disproportionately influence the overall results. This
effectively meant that a variant needed to be present in MVP, PGC-SUD, and at least one

additional cohort for it to beincluded in the meta-analysis. (Figure 1).
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Datafrom the 1000 Genome Project (1000G) phase 3(20) was used as a reference panel
to determine EUR and AFR linkage-disequilibrium (LD) structure. Variants were mapped to the
nearest gene based upon physical position (<10 kb from assigned gene). Conditional analyses
were conducted using GCTA-COJO(21) to examine the conditional independence of genome-

wide significant (GWS; p=5.00x10"%) of OPRM1 variantsin low LD (r’°<0.1).

S\P-heritability and Linkage-Disequilibrium (LD) Score Regression

GWAS summary statistics from the EUR OUD GWAS were used to estimate SNP-
heritability (h’syp) and to characterize OUD genetic correlations (rg) using LD score regression
(LDSC)(22). LDSC analyses were restricted to HapMap3 variants(23). Effective sample-size
was used in all LDSC-based analytic steps. Genetic correlations were estimated between OUD
and other SUDs, traits related to substance use, psychiatric traits, chronic pain outcomes,
sociodemographic factors, and additional traits of interest (Supplemental Tables). LDSC
analyses were not performed in AFR and cross-ancestry meta-analyses because of the inability to
use an LD reference pane for recently-admixed populations (e.g, African-Americans) and for

analyses integrating datasets from diverse ancestry groups(22).

Multi-trait analysis of GWAS summary statistics (MTAG)

Based on LDSC estimates of genetic correlations with OUD, ajoint-analysis that
included the EUR OUD GWAS and GWAS summary statistics for AUD(11) and CanUD(12)
was conducted using MTAG(13). The AUD GWAS summary statistics used in the present

analysis were made available as part of abroader GWAS of problematic alcohol use(11). MTAG
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was performed using study-specific effective sample sizes for the respective GWAS. Study-
specific effect sizes were transformed to Z-scores so as to be on a uniform scale across the three
GWAS included in the MTAG analysis. Genetic variantsincluded in the MTAG analysis were
filtered using default MTAG parameters(13). Briefly, variants were restricted to those common
to al three of the GWAS, with aminor allele frequency (MAF) >0.01, and present in at least
75% of the 90th percentile of the study-specific SNP sample sizes. These MTAG parameters
guard againgt heterogeneity in the distribution of common vs. rare variant effects, ensuring that
SNP effects generated from relatively small subsets of the contributing discovery GWAS do not

bias the effect estimates across traits(13).

Phenome-wide Association Sudy (PheWAS)

To examine phenome-wide relationships for the EUR OUD GWAS and the OUD-MTAG
analysis, and to compare their relationships with other clinically-relevant outcomes, we
performed phenome-wide association studies (PheWAS) in BioVU(18). Briefly, BiovVU isa
cohort of >66,000 genotyped patients, with phenotypic data currently available for 1338 clinical
outcomes from EHRs(18). Polygenic scores (PGS) for the EUR OUD GWAS and the OUD-
MTAG analysis were computed using PRS-CS(24), excluding the subset of BioVU participants
included in the EUR OUD GWAS. The respective PGS were then included in individual logistic
regression models regressed on 1,291 clinical outcomes with case counts >100, covarying for
sex, age, and thefirst 10 genetic PCs. Statistical significance for the PheWAS was defined as

p=3.87x10"* (0.05/1,291).

Results
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Ancestry-specific and cross-ancestry GWAS meta-analyses

In the ancestry-specific analyses, there were three GWS risk variants (Figure 2) in the
EUR GWAS. The top association was with a locus (rs11372849; p=9.54x10 ) located at the
FURIN gene on chromosome 15, one of two GWS SNPsin that gene (rs17514846; r’=0.91). The
second strongest association was with the ORPM1 functional variant (rs1799971; p=4.92x10"%).
An additional OPRM1 variant was also identified (rs79704991; p=1.11x10"%; r*=0.02)(OPRM1
regional plots—Supplemental Figure S1). GCTA-COJO (21) was used to conduct a conditional
analysis of the two GWS OPRM1 variants demonstrating low LD (rs1799971 conditioned on
rs79704991 and vice versa). In these analyses, each variant fell below GWS when conditioning
on the effect of the other (conditioned rs1799971-peonditioned=1.66x10"%; rs79704991-
Peonditioned=3.71x10™®); although, there were no statistically significant differencesin effect
estimates for the respective OPRM1 variants conditioned vs. unconditioned effects. No GWS

variants were identified in the AFR GWAS (Supplemental Figure S2).

The cross-ancestry OUD GWAS identified two GWS risk variants mapping to OPRM1
(Supplemental Figure S3). The top association was with rs9478500 (p=1.95x10"%), an intronic
variant. Rs1799971 was also GWS in the cross-ancestry meta-analysis (p=4.91x10%), and is not
in strong LD with rs9478500 (EUR r*=0.03; AFR r’=0.002; ALL r’=0.04). The top FURIN
association in EUR (rs11372849) was uninformative in three of four AFR ancestry cohorts and
did not meet the threshold (80% of Neteciive) We Set to be included in the analysis. The second top

FURIN association (rs17514846) fell just below GWS in the cross-ancestry GWAS (p=6.00x10

08) )

Gene and gene-set analysis
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Gene and gene-set analyses are described in Supplemental Note. Both FURIN
(p=3.09x10""") and OPRM1 (p=3.59x10"") were significant in EUR gene-based analyses
(Supplemental Figure $4). The EUR gene-set analysis resulted in a statistically significant set
of 5 genes (ANXA2, APOE, FURIN, MYLIP, and PCSK9) involved in the regulation of the low-
density lipoprotein (LDL) particle receptor catabolic process (p=2.79x10%)(Supplemental
Tables). No genes or gene-sets were GWS in the smaller AFR-specific analysis. In the cross-
ancestry gene-based analysis, FURIN (p=6.00x10"%) and OPRM1 (p=1.12x10"") were

significant (Supplemental Figure S5).

S\P-heritability and Linkage-Disequilibrium (LD) Score Regression

For the EUR OUD GWAS, the liability scale SNP-heritability (h’sup) estimate was
12.75% (s.e.=0.011) using effective sample-size adjusted prevalence rates and a population
prevalence of 0.021(25). Genome-wide inflation was mild with respect to sample size and
favored OUD polygenicity as indicated by the LDSC inflation factor (Asc=1.18), intercept=1.01

(s.e=0.011), and attenuation ratio=0.05 (s.e.=0.049).

In the EUR OUD GWAS, OUD showed statigtically significant genetic correlations with
substance use and SUDs, psychiatric traits, pain outcomes, physical health, and
sociodemographic characteristics (Figure 3). The OUD trait in the current study was strongly
genetically correlated with the largest published GWAS of OUD to date (ry=1.02; p=2.38x10°
21%(7), suggesting that OUD is being captured consistently across the studies, as might be
expected given the substantial overlap in OUD cases between the two studies, although the

control definitions differed between analyses. OUD was also strongly genetically correlated with
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other SUDs, including CanUD (rg=0.82; p =1.14x10*)(12) and AUD (rg=0.77; p = 6.36x10°
"8)(11). Modest genetic correlations were found for measures of substance use (e.g., the

quantity/frequency alcohol use measure AUDIT-C) (r,=0.14; p=8.15x10"%)(10).

OUD also demonstrated statistically significant genetic correlations with many mental
health, pain, physical health, and sociodemographic traits. The strongest positive correlations
across the respective domains were with Generalized Anxiety Disorder (r;=0.52; p=2.89x10"°)
and PTSD (r4=0.52; p=3.87x10"), lower back pain (r4=0.61; p=1.22x10"%), inability to work
due to being sick or disabled (r;=0.57; p=1.31x10"*°), and scores on the Townsend Deprivation
Index (rs=0.56; p=1.13x10"*°). OUD was negatively genetically correlated with measures of
sexual reproductive behavior (age of first sexual intercourse [ry=-0.64; p=4.43x10"7), indices of
educational attainment (age of school completion [rg= -0.54; p=9.41x10"%]) and cognitive

performance (rg= -0.38; p=1.54x10°), and levels of past month “Heavy Do It Y ourself” physical

activity (rs= -0.38; p=7.37x10"%), amongst others (Supplemental Tables).

Multi-trait analysis of European GWAS summary statistics (MTAG)

A multi-trait analysis using MTAG was supported by strong genetic correlation for OUD
with CanUD (rg=0.82; p =1.14x10*) and AUD (r¢=0.77; p = 6.36x10"®) in EUR individuals.
The OUD-MTAG analysisresulted in an increase in effective sample size from the original EUR
OUD GWAS Nefrective=56,991 (GWAS mean " °=1.18) to an equivalent sample size of
N=128,748 (GWAS mean | 1?=1.40). Theincrease in equivalent sample size and detection power
from MTAG resulted in the identification of 18 independent GWSrisk loci (Figure 2), some

previously associated at either the variant level, or that reside in genes associated with,

10
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psychiatric and substance use outcomes in previous GWAS. The FURIN risk locusidentified in

the EUR OUD GWAS was GWSin the OUD-MTAG but OPRM1 was not.

The top OUD-MTAG association was with rs11229119 (p=7.03x10™) on chromosome
11 mapping to both TMX2 and CTNND1. The second strongest was with NICNL1 (rs77648866;
p=1.82x10"°) on chromosome 3. Additional GWS associations included FOXP2 (rs1989903;
p=2.47x10"%), PDE4B (rs7519259; p=2.68x10"'%), S_LC39A8 (rs13135092; p=3.60x10™"°),
NCAML1 (rs1940701; p=9.63x10'%), RABEPK (rs864882; p=1.24x10"") , PLCL2 (rs55855024;
p=7.89x10""), and FTO (rs7188250; p=3.63x10"*). One of the FURIN variants identified in the
EUR OUD GWAS was also GWS in the OUD-MTAG (rs17514846; p=2.30x10"%). The top
OPRM!1 association was with rs1799971 (p=1.39x10"). Of the 18 GWS loci, three were GWS

inthe AUD GWAS and one was GWS in the CanUD GWAS (Table 4).

The OUD-MTAG summary datawas highly genetically correlated with the largest
previoudly published GWAS of OUD to date at r;=0.98 (p=1.22x10""")(7). All estimates of

genetic correlation for the OUD-MTAG analysis can be found in Supplemental Tables.
Phenome-wide Association Sudy (PheWAS)

The top PheWAS association for OUD was with substance addiction and disorders
(OR=1.53; p=2.12x10""). Additional top OUD associations included Tobacco use disorder
(OR=1.26; p=3.38x10"), chronic pain (OR=1.25; p=2.32x10%), alcohol-related disorders
(OR=1.35; p=1.04x10"%%), mood (OR=1.13; p=1.27x10"%) and anxiety (OR=1.14; p=1.00x10?
disorders, viral hepatitis C (OR=1.33; p=3.04x10%°), and suicidal ideation or attempt (OR =

1.49; p=2.17x10"), amongst others (Figure 4).

11
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Very similar patterns of association were found for the OUD-MTAG PheWAS. The top
associations were with Tobacco use disorder (OR=1.30; p=1.37x10 %), substance addiction and
disorders (OR=1.42; p=1.15x10"*), and alcohol-related disorders (OR=1.42; p=7.36x10"").
OUD-MTAG also demonstrated significant associations with mood (OR=1.12; p=7.76x10%)
and anxiety (OR=1.13; p=1.45x10"%) disorders, chronic pain (OR=1.20; p=2.51x10%), viral
hepatitis C (OR=1.32; p=1.73x10*®), and suicidal ideation or attempt (OR=1.47; p=4.52x10""%)

(Figure4). (Full description of PheWAS results: Supplementary Tables).

Discussion

We present a large genetic study of OUD, with an overall sample size of 639,709
(EUR=554,832; AFR=84,877) individuals (Ncases=20,858 [ EUR=15,423; AFR=5,435]). This
study isthefirst to provide evidence of a GWS single-variant GWAS association between
FURIN and OUD. We also support findings from previous OUD GWAS implicating OPRM1 as
aGWSrisk factor for OUD(7), including the well-established OPRM1 coding variant
(rs1799971) and additional OPRM1 associations that remained statistically significant in across-
ancestry analysis of EUR and AFR populations. We add evidence of gene and gene-set
associations with OUD, and provide robust estimates of OUD SNP-heritability and genetic
correlations with many etiologically-relevant traits. Further, we apply a multi-trait approach for
OUD genetic discovery utilizing the high degree of genetic correlation across SUDs (OUD,
AUD, CanUD) to increase power, yielding an equivalent sample size of 128,748 and 18 GWS
OUD-MTAG risk loci. PheWAS of OUD and OUD-MTAG demonstrated similar patterns of
clinical associations across the phenome, suggesting that these traits are capturing similar

phenomenon.
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Compared to other complex psychiatric traits, there are comparatively small samples
available for genetic analysis of individuals with drug use disorders, particularly those involving
illegal substances (heroin, cocaine)(8,9). Thus, a strategy that increases statistical power by
incorporating other sets of samples—for example, from GWAS of closely-related but non-
identical traits such as other SUDs—could help advance our understanding of the genetic
architecture of OUD. This study brought much more information to bear on the analysis of OUD
risk variation, resulting in the identification of many more loci. These associations included three
gpecific to OUD (OPRM1 and FURIN) based upon findings from the EUR OUD GWAS, and 18
loci identified in the OUD-MTAG analysis (also including FURIN). The OUD-MTAG loci did
not include any OPRM1 variants identified in the OUD-specific analysis. Thisis surprising given
the assumption that MTAG should specifically isolate OUD-related variance. The absence from
the MTAG analysis any association mapped to OPRM1, alocus that should be highly-specific to

OUD, is unexpected.

FURIN was associated with OUD risk in both SNP-based and gene-based analyses.
FURIN (Furin, Paired Basic Amino Acid Cleaving Enzyme) encodes the endoprotease furin
enzyme that serves a primary role in regulating synaptic neuronal activity, including the
synthesis of brain-derived neurotropic factor and regulation of neurotrophin levelsin the
brain(26). Variation in FURIN has been associated with multiple psychiatric outcomes including
schizophrenia(27,28) and studies examining genetic and phenotypic overlap between
schizophrenia and bipolar disorder(29,30). The two top FURIN SNPs associated here with OUD
arein strong LD (r>=0.91). The second strongest FURIN association in the current study,
rs17514846, has been significantly associated with multiple cardiovascular and hypertension

outcomes (31,32), and was also GWS in a GWAS of parents' attained age (current age of parents
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or parental age at death)(33). A statistically-significant FURIN gene-level association being
driven by rs17514846 was reported between FURIN and opioid addiction(34). In atargeted
follow-up in the FURIN gene region, they aso reported significant association between
rs11372849 (lead SNP in the current study) and opioid addiction. Accumulating evidence linking
FURIN and opioid outcomes, including the FURIN GWAS associ ations reported in the present
study along with evidence of gene-based associations with opioid addiction(34) reflect the high
degree of co-morbidity between OUD and psychiatric and physical health traits. Further
investigation into FURIN’ sinvolvement in the genetic underpinnings of physical health,

psychiatric outcomes, and OUD is needed.

Our findings support previous OUD GWAS implicating OPRM1 genetic variation asa
risk factor for opioid addiction and OUD(7,34) and extend GWS findings for OPRM1 as arisk
factor in across-ancestry analysis of EUR and AFR populations. The top association in the EUR
OUD GWAS was with the OPRM1 coding variant (rs1799971), with an additional OPRM1
variant (rs79704991) in low-LD with rs1799971 (r*=0.02) also identified. Two OPRM1 variants
were also found to be GWS in the cross-ancestry OUD GWAS (rs1799971 and rs9478500;
r’=0.02). Rs9478500 was previously GWS for opioid addiction in EUR(34). Thereis well-
documented evidence of OPRM1’s complex haplotype structure and the potential for multiple
independent OPRM1 risk loci influencing risk for OUD and SUDs(35). The conditional analysis
of the top EUR OUD GWAS OPRM1 variants (rs1799971 and rs79704991; r’=0.02)
demonstrated that these variants are not independent. Future studies of larger cohorts with
diverse ancestral backgrounds will be important for disentangling the effects of OUD risk loci
across the OPRM1 region, including those of the known-functional rs1799971 variant which

may or may not be the variant motivating previous findings.
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Estimates of heritability and genetic correlation also provide insight into the genetic
etiology of OUD. We found ah’sp=12.75% (Z=11.28); alarger and more statistically robust
estimate to the estimate reported in Zhou et al., 2020 (h?sr=0.113; Z=6.27), as would be
expected from a~46% increase in EUR OUD cases. However, the comparison between these
two studiesis not direct: the largest previous GWAS(7) used opioid-exposed controls, while we
used a broader control definition, including not only individuals who were opioid-exposed, but
subjects with no OUD assessment. This was necessitated by the fact that many of the available
datasets did not define exposed controls and would have been excluded had we used the exposed
control definition. Findings from the current study do not establish whether the control definition

impacted the detection of genetic loci or the genetic architecture of OUD.

OUD was positively genetically correlated with other SUDs (e.g., CanUD, AUD) and
psychiatric conditions (e.g., PTSD, depression, schizophrenia), with lower correlations for
measures of substance use (as opposed to dependence; e.g., AUDIT-C), suggesting that OUD is
more akin to measures of substance dependence than use per se. OUD was genetically related to
multiple forms of chronic pain (e.g., lower back pain) and indicators of impairment (inability to
work, decreased physical activity) and significantly genetically correlated with socioeconomic
hardship (Townsend Deprivation Index) and lower levels of educational attainment. These
patterns of genetic correlation are consistent with high rates of co-occurrence of OUD with
SUDs and psychiatric disorders in epidemiologic studies(36,37). Beyond epidemiologic
estimates, SUDs and psychiatric disorders have also been demonstrated to be risk markers for
severe opioid-related outcomes, such as opioid overdose(38). Educational attainment and
economic hardship have also been associated with higher rates of opioid overdose and opioid

overdose-related deaths(39). These patterns of genetic correlation are cons stent with the

15


https://doi.org/10.1101/2021.12.04.21267094
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.12.04.21267094; this version posted December 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

complex clinical presentation of OUD and underscore the need for prevention and intervention in

underserved populations and individuals with chronic and severe OUD.

We examined the utility of using MTAG to increase the information available from the
l[imited number of genotyped OUD samples currently available. The OUD multi-trait analysis
was feasible given the high genetic correlations with CanUD (r4=0.82) and AUD (r4=0.77) and
increased by an order-of-magnitude the number of GWS risk loci detected. While this provides
proof-of-concept for this approach given that many of the loci identified viaOUD-MTAG have
previously been implicated with psychiatric and substance use outcomes, OPRM1 was not GWS
in the OUD-MTAG analysis, so increased detection may have come at the cost of specificity for
OUD. However, only 4 of the 18 OUD-MTAG GWS associations were GWS in the respective
AUD and CanUD GWAS used as MTAG instruments, so the MTAG results did not smply

reflect the findings from AUD and CanUD GWAS.

A PheWAS across 1,291 clinical outcomes also demonstrated convergent patterns of
association between OUD and OUD-MTAG with common comorbidities (e.g., SUDs,
psychiatric traits, chronic pain, viral hepatitis C), supporting that these two analyses capture
genetic factors that underlie similar clinical presentations and related impairment. Additionally,
summary data from the OUD MTAG analysis was highly genetically correlated (r;=0.98) with
OUD(7), so it appears that the OUD-MTAG did capture genetic information relevant to OUD
risk, though measuring the risk for OUD through a genetic liability for SUDs more broadly. That
is, genetic risk for OUD may be a combination of a broader addiction liability (OUD-MTAG risk
loci) combined with the opioid-specific genetic effects (e.g., OPRM1) that were found in the

OUD single-trait analysis that are also influencing risk.
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The distinction between substance-specific genetic effects and general SUD liability has
long been of interest in genetic studies of SUDs. Quantitative genetic studies have demonstrated
both substance-specific influences, aswell as heritable factors that contribute to SUDs more
broadly(40,41). Up to 38% of variation in opioid dependence was reportedly accounted for by
opioid-specific factors that were not shared with other SUDs(42). Molecular genetic studies have
begun to disentangle common vs. substance-specific genetic influences, reporting evidence to
suggest the presence of a common unitary addiction factor that can account for risk across SUDs,
in addition to substance-specific influences(43). Larger-scale studies of OUD will be needed to
advance OUD genetic discovery and parse genomic influences specific to OUD from those
underlying risk for SUDs more broadly. However, thiswill require many more genotyped OUD

cases, because it cannot be accomplished via statistical methods alone.

The present study has limitations. Despite including all genotyped OUD subjects
available to date, the OUD-only component of the present study is smaller than GWAS for other
substance use behaviors (alcohol and nicotine use)(14) because OUD cases are underrepresented
in available datasets. The MTAG analysis yielded a much larger sample, but at the apparent cost
of areduction in specificity marked by the non-significance of the OPRM1 locus in the OUD-
MTAG. To maximize sample size while maintaining OUD diagnosis to define case statusin
extant datasets, we used an unscreened control group, which although not optimal, allowed for
the inclusion of additional cohorts that included OUD cases. Previous studies have provided
evidence for important consideration being given to OUD control definitions(6,34). Additionally,
an inadequate number of OUD cases and controls limited our ability to identify GWS variants
contributing to risk of the disorder in population groups other than EUR. This must be addressed

by purposeful recruitment of AFR and other non-EUR OUD subjects.

17


https://doi.org/10.1101/2021.12.04.21267094
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.12.04.21267094; this version posted December 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

In conclusion, we report novel findings from a large-scale GWAS meta-analysis of
OUD and explore multi-trait approaches to advance discovery for understudied traits such as
OUD. These identified genomic risk factors for the development of OUD and underlying
biology, and highlight the need to assemble large OUD datasets that include individuals from
diverse ancestral backgrounds. To advance our scientific understanding of OUD risk will require
study of arange of human traits (e.g., clinically diagnosed OUD and prescription painkiller
use)(44). Thiswill be necessary to improve further our understanding of the genetic etiology of
OUD and trandation of genetic findings to help address the opioid public health crisis and

reduce preventable deaths.
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Table 1. Overview of samplesincluded in GWAS meta-analysis of OUD cases vs. OUD controls

Cohorts EUR cases EUR controls AFR cases AFR Controls  Casedefinition Control definition
MVP Releases 1-2 8,529 267,737 4,032 71,511 ICD-9/ICD-10  unscreened
PGC-SUD* 3,444 25,911 1,231 7,063 DSM-IV unexposed
Partners Biobank 1,039 20,271 - - ICD-9/ICD-10  no SUD diagnosis
BioVU 933 3,732 - . ICD-9/1CD-10 unscreened
FinnGen 651 214,999 - . ICD-9/1CD-10 unscreened
Yale-Penn 3 448 1538 172 868 DSM-IV. no OUD diagnosis
iPSYCH 379 5221 - . ICD-9/ICD-10 no OUD diagnosis
Ancestry-specific subtotals 15,423 539,409 5,435 79,442
Overall total cases 20,858
Overall total controls 618,851
Overall total N 639,709 Total Neffective 77,023
EURtotal N 554,832 EUR Neffective 56,991
AFR total N 84,877 AFR Neffective 20,032

*The PGC-SUD OUD analysisincluded AFR and EUR participants from Yale-Penn 1 (N=3,922; Ncases=1,656) and Y ale-Penn 2 (N=2,483;
Ncases=846)—data from Y ale-Penn supplied 67.4% of AFR cases and 51.1% of EUR cases for the overall PGC-SUD meta-analysis. Y ale-Penn
3isincluded as a separate cohort in the current analysis.

* 9SUBII| [eUOIRUIBIU| 0% AN-DN-AZ-DD € J3pun a|gejreAe apew s |

SIy Joy Japjoy ybuAdoo ay] ‘TZ0oz ‘ST 1egquadaq paisod UoIsIan SIUl ‘46029212 v0'2T T202/TOTT 0T/B40°10p//:sdny :10p wudaid Axypaw

‘Aimadiad ul Julidaid ayy Aejdsip 01 asuadl| e AIxHpaw pajuelb sey oym ‘1spuny/ioyine ayl si (mainal Jaad Ag paljilied 1ou sem yoiym) juudaid


https://doi.org/10.1101/2021.12.04.21267094
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.12.04.21267094; this version posted December 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

Table 2. Genome-wide significant (p=5.00x10%) GWAS associations in EUR OUD analysis.

Chr Position MarkerName Al A2 Gene Z-score P-value Direction

15 91419432 rs11372849 T TC FURIN 6.12 954E-10  +++7747

154379152 rs3823010 OPRM1 548 425E-08  +++-++++

6 154360797  rs1799971 A G OPRM1 585 492E-09 ++++++++
15 91416550  rsl7514846 A C FURIN -577 7.87E-09 ———t--?
6 154319449 rs79704991 T G OPRM1 571 111E-08 ++++++++
6 154315310 rs12200046 T C OPRM1 564 170E-08 ++++++++
6 154309808 rs10499276 T C OPRM1 552 338E-08 ++++++++
6 154304242 rs34069531 T C OPRM1 551 3.67E-08 ++++++++
6 154377925  rs3778146 T C OPRM1 -550 3.84E-08 —een
6 154378223  rs9478500 T C OPRM1 -549 4.12E-08 —een

A G

A G

6 154378739  rs3778147 OPRM1 546 4.83E-08 +++-++++

bold = lead SNP


https://doi.org/10.1101/2021.12.04.21267094
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.12.04.21267094; this version posted December 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

Table 3. Genome-wide significant (p=5.00x10%) GWAS associationsin cross-ancestry OUD analysis.

Chr Position MarkerName Al A2 Gene Z-score P-value Direction EUR Zscore EUR P-value

6 154378223 rs9478500 T C OPRM1 -5.616 1.95E-08  --—-+-----+-+ -5.49 4.12E-08
6 154379934  rs9285542 T C OPRM1 5558 273E-08 +++-+++++-++ 543 5.61E-08
6 154379152 rs3823010 A G OPRM1 5527 3.26E-08 +++-++++++-- 5.48 3.26E-08
6 154381012  rs3778148 T G OPRM1 5523 3.34E-08 +++-++++++-+ 543 5.73E-08
6 154355100 rs6936615 A G OPRM1 -552 3.38E-08  ---+--7---+- - -
6 154377925  rs3778146 T C OPRM1 -5512 354E-08  ---+--—--- ++ -5.50 3.84E-08
6 154383658  rs3778150 T C OPRM1 -5492 3.97E-08  ---+--—-—-+-+ -5.38 7.31E-08
6 154382139  rs3778149 ¢ G OPRM1 -5482 420E-08  ---4------ ++ -5.44 5.42E-08
6 154382473 rs7772959 A G OPRM1 5477 4.34E-08 +++-++++++-- 543 5.66E-08
154362254  rs9322445 A G OPRM1 -5468 4.54E-08  ---+------ +- -5.44 5.49E-08
6 154382367  rs/773995 T C OPRM1 5459 4.78E-08 +++-++++++-- 5.42 5.84E-08
6 154360797 rs1799971 A G OPRM1 5455 4.91E-08 +++++++++-++ 5.85 4.92E-09

bold =lead SNP
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Table 4. Genome-wide significant (p=5.00x10%) GWAS associationsin OUD MTAG analysis.

Chr Pos MarkerName Alldel Allde?2 Gene(s) Z P-value p-valuein AUD p-valuein CanUD
11 57535966 rs11229119 T C TMX2-CTNND1  -6.5 7.03E-11 p = 2.60e-07 p=6.68e-05
3 49469449 rs77648866 A G NICN1 6.33 1.82E-10 p = 5.90e-07 p = 5.8%-03
7 114137940 rs1989903 A G FOXP2 -6.2 2.47E-10 p = 1.23e-03 p = 3.52e-09
1 66434743 rs7519259 A G PDE4B 5.73 2.68E-10 p = 9.94e-08 p = 1.36e-05
4 103198082 rs13135092 A G 9 .C39A8 6.51 3.60E-10 p = 4.898e-18 p =0.88
11 112869404 rs1940701 T C NCAM1 -6.1 9.63E-10 p = 4.91e-06 p = 1.67e-03
9 127968109 rs864882 T C RABEPK -5.6 1.24E-09 p = 2.45e-05 p=0.064
6 19076417 rs9350100 T C RP11-254A17.1  5.62 1.76E-09 p = 3.37e-05 p = 2.8%-03
1 91208451 rs2166171 T C BARHL2 -5.88 4.80E-09 p = 1.18e-06 p = 2.76e-05
3 16850764 rs55855024 A C PLCL2 5.73 7.89E-09 p = 1.50e-06 p=020
7 75622281 rs6467958 T C TMEM120A -55 1.06E-08 p = 2.24e-05 p = 4.02e-03
11 113477081 rs11214677 T C TMPRSSE -5.65 1.16E-08 p=123e-04 p = 1.65e-05
1 28989020 rs6667501 A G GMEB1 5.55 1.74E-08 p = 3.66e-04 p =221e-03
19 45453763 rs10422888 A G CTB-129P6.11  5.55 1.99E-08 p = 5.83e-05 p = 6.22e-03
15 91416550 rs17514846 A C FURIN -5.59 2.30E-08 p = 2.85e-03 p=0.092
15 47645174 rs73403005 A G SEMA6D -5.69 2.46E-08 p = 6.06e-09 p = 2.38e-03
13 96932868 rs2389631 A C HS6ST3 -5.61 2.53E-08 p = 8.72e-05 p =0.055
16 53834607 rs7188250 T C FTO 5.64 3.63E-08 p=44le12 p=0.61

bold = GWSin MTAG sumstats
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Figure 1. Overview of European-ancestry opioid use disorder (OUD) genome-wide association study and OUD multi-trait analysis.

MVP I-11 PGC-SUD Partners BioVU FinnGen iPSYCH Yale-Penn lli
Cases 8,529 Cases 3,444 Cases 1,039 Cases 933 Cases 651 Cases 379 Cases 448
Controls 267,737 Controls 25,911 Controls 20,271 Controls 3,732 Controls 214,999 Controls 5,221 Controls 1,538
Neffective = Neffective = Neffective = Neffecm,ve = Nef-fective = Nef‘fective = Neffecti\re =
33,059 11,596 3,953 2,986 2,596 1,413 1,388

Cannabis Use Disorder
(N=374,287)
-AND-
Alcohol Use Disorder
(N=313,959)

OUD meta-analysis '

Neffective = 561991

MTAG traits

OUD-MTAG
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Figure 2. Manhattan plots of (a) European-ancestry OUD GWAS results and (b) OUD-MTAG
multi-trait GWAS results.

(@

-log10 P-value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19202122
Chromosome
TMIX2-CTNND1
7 NICNI
10 PDE4B ¢ Sitsain m:pz i
.
RABEPK I NCAM1
9- RP11-254A17.1 1§ 2
BARHL2 . ' ! lrMPRsss 5
GMEB1 pict2 o
N TMEMIZ0A | A CTB-129P6.11
L]
i

-logl0 P-value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19202122
Chromosome


https://doi.org/10.1101/2021.12.04.21267094
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cplold Usa Diserdar

Cannabils Usa Disordar

Alechel Usa Diserdar

Prablematic Aloshol Use

Neck/Shoulder Pain for 3+ Months

Low Back Faln

GBCAN Smoking InKintlon

Unablate Work Becausa of Slckness or Disabllity

Townsand Daprivation Indsx

Last Menth: Pain All Over the Bedy

MVP GAD2

MVP_P@C PTSD

Numbar of Sexual Partnars

MVP Dapressien (23andMsRameved)

MVP PCL Total Score

GSCAN Drinks Per Week

Job Involves Shift Work

Teking Cther Prascription Madications

Last Month: Back Paln

UKB AUDIT-P

Cannabls Ever Use

Insemnla

UKB Risk taking

Last Month: Hip Paln

Knae Pain fer 3+ Months

Madication for Paln Rsllef, Constipation, Heartburn: Acetaminophen
Lact Month: Neck or Shoulder Paln

PGC Schizophranla

Last Month: Knes Pain

CNCR_CTG Newroticsm

GSCAN Cigarattas Per Day

Last Menth: Headache

Frectured/Broken Bongs In Last 5 Years

Madication for Pain Rallef, Constipation, Heartburn: Aspirin
UKE AUDIT-C

MVP AUDIT-C

Bady Mass Index (BMI)

p— -0.38
—_— -0.38
—_— -0.46

—_— -0.53
—_— -0.54

-0.64
-0.5 -0.3 -0.1

Figure 3. EUR OUD GWAS genetic correlations (rg) with mental health, pain, physical health, sociodemographic, and substance use traits of interest.
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Figure 4. BioVU PheWAS results for EUR OUD GWAS (OUD-META,; left pandl) and OUD multi-trait analysis (OUD-MTAG,; right panel).
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