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Aim: 

To evaluate if suitably designed computed tomography (CT) radiomic signatures are  sensitive 

to tumour transformation, and able to predict disease free survival (DFS) and overall survival 

(OS) time in patients with pancreatic cancer. 

Method: 

Ethical approval by UNSW review board was obtained for this retrospective analysis. This 

study consisted of 27 patients with pancreatic cancer. Unsupervised principal component 

analysis was employed to evaluate the sensitivity of radiomic signatures to cancer presence and 

treatment. Further, optimised radiomic signatures were discovered using swarm intelligence 

and assessed for their capability to predict DFS and OS based on Kaplan-Meier analysis and 

receiver-operator characteristics (ROC) curves.  

Results: 

We found that appropriate two radiomic signature are sensitive to cancer presence (area under 

the curve, AUC=0.95) and cancer treatment, respectively. Two other optimized radiomics 

signatures showed significant correlations with DFS and OS, respectively (p<0.05).  

Conclusion: 

The CT radiomics signatures are an independent biomarkers which are modified when cancer 

is present and can  help to estimate DFS and OS in patients. These signatures have the potential 

to be used to support clinical decision-making in pancreatic cancer treatment. 
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1. Introduction 

Pancreatic cancer (PC), the 4th leading cause of cancer deaths, has a poor 5-year survival (<9%) 

while 430,000 people worldwide currently die from PC every year [1]. Multiple large-scale 

Phase III studies over the past two decades have produced relatively modest survival gains [2]. 

Patients with clearly resectable tumours comprise 15-20% of the presenting cohort at diagnosis. 

Surgical resection followed by multiagent adjuvant systemic therapy remains the number one 

treatment for those patients leading to median overall survival rates of 28-54 months[3]. An 

additional 20% is comprised of patients with either a borderline respectable tumour i.e. one 

with a high risk of incomplete resection [4] and those with locally advanced unresectable 

disease without systemic spread [5]. Retrospective cohort studies [6] and small prospective 

trials have suggested that neoadjuvant therapy presents an opportunity to increase the 

resectable cohort [3, 7].  

Currently, local and distant recurrences following resection are frequent [8] and, for the 80% 

of patients with non-metastatic disease who have borderline resectable or locally advanced 

pancreatic cancer, 5-year overall survival is just 12% [9]. Biomarkers, including circulating 

tumor antigen CA19-9 and genomic markers, have not been prognostically accurate enough to 

identify patients who are most likely to benefit from surgery and/or additional interventions 

such as chemotherapy and radiotherapy  [10]. 

Radiomics is an emerging quantitative approach to standard-of-care clinical images where 

automatically extracted quantitative image information is utilised to derive medically relevant 

conclusions [11]. The images are first inspected to identify a region of interest (ROI) which 

may comprise the whole tumor, specific areas, relevant organs or other points of reference. 

Boundaries of the ROI are "segmented by an operator or software and quantitative features are 

extracted, including both conventional, visually detectable differences in shape, intensity, or 

textures [12] as well as image differences which are too subtle to be perceived by human 

operators. These subtle differences are instead captured by a careful mathematical or data-

driven analysis of the spatial distribution of image pixel intensities. In this way, the Radiomics 

approach overcomes the subjective nature of clinical image assessment [13]. This is important, 

in light of high human error rates, e.g. for assessing resectability the literature cites a 23% error 

rates [14] despite new international consensus definitions. Errors in image analysis are due to 

variable background and training of observers; thus, there is a significant need for a more 

objective methodology to derive clinical conclusions [15]. 

In this study, we developed and assessed several (N=4) radiomic signatures from CT images 

of pancreatic cancers potentially useful for different medical decision-making applications. A 

specific radiomic signature was developed and its sensitivity was evaluated to the presence of 

cancer. Further, a linear classifier was developed for potential automatic cancer segmentation. 

Next, a distinctive radiomic signature was constructed which is sensitive to the effect of 

chemotherapy and tumor progression based on base-line and pre-operative CT images. Finally, 

two separate radiomic signatures developed to predict outcome for both disease free survival 

(DFS) and overall survival (OS) using regression analysis combined with swarm 

intelligence[16]. These radiomic signatures were subsequently used to identify patient 

subpopulations with long or short survival time (disease free survival and overall) with 

performance assessed by Kaplan Meyer survival and receiver operator characteristic (ROC) 

analysis.  
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2. Materials and methods: 

2.1 Patient recruitment   

GAP was a single-arm, multicentre, Phase II trial of perioperative chemotherapy utilizing nab-

gem in patients with radiologically defined respectable PDAC [17]. Eligible patients were 

recruited from eight sites across Australia between 19 June 2012 and 30 June 2014[18]. 

Inclusion criteria were: aged 18 or older, ECOG performance status of 0–2 with confirmed 

PDAC, and resectable disease on CT/MRI based on established guidelines[19, 20]. This was 

defined as no evidence of any of extra-pancreatic disease, tumour abutment of the superior 

mesenteric artery (SMA) or coeliac axis (T4), portal vein (PV) infiltration of more than 180⁰ 

of the circumference or occlusion of the superior mesenteric vein (SMV) or SMV-PV 

confluence. Eligibility was assessed at local institutional tumor boards. Major exclusions 

included borderline resectable tumour or locally advanced disease prior to registration,[20] 

previous radiotherapy to the upper abdomen, and significant medical conditions that prevented 

treatment. 

All participants provided written informed consent. The protocol was centrally approved by 

the Sydney Local Health District Ethics Review Committee, Royal Prince Alfred Hospital. The 

Australasian Gastro-intestinal Trials Group (AGITG) was the study sponsor and it was 

coordinated by the National Health and Medical Research Council Clinical Trials Centre 

(NHMRC-CTC) at the University of Sydney. Specialised Therapeutics Australia supplied the 

nab-paclitaxel and provided untied financial assistance to conduct the trial. The trial was 

registered with the Australian and New Zealand Clinical Trial Registry 

(ACTRN12611000848909). Forty-two patients were enrolled in the trial, and where imaged 

using either multiphase CT, PET/CT or MRI.  Portal venous phase CT images were chosen for 

analysis as they are the most consistent post contrast phase in terms of intravenous contrast 

concentration and rate of change. Twenty-seven of the patients had baseline CT studies which 

included a portal venous scan (Patient characteristics and exclusion reasons are detailed in 

supplementary material table 1, Consort flow diagram is detailed in supplementary figure 1).  

 

2.2. CT imaging (baseline and pre-opp)  

Baseline assessments were made in the 28 days prior to registration. Safety investigations were 

done at baseline and prior to each treatment cycle. A baseline three-phase CT scan of the 

chest/abdomen/pelvis or MRI-determined resectability and was repeated prior to surgery to 

assess response and resectability, and again after the second and fourth cycles of AT. 18FDG-

PET combined with a low-dose CT scan was performed prior to Day 1 and on Day 15 (±2 days) 

of the first cycle of chemotherapy (CHT) to assess early metabolic response. 

2.3.Segmentation and feature extraction 

Image segmentation and radiomic analysis was performed using 3D Slicer [21] on portal 

venous phase images. Double blinded hepatobiliary radiologist segmented the tumour and a 

region of normal pancreatic tissue to produce 3D regions of interest (ROI). Radiomic features 

were generated using the Slicer Radiomic extension, Pyradiomics [22]. In this study different 

classes of quantitative imaging features, each describing a different property of a region of 
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interest (ROI), were extracted. This features includes ROI shape features such as tumour size, 

diameter and circularity as well as heterogeneity [23]. Commonly used  first-order (e.g., mean 

intensity) and second-order features (e.g., contrast and homogeneity) were captured [24]. This 

feature bank captures comprehensive information about the tumour, Radiomic feature 

dimensionality reduction and classification. 

 

2.4. Data analysis 

We developed 4 distinctive radiomic signatures (1) to detect tumour (tumour radiomic 

signature), (2) to assess treatment (treatment radiomic signature), (3) to predict outcomes based 

on DFS (DFS radiomic signature), and (4) to predict outcome based on OS (OS radiomic 

signature).  

2.4.1 Construction of tumour and treatment radiomic signatures 

Tumour and treatment radiomic signatures were constructed by applying principal component 

analysis (PCA) to significant radiomic features (p<0.05) identified by Mann-Whitney U test 

(MWU) [25] . PCA is a standard unsupervised dimension reduction approach which is secure 

from overfitting. PCA projects the radiomic vectors onto the eigenvectors of the covariance 

matrix to elucidate useful variations of uncorrelated data. Top-ranked PCA scores capture the 

most significant portion of data variability (>90%) [26]. In this work, we simply considered 

top 2 ranked PCA scores obtained from tumor/normal image sections and baseline/pre-opp 

imaging as a 2D radiomic signature for tumour and treatment radiomic signatures, respectively. 

2.4.2 Construction of DFS and OS radiomic signatures 

The DFS and OS radiomic signature need to be one dimensional to be able to predict the 

survival outcomes. Swarm intelligence and regression analysis were used simultaneously to 

select a limited number  (N=5) of most useful prognostic features and construct from them the 

DFS and OS radiomic signatures [16]. Briefly, swarm intelligence replicates the progression 

of naive information-managing cooperating agents in a group aiming to reach a target [27]. In 

this work, the agents were radiomic feature subsets[16]. These agents repetitively evolve 

according to a pre-set evolution rule[28] to achieve the target. In our case the target was to 

maximise the goodness of fit (measured by the coefficient R2) of the linear regression curve to 

the patient feature data. R2 varies between 0 to 1 corresponding to the lowest to the best 

goodness of the fit, respectively. Initially, a number of agents (K=100 in this work) with 

random subsets of 5 feature are selected, and their R2 values are calculated. Next, these agents 

are iteratively updated until R2 converges to a highest value. One of such agents (feature 

subsets) whose R2 is close enough to that highest value is identified, and the coefficients of its 

linear fit are then recorded. At this point we have found an optimised linear combination of 5 

features which represents the best fit to patients’ data, meaning that an optimum radiomic 

signature is constructed. 

2.4.3. Assessing radiomic signature based on cut-point optimization 

DFS and OS radiomic signatures were used to divide patients into high and low risk outcomes 

based on cut point optimization and Kaplan-Meier (KM) analysis. 
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To identify patient subpopulations (long time survival vs. short time survival) using radiomic 

signature, a cut-point is required. To this end, a standard method called “X-tile” was employed 

as detailed in [29]. X-tile demonstrates the presence of substantial patient subpopulations and 

confirms the robustness of the relationship between radiomic signature and outcome by 

evaluating every possible subpopulation and optimizing cut-off point [29]. To evaluate the 

robustness of radiomic signature and corresponding cut- point to classify patients, Kaplan-

Meier (KM) strategy was used as discussed in [30]. KM measures the fraction of subjects living 

for a certain amount of time after treatment. The treatment effect is assessed by the number of 

patients survived or saved after that intervention over a time period. The time commences from 

baseline imaging to the occurrence of death.  

3. Results  

In this study, we analysed 27 patents (current cohort) due to exclusion of 15 patients from our 

original patient cohort (N=42). Reasons for exclusion were, in the majority, technical, with 11 

being due to the lack of cortal venous phase CT images for assessment (section 2.1) due to 

other scanning modalities being utilised (supplementary table 1). A demographic table (Table 

1) details clinical variables and differences between the original GAP and current study cohort. 

There were only negligible differences between two cohort's clinical variables mean values 

amounting to 1%, 1%, 7% and 3% for age, BMI, CEA and Ca19-9, respectively. 

Table 1. Demographic table 

Continuous 

covariates 

N Mean STD MIN Median Max 

age 27 62.92 9.68 42.8 64.5 78.64 

42 64.1 8.66 42.8 65.3 78.6 

BMI 27 26.47 5.2 19.03 25.45 37.1 

42 27.1 5.77 18.5 26.1 47.7 

CEA  27 5.9 8.6 0.5 3 32 

42 5.44 7.93 0.5 2.7 32 

Ca19-9  27 731.55 1628.13 1 80 7305 

42 703 1554 1 80.5 7305 

 

3.1 Tumor radiomic signature 

Figure 1 (a) represents radiomic signature values obtained from tumour regions (red points) 

and regions of normal pancreatic parenchyma (blue points) as detailed in Section 2.4.1 and 

Supplementary Material Table 2. It shows that tumour regions have distinctive radiomic 

signature (details in supplementary material table 2) from normal regions by forming a separate 

cluster (P<0.05). Further, radiomic signature (top 2 PCA scores) were fed to a linear classifier 

to predict data points labels. To approximate the sampling error due to a relatively small data 

set, a bootstrapping approach was used due to fairly small sample size [31]. To this end, data 

points were randomly resampled 100 times with the substitution from the original set of 

observations and then the corresponding ROC curves were obtained, and 95% confidence 

interval calculated. The performance of the Classifier was evaluated based on the ROC curve 

(Figure 1 (b)) and it was found to be very accurate (AUC=0.95±0.04). 
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Figure 1. Tumour and normal pancreas radiomic signature. (a) PCA discriminative analysed 

(p<0.001 based on Mann-Whitney U-test applied on PC1) (b) ROC curve (AUC=0.95). 

 

3.2. Treatment radiomic signature 

We analysed radiomic signature for patients with both baseline and pre opp CT images (N=19). 

Figure 2 (a) shows radiomic signature (details in Section 2.4.1. Supplementary Material Table 

3) obtained from pre-operative imaging data points (blue) and baseline images data points 

(red). Baseline datapoints form a cluster cantered away from the pre-op data points. Figure 2 

(b) is the boxplots corresponding to the PC1 with significant difference (P<0.005). Visual 

assessment of Figure 2 (a) and (b) shows that 7 pre-opp data points are mixed with baseline 

clusters representing 82% patients radiomic signature modifies due to treatment and/or cancer 

development. 

 

Figure 2. (a)Pre-op radiomic signature modification due to cancer development/ treatment. 

(b) Boxplots corresponding to the PC1 representing significant difference between baseline 

and preopp radiomic signature based on Mann-Whitney U-test (P<0.005). 
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3.3. DFS and OS radiomic signatures  

DFS and OS radiomic signatures (see Section 2.4.2 and Sup Mat Table 4 and 5) were 

discovered based on radiomic features in the baseline scans employing a limited number of 

features (N=5) to minimize overfitting risk. The goodness of OS and DFS radiomic was 

evaluated based on coefficient of determination (R2)[32] which was found to be 0.73 and 0.63 

for DFS and OS radiomic signature, respectively. 

 

Figure 3. Radiomic signature to predict survival time. (a) DFS radiomic signature (b) OS 

radiomic signature 

 

3.4. DFS and OS radiomic signature classify patient with high and low risk outcomes 

The X-tile method was applied to the DFS and OS radiomic signature obtained in section 3.3 

to identify radiomic signature cutting point and dividing patient into two groups with high and 

low radiomic signature values. The values of the DFS and OS cutting points were found to be 

-0.4 and -0.1. Patient survival time with low and high radiomic signature values were compared 

against survival function from lifetime data using KM graphs. Figure 4 (a,b) shows the  

percentage survival of patient with low radiomic signature values (blue line) versus patients 

with high values (grey line) and demonstrate that both DFS and OS radiomic signatures could 

significantly (P<0.01) classify patients with long survival time from patients from short 

survival time. The classification performance (AUC) was found to be 0.94±0.07 and 0.87±0.17 

for DFS and OS, respectively (details in supplementary materials figure 2).  
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Figure 4. Kaplan- Meier analysis to evaluate survival time (a) Kaplan- Meier graph based on 

DFS (b) Kaplan- Meier graph based on OS.  

4. Discussion 

The rapid development of new medicinal options in the pancreatic cancer treatment requires 

biomarker discoveries for a reliable and correct pre-therapeutic patient classification and 

treatment assessment. In this communication, we demonstrate that radiomic analysis of 

pancreatic tumour paired with artificial intelligence has the ability to identify tumour sections 

and is sensitive to chemotherapy. We then demonstrate evidence for the functionality of 

radiomics signature to predict the survival rate in patients. 

Pancreas cancer has poor outcomes and as treatment choices evolve there is a need to improve 

the prediction of outcomes and reduce inappropriate treatments unlikely to benefit patients. 

Recent data has shown the potential benefits of neoadjuvant therapy in improving survival 

compared to surgery alone [33]. The challenge remains to identify reliably those patients for 

whom this approach provides sufficient gain to justify the time and risk of side effects that are 

involved.  In this communication, we demonstrate that radiomic analysis of pancreatic tumour 

paired with artificial intelligence has the ability to distinguish tumour from surrounding tissue 

tumour sections and demonstrates change with treatment exposure. We then demonstrate 

evidence for the functionality of baseline radiomics signature to predict the survival rate in 

patients. 

Among the features tested in our study, zone entropy, demonstrating heterogeneity of an image, 

was common to the predictive model of radiomic signatures found for each of the tumour 

section classification, change with treatment and outcome response associated with DFS and 

OS. Our data conforms regarding entropy with the reports from meta-analyses of different 

tumour entities, across imaging modalities as a promising candidate feature to evaluate in 

tumours [34-36].  

 The role of radiomics as independent predictors for identification of tumour tissue and 

characterising the signal patterns is evolving in pancreas cancer. The field has examined issues 

of diagnosis to separate benign from malignant pancreatic masses and patterns at base line to 
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predict outcomes of surgical resection. Ours is the first study to correlate baseline signals with 

outcomes in the neoadjuvant setting. Clinical predictors of benefit from treatment have been 

examined for metastatic disease and genomic signatures that predict for outcome are also being 

researched. Previous studies of CT based prognostics that utilised traditional pathological 

parameters did make promising findings [37, 38], however our results suggest that there is a 

predictive radiomic pattern that should be tested in larger data sets.  Improving selection of 

patients will improve cure rates and allow for more personalised therapy.  

Relatively few investigations of the use of CT radiomic features for pancreatic cancer 

prognostics have considered multivariate models. A recent review carried out by He et. al in 

2020 [39] described only two, Cheng et. al 2019 [40] who achieved an ROC AUC of 0.756 for 

predicting progression free survival in patients with unresectable PDAC receiving 

chemotherapy and Attiyeh et. al 2018 [41]who achieved a concordance index (a generalisation 

of ROC AUC) of 0.74 for predicting OS in chemotherapy-naive pre-surgical pancreatic ductal 

adenocarcinoma patients.  

In a more comparable populations Koay et. al [42] investigated CT images of the interface 

between PDAC tumours and surrounding parenchyma in pretherapy PDAC patients and found 

that the difference in mean value of the Hounsfield unit (HU; a measure of radio density) 

distribution was predictive of distant metastasis free survival and overall survival in patients 

receiving neoadjuvant therapy (gemcitabine-based chemoradiation) or upfront surgery. 

Comparison of Kaplan- Meier curves do not indicate as great bifurcation as achieved by our 

multivariate model and multivariate assessments, including the radiomic feature, adjuvant 

chemotherapy and gender had concordance indices of 0.666 and 0.552 for T3 N0 and T3 N1 

patients, respectively. In a follow up study [43] they demonstrated that a quantitative machine 

learning approach to the identification of this feature was possible and gave a highly predictive 

feature with hazard ratios of 2 and 1.9 for in multivariate models (including the single radiomic 

feature with patient, treatment and disease characteristics) predicting OS in patients receiving 

upfront surgery and gemcitabine-based chemoradiation, respectively. In another study Park et. 

al 2021 [12] predicted survival time after surgically resected PDAC from demographic, clinical 

and CT radiomic features, and achieved an improvement in the concordance index for the 

stratification of high-risk (survival <1 year) from low-risk (survival >3 years) patients from 

0.6785 to 0.7414. The importance of the inclusion of patient and demographic factors along 

with radiomic features in prognostic modelling is highlighted by Permuth et. al 2021 [44] who 

investigated several CT radiomic features in a diverse population of patients who underwent 

pre-treatment imaging for PDAC. They demonstrated that some features' correlation with 

survival was influenced by the ethnicity of the patient (in particular, African Americans with 

low volumetric mean HU tumours had worse survival than non-African Americans with the 

same tumour characteristics). Our work stands out for its precision in identifying a patient 

cohort who all have very short disease-free survival times (Fig. 4a) as well as a cohort who all 

have relatively long-term overall survival (Fig. 4b). 

A limitation of this study is the small cohort size, which is a common issue in the medical 

imaging field due to the lack of image standardization between hospitals and institutions in 

addition to an absence of overarching registries or radiology image banks allowing the pooling 

of patients [45]. The scope defined for this study was to demonstrate the existence of radiomic 

signature sensitivity to tumour, treatment and also to the outcome. We have achieved this, 

however this project is not yet translational and these results should not be viewed as currently 
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supporting implementation. Our findings are robust and hypothesis generating, however they 

require further validation in larger retrospective cohorts as well as in translational substudies 

in prospective trials. 
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