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ABSTRACT

The world has gone through unprecedented changes since the global pandemic hit. During the early phase of the pandemic,
the absence of known drugs or pharmaceutical treatments forced governments to introduce different policies in order to help
reduce contagion rates and manage the economic consequences of the pandemic. This paper analyses the causal impact
on mobility and COVID19 incidence from policy makers in Cataluña, Spain. We use annonimized phone-based mobility data
together with reported incidence and apply a series of causal impact models frequently used in econometrics and policy
evaluation in order to measure the policies impact.. We analyse the case of Cataluña and the public policy decision of closing
all bars and restaurants down for a 5 week period between the 2020-16-10 to 2020-23-11. We find that this decision led to a
significant reduction in mobility. It not only led to reductions in mobility but from a behavioural economics standpoint we highlight
how people responded to the policy decision. Moreover, the policy of closing bars and restaurants slowed the incidence rate of
COVID19 after a time lag has been taken into account. These finding are significant since governments worldwide want to
restrict movements of people in order to slow down COVID19 incidence without infringing on their rights directly.

Introduction
The world has gone through unprecedented changes since the global pandemic hit. Peoples lives have changed drastically
with stay-at-home orders, curfews and strict lock-downs. The highly contagious nature of the COVID19 virus, together with
little to no regulations on restrictions on global mobility during the early periods of the pandemic resulted in the spread of the
virus to every corner of the world. During the early phase of the pandemic, the absence of known drugs or pharmaceutical
treatments forced governments to introduce different policies in order to help reduce contagion rates and manage the economic
consequences of the pandemic. These policies, also referred to as non-pharmaceutical interventions (NPIs) include, among
other things, closing of national borders, travel restrictions, restrictions on public gatherings, restricting the capacity in bars,
restaurants, theaters and emergency investment into healthcare systems and new forms of social welfare provisions. Different
stages of lockdowns have been introduced by governments across the world, (1) studied the impact of 130 NPIs across 130 coun-
tries, (2) construct a policy indicator Oxford COVID19 Government Response Tracker (OxCGRT) which provides a systematic
way to track government responses to COVID19 over time by taking 20 indicators such as school closures and travel restrictions
for more than 180 countries. Since public health experts are learning in real time, there is debate in politics over the level of
response which should be pursued and the timescale to implement and roll-back different responses. Many NPIs have been
proven to have a positive impact on controlling the spread of COVID19, (3) analysed how the implementation of NPIs, along
with climatic, social and demographic factors all affected the initial growth of COVID19. They state that government introduced
NPIs do not explain the growth in COVID19 cases and that the growth rate in cases is explained by demographic, climatic
and social variables. (4) studied the role of public attention to COVID19 using Google search data, finding that countries with
higher levels of public attention are more likely to implement NPIs and the extent to which a government is willing to introduce
NPIs is dependent on the countries institutional quality. Moreover, it is important to evaluate the impact of NPIs in order to
gain a deeper insight into both the positive effects, in terms of pandemic control and the negative effects, in terms of the economy.

Population density may also form an important characteristic in COVID19 infection rates, maintaining safe distances is
more difficult in areas with higher population densities (5). Other studies have found that there has been moderate associations



between population densities and the spread of COVID19 (6), (7) and (8). Moreover, other literature did not find the same
results suggesting that more densely populated areas have better access to health care and increased social distancing policies
(9). More densely populated areas may tend to experience an outbreak earlier than more sparsely populated areas, however,
(10) found no evidence that population density is linked with COVID19 cases.

In order to help reduce the spread of COVID19, policy makers throughout the world have sought to place restrictions on
local populations. These reductions on human interactions should lead to reductions in person to person contagion but it also
comes at a high political, social and economic cost. (11) studied the impact of COVID19 on the U.K. economy by linking
a macroeconomic model to an epidemiological model. They state that applying mitigation strategies for 12 weeks reduced
fatalities by 29% but the cost tot he economy was 13.5% of GDP of which 2.9% is attributable to labour lost from parents
staying at home due to school closures and 8.8% is attributable to business closures. Moreover, the shut down of businesses in
Europe was estimated to reduce GDP by 3% per month (12). Therefore it is important to find the right balance between public
health, societal and economic costs.

This paper address the problem of evaluating non-pharmaceutical interventions (NPI) and public policy decisions during
the COVID19 pandemic in Spain. Specifically, we have focused on evaluating a policy brought in to help slow the spread of
COVID19 incidence during a time when Cataluña was experiencing a peak in the number of daily new COVID19 cases. The
policy forced the closure of bars and restaurants, only allowing takeaway services along with a maximum capacity in shopping
centres reduced to 30%, fitness clubs, cinemas and theatres capacity restricted to 50%, the suspension of all non-professional
sporting activities and face-to-face teaching was also suspended. These measures were originally supposed to last two weeks but
remained in place for five weeks in total. At the time, local health authorities were seeing a total of 12,211 new cases between
October 4th 2020 and October 10th 2020 and rising. Hospitals in the region had more than 1,000 COVID19 hospitalisations,
189 of whom were in intensive care units (ICUs), the R rate (measuring how many people a positive case may infect) was at 1.3.
This prompted the Catalan government to implement measures to reduce social contact which is the main driver in COVID19
outbreaks.

The introduction of the policy was brought on by the regional government of Cataluña and not that of the central government
of Spain. The ministry of health for Spain (Ministerio de Sanidad, Consumo y Bienestar Social) agreed in September of 2020
that regions in Spain (with more than 100,000 inhabitants) must be confined should the following thresholds be exceeded, a
14-day cumulative number of COVID19 cases above 500, ICU occupancy greater that 35% and a positivity rate greater than
10%. At the time Cataluña had 7% of hospital beds occupied by COVID19 patients with an ICU occupancy of 19.5%. Madrid
on the otherhand had 21% of hospital beds occupied by COVID19 patients and 38% ICU occupancy. It is important to note that
in Spain, regional governments take the primary decisions on public heath initiatives with the central government stepping in
when necessary. For example, at the time, the regional government of Madrid lack of action prompted the central government of
Spain to declare a state of alarm in the region, overriding the regional government and putting in place a perimetral confinement
for Madrid’s municipalities in order to bring infection rates down. The policy under evaluation in this paper was introduced by
the Catalan government and not the central government as was the case with Madrid.

Using annonimized phone-based mobility data we analyse the change in mobility patterns after the introduction of a policy
made in Cataluña of closing down bars and restaurants in order to try and slow the spread of COVID19 infection rates. For this
propose, we collected anonymous mobile phone data based on trips and construct origin destination (OD) matrices for each day.
Each OD matrix accounts for the number of trips from a given mobility zone into another mobility zone, where individual
mobility zones make up a combination of municipalities and districts across Spain. Using the OD matrices we compute four
types of mobility indexes incoming, outgoing, internal and total. The incoming and outgoing mobility types are trips coming to
and from a given mobility zone, internal concerns the movement of trips within a given mobility zone and total refers to a
summation of the three mobility types, a more detailed explanation is left to the methodology section. To assess the effect of
the analyzed policy on the mobility, we apply a series of causal inference models which are useful in quantifying the impact
of public policy decisions or NPI’s. Most notably, we apply an Ordinary Least Squares (OLS) model with policy controls, a
difference-in-difference model and a Bayesian structural time-series model. We find that all models agree that the introduction
of the policy helped to reduce mobility levels. We find that this policy affected the behaviour of people and lead to significant
reductions in mobility. That is, people responded to the NPI policy by travelling less across mobility zones but did not alter
their behaviour within their own mobility zone.
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Figure 1. New cases per day for each CCAA: Number of COVID19 cases for each autonomous community (CCAA) in
Spain. Madrid experienced its second peak before the rest of Spain, with Cataluña (as the bold line) experiencing its second
peak just after. The policy was a direct response to control the outbreak of the second peak in Cataluña.
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1 Literature Review
This section discusses relevant literature. We first break the section down to related literature using interrupted time series for
policy decisions. Secondly, we link mobility with public policy decision making and finally we discuss how mobility has been
linked to COVID19 incidence.

1.1 Interrupted time series
Interrupted time series models are being increasingly applied when analysing the impact of public health interventions. (13)
applied Box-Tiao intervention analysis to analyse the effects of the introduction of U.S. legislation requiring the use of
mandatory seat belts across 8 states between 1976 and 1986. (14) applied interrupted time series modeling to study the
association between the introduction of helmet legislation and admissions to hospital for cycling related head injuries between
1994 and 2003 in Canada. (15) used interrupted time series to asses the effect of U.K. legislation of reducing package sizes of
paracetamol on deaths from paracetamol poisoning between 1998 and 2009. (16) used interrupted time series to study the effect
of the introduction of 20 mph (32 km an hour) traffic speed zones on road collisions, injuries and fatalities in London between
1986 and 2006. (17) used interrupted time series to analyse the association between the 2008 financial crisis and suicide
rates in Spain, using data between 2005 and 2010. Interrupted time series models have long be used to analyse public policy
and time series related events in economics and provides a suitable methodology for analysing policy events related to COVID19.

1.2 Mobility and public policy
(18) used Google Community Mobility Data to analyses mobility changes from a baseline mobility level (pre-pandemic).
They found three distinct patterns of societal reaction to social restrictions. In Australia (which implemented a near complete
lockdown) people did not go to their workplaces and stayed at home. In Sweden (which implemented relaxed lockdown with
preserved workplace activity) the change in workplace mobility was smaller suggesting preservation of workplace activity.
South Korea (which implemented minimal lockdown and preservation of workplace activity) changes in workplace mobility
was even smaller. These finding suggest that populations respond directly to governmental interventions and highlights the
important role of government decisions on day to day lives of its populations. (19) analysed public policy effects on driving,
transit and walking mobility behaviour, finding that they dropped to lower levels in Canada than the U.S. during March 2020 and
show strong evidence that policy effects mobility behaviour. (20) used a difference-in-difference approach and mobility data
to study the causal impact of policies finding that statewide stay-at-home orders had the strongest causal impact on reducing
social interactions and affects both mobility patterns and subsequent infection rates. (21) quantifies the effect of U.S. state
reopening policies on daily mobility levels, finding that four days after reopening mobility increased between 6% to 8%. Public
policy decision therefore can have a direct effect on the behavioural patterns of inhabitants mobility in regions directly affected
by the policy.

1.3 Mobility and its relation to COVID19 incidence
(22) show that mobility patterns are strongly correlated with decreased COVID-19 case growth rates in the USA. They collected
data from 1st January 2020 to 20th April 2020. They define a Mobility Ratio (MR) to quantify the change in mobility patterns
when compared to a baseline day before the pandemic when travel patterns were stable. They use this as a proxy for social
distancing such that when an individual makes fewer trips, they interact less. They link mobility data with data on cases and
construct a COVID-19 Growth Ratio (GR) in order to capture the complex and time-dependent dynamics between mobility and
cases. They show a statistically significant correlation between their socially distancing metric and reductions in COVID-19
growth rates, showing that the effect of social distancing on case growth is not likely to be noticed for at least 9-12 days after
implementation. Moreover, (23) extended their own research to include more regions and expanded the time horizon from
16th March 2020 to 16th September 2020. They found that the linear association between mobility and case growth rates
previously observed is absent after April 2020 and that mobility has a less significant role in the transmission of COVID-19
than other adopted behavioural changes and NPIs such as wearing face masks, hand-washing, maintaining physical distance,
avoiding large gatherings and closing schools. The strong association revealed in March-April is related to the adoption of
NPIs in parallel and after an introduction of varying policies and changes in individuals mobility behaviours confound the
role of mobility. They conclude that using mobility data alone is likely to result in inaccurate models and forecasts and that
there are more critical factors than mobility for controlling COVID-19. (24) also identified a strong correlation between
decreased mobility and reduced COVID-19 case growth during the period 27th March 2020 and 20th April 2020. They
found that when they extended their time-horizon between 21st April 2020 and 24th May 2020 and later 25th May 2020 to
22nd July 2020, that there was only a weak correlation between daily distance difference and case growth. They find that
mobile phone data only captures a small component of the behaviours associated with social distancing and reduced case
growth rates and that other NPIs such as wearing masks, maintaining distance are likely to be more important than mobility alone.
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(25) used mobile phone data and modelled the relationship between mobility inflow and infections across counties in
the U.S. between March 1 to June 9 2020. They found that travel between counties decreased 35% after the U.S. entered a
lockdown but recovered rapidly once the lockdown started to ease. Using a system of equations they find a strong and positive
relationship between mobility and the number of infections across counties with an average coefficient of 0.243, that is, a 10%
increase in mobility is associated with a 2.34% increase in infections a week later. (26) analysed mobility data in China to track
population outflows from Wuhan between January 1st and January 24th 2020 and linked it with COVID-19 infection counts
by location. They find a strong correlation between total population flow and the number of infections across regions. (27)
construct network maps of hourly movements of people to and from non-residential locations and apply a meta-population
SEIR model with susceptible (S), exposed (E), infectious (F) and recovered (R) compartments which tracks the trajectories of
infections. (28) used aggregated mobile phone data to build a SEIR model for the city Shenzhen, China. They simulate how the
spread of COVID-19 changes when the type and magnitude of mobility restrictions varied. They found that reducing mobility
by 20% delayed the epidemic peak by around 2 weeks with the peak incidence decreasing to 33%, a 40% reduction in mobility
was associated with a delay of 4 weeks and reduced the peak by 66% and a 60% reduction was associated with a delayed peak
of 14 weeks, decreasing the magnitude by 91%.

2 Results
This section discusses the results in which we asses the effect of NPIs on mobility. We compare the mobility in Cataluña
with that of other regions in Spain where other policies or no policies have been applied. We apply an OLS regression,
difference-in-difference and Bayesian structural time series model in order to try and capture the causal effect of this policy
intervention. We first report some analysis of the mobility data and OD matrices for Cataluña and Madrid, two of the most
populous regions in Spain and where one region introduced the policy whereas the other did not. We then report the main
results of the paper from the different econometric models. Finally, we try to link the policy to reductions in COVID19 growth
rates.

2.1 Analysis of mobility
Figure 2 shows a time series plot of the total number of trips for Cataluña and Madrid. The policy came into effect right in the
center of the time series and lasted until the end of the time series (shaded as yellow) thus we see a shift down in the number
of trips for Cataluña after the introduction of the policy and it remained down for the duration of the policy. Contrasted with
Madrid in which we see no shift downward, which is, as we would expect since, Madrid did not introduce the same policy as
Cataluña.

Figure 3 shows the mobility matrices for Cataluña and Madrid for each day for incoming trips into MITMA regions. The
darker colours represent higher mobility and the lighter regions lower mobility. The plot has been arranged to show MITMA
regions with overall higher mobility on the right and MITMA regions with overall lower mobility on the left. There are distinct
periods of higher and lower mobility, the higher mobility corresponds to weekdays and thus this mobility incorporates people
travelling to and from work and the lighter periods correspond to weekends where people travel less. Additionally, there are
other days of lower mobility. At point (A) in Figure 3 there are 3 days of lower mobility, 2 of these days are a weekend and the
3rd day is a public holiday in Cataluña falling on a Friday, 2020-09-11 (Fiesta Nacional de Cataluña). The same region in the
Madrid plot does not show this reduced mobility since the public holiday is only specific to Cataluña and thus not Madrid,
therefore people in Madrid went to work on this day. There are other public holidays in this data, specific to Madrid which fell
on Monday, 2020-11-01 (Fiesta de Todos los Santos) and Monday, 2020-11-09 (Fiesta de la Almudena) which are shown in the
mobility matrix data as (C) and (D) respectively. Finally, there is a public holiday which is celebrated across the whole of Spain,
on the 2020-10-12 (Fiesta Nacional de España) denoted as point (B). Therefore, mobility for this day was reduced in both
Cataluña and Madrid along with other Autonomous Communities. The next sections reports the main findings of this study.

2.2 Linear regression
We first applied a series of linear regression models. Firstly, using all MITMA zones in Cataluña and then secondly, we
aggregate the data in order to analyse the effect for the whole of Cataluña.

2.2.1 Linear regression across all MITMA zones (Cataluña)
Table 1 reports the OLS regression results for all MITMA regions in Cataluña. There is a statistically significant drop of
15.4% in mobility on weekends whereas there is just a 3.9% drop in mobility during the weekdays. The significant drop on the
weekends may suggest that people are socialising less and are remaining at home and that they do not substitute their socialising
at bars and restaurants with other socialising activities such as going to the cinema, park etc. thus, We see a reduction in
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post-policy trend drops for Cataluña and not Madrid since the policy was only introduced in Cataluña.
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activities which imply the movement of people. We expect to see less of a drop during the weekdays than on weekends since
people still need to go to work. However, the 3.9% drop during the weekdays may suggest that people are socialising less
in bars and restaurants after work and are going straight home. After the policy impact there appears to be a sustained drop
in daily mobility of 6.9% after controlling for weekend effects and therefore the policy caused a shock to mobility and then
leveled out, indicated by the trend of 0.1% afterwards. Therefore, using a regression model, we have aimed to quantify the drop
in mobility as seen in the Cataluña panel of Figure 2.

Dependent variable:
Log Mobility

Weekend Weekday Weekday Control
(1) (2) (3)

Time −0.001 −0.001 −0.001
(0.001) (0.001) (0.001)

Level −0.154∗∗∗ −0.039∗ −0.069∗∗∗
(0.034) (0.022) (0.018)

Trend −0.005∗∗∗ 0.001 −0.001∗∗
(0.001) (0.001) (0.001)

Weekday Control 0.331∗∗∗
(0.010)

Constant 9.849∗∗∗ 10.028∗∗∗ 9.736∗∗∗
(0.027) (0.015) (0.015)

Observations 10,998 27,495 38,493

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1. OLS Regression Results: The Weekend regression is only run on the data points on the weekend whereas the
Weekday regression is only run on the data points on the weekdays. We introduce a weekend control, measuring both the
weekends and weekdays mobility.

2.2.2 Linear regression aggregated MITMA zones (Cataluña)
In order to visualise and illustrate the previous regression results in a more intuitive way, We aggregate the MITMA regions
for all of Cataluña into daily mobility totals and thus we have a single observation for each day for Cataluña. Figure 4 plots
the regression fitted values for the incoming mobility type before and after the policy with and without a weekday control
variable. We note that the level variable of interest for Panel (A) is not statistically significant but the level variable in Panel (B)
is statistically significant at the 5% level with a coefficient of -0.0840258 or -8.40%. Overall, both models show a drop in the
regression line suggesting that mobility decreased after the policy.

2.3 Difference-in-differences
We next apply a difference-in-difference model in order to additionally quantify the effect on mobility of closing the bars and
restaurant in Cataluña. Firstly, we use Madrid as a control group in order to visualise the difference-in-difference model since
Madrid did not introduce the same policy of closing the bars and restaurants as in Cataluña, reported in Figure 5. Finally, we
present the results using each autonomous community..

We applied the difference-in-difference model to the four different mobility types incoming, internal, outgoing and total
and extended the control groups to each autonomous community in Spain. (Note: due to data handling issues, País Vasco
and Castilla-La Mancha were omited.) Table 2 reports the difference-in-difference estimators for each mobility type and
autonomous community. Interestingly, the internal mobility does not show statistically significant results for all but three
CCAAs (i.e. the cells in the table are not coloured). Recall, that internal mobility corresponds to the movements of people
within a given MITMA zone. One economic interpretation could be that since bars and restaurants were closed people chose
not to travel as much to different districts to socialise. For internal mobility, people still went about their daily business closer to
their home, i.e. continue to shop at the supermarket and go to the pharmacy etc. but they had less incentive to travel to different
districts (or MITMA regions) to meet with friends and family (which may be the reason for the non-statistically significant
results in the internal mobility column). This result can be further seen in Figure 12 in the Appendix which plots a 14-day
rolling moving average for 4 CCAA’s, the internal plot shows relatively flat lines for mobility, with Cataluña’s internal mobility
only dropping slightly, whereas incoming and outgoing showed a much steeper drop for Cataluña relative to the other CCAA’s.
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Figure 4. Linear regression model for total daily mobility in Cataluña: Panel (A) shows the fitted values from the
regression without a weekday control whereas Panel (B) shows the fitted values with a weekday control. The vertical dotter line
in both panels indicate the date in which the policy was introduced. The horizontal dotted line in Panel (A) after the policy
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9/26



18800

22854

27807

33856

Before 16th Oct After 16th Oct
Before & After Policy

A
ve

ra
ge

 N
um

be
r 

of
 T

rip
s

Causal effect: −17.5% reduction in mobility (Madrid as a control)
Diff−in−Diff plot

Figure 5. Difference-in-difference results for the incoming data: The 4 points correspond to the average number of trips
before and after the policy was implemented, the orange colour corresponds to Madrid and the blue corresponds to Cataluña.
The dotted line is Madrid’s line shifted downwards to show how potentially Cataluña’s mobility would have gone had they not
implemented the policy. Finally, the vertical red line corresponds to the diff-in-diff regression coefficient as given in Equation 4.
We find the causal effect from the model corresponds to a reduction in mobility of 17.5% when using Madrid as the control
group. The y-axis has been re-scaled back to the number of trips.

10/26



CCAA Incoming Internal Outgoing Total

Andalucia 1.2 -3.1 1.3 -0.7
Aragon -2.2 -2.2 -2 -2.5
Asturias 1.7 -0.2 1.7 0.7
Balearsilles -6.6 -2.2 -6.4 -8
Canarias -12 -5.6 -11.9 -12.4
Cantabria 1.4 -0.6 1.3 0.8
Castillaleon -4.6 1.1 -4.6 -3.7
Ceuta -18 -22.8 -18 -18.9
Extremadura -9 -4.6 -8.9 -8.6
Galicia -2.6 -3.1 -2.5 -3.3
Larioja -7.1 -4.4 -7 -7.1
Madrid -17.5 -8.3 -17.4 -17.1
Melilla -4.5 10.4 -4.4 -3.7
Murcia -4.1 -4.7 -4 -6.2
Navarra -10.5 -4.4 -10.6 -9.6
Valencia -11.7 -7.4 -11.7 -11.4

Note:
All values in %
1 0.1% 0.05% 0.01% 0.001% significance levels

Table 2. Diff-in-Diff Estimates for Mobility Type: The mobility types incoming and outgoing appear correlated with all of
the coefficients being similar to each other. Since these two mobility types are correlated, the total is also somewhat correlated.
The CCAAs whose coefficients were statistically significant at the 0.1% level ranged between -9% to -17.5% and between
-8.9% to -17.4% for incoming and outgoing respectively suggesting that the policy reduced mobility anywhere between -9% to
-17.5% depending on the control group used. Total mobility at the same significance level ranged from -8.6% to -17.1%. These
findings indicate that the policy had a real and direct effect on reducing the movement of people across MITMA regions.

Therefore, people still moved within their MITMA regions in order to go about their daily lives but after the policy people
stopped migrating to other regions and therefore longer distance mobility habits changed.

2.4 Bayesian structural time-series
Figure 6 shows the Bayesian structural time-series model in which the model uses Madrid’s mobility data in order to build a
predictive model for Cataluña’s mobility. The model is able to build a very predictive model during the training phase. The
large spike downwards in the pointwise panel, at the date 2020-09-11 in the training phase corresponds to La Diada Nacional
de Catalunya a public holiday specific only to Cataluña and thus affects Cataluña mobility and not Madrid (Figure 3 shows
that on public holidays mobility is reduced.). Aside from this single day the differences between the predictive model and the
observed data lie in and around zero before the policy is implemented. After the introduction of the policy, these differences
become negative except on two dates 2020-11-02 and 2020-11-09 which correspond to Día de todos los Santos and Virgen de
la Almudena two public holidays specific to Madrid and not Cataluña.

We find that in absolute terms during the post-policy period, the average mobility in Cataluña was 12.39 million trips,
in the absence of the policy the model expected an average of 14.19 million trips with a 95% confidence interval of (13.79,
14.58) million. The causal effect is 12.39−14.19 = −1.8 million reduction in the number of trips in Cataluña with a 95%
confidence interval (-2.19, -1.39) million. In relative terms, mobility reduced by -13% with a 95% confidence interval (-15%,
-10%) which suggests that this causal effect in the reduction in mobility is statistically significant with a posterior Bayesian
one-sided tail-area probability of 0.001. This finding is consistent with the linear regression and difference-in-difference models
presented earlier. Figure 6 reports the model for Cataluña and Madrid, Figure 13 in the Appendix reports a case where the
model did not work using Andalucia in place of Madrid as a control group. Finally, Table 3 shows the results for all CCAAs for
the incoming mobility type, the internal, outgoing and total are left to the appendix.
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Incoming
CCAA Lower Average Upper SD P-value

Andalucia -3.6 0.1 3.5 1.8
Aragon -9.3 -6.3 -3.3 1.6 ***
Asturias -5.3 -1.5 2.5 2.0
Balearsilles -10.8 -7.4 -4.0 1.7 ***
Canarias -13.4 -10.7 -7.9 1.5 ***
Cantabria -7.1 -3.2 0.8 2.0 .
Castillaleon -9.1 -5.8 -2.4 1.6 ***
Ceuta -16.3 -13.3 -10.2 1.5 ***
Extremadura -12.1 -8.6 -5.1 1.8 ***
Galicia -6.1 -2.5 1.0 1.8 .
Larioja -10.0 -6.4 -3.0 1.8 **
Madrid -15.7 -12.7 -9.9 1.4 ***
Melilla -7.1 -3.2 0.8 2.1 .
Murcia -8.8 -5.7 -2.7 1.6 ***
Navarra -9.8 -6.9 -3.9 1.6 **
Valencia -12.7 -9.5 -6.2 1.7 ***

Note:
All values in %
1 *** 0.1%, ** 1%, * 5%, . 10% significance levels

Table 3. Bayesian Structural Time Series Estimates: The table can be analysed (using Madrid) that the reduction in trips in
Cataluña fell by 12.7% with a confidence interval of (-15.7%, -9.9%) which is statistically significant at the 0.1% level. These
findings are consistent with the results found in the difference-in-difference internal column of Table 2.

2.5 Mobility and COVID19
Thus far, this paper has shown that the policy has had a clear effect on the reduction of mobility in Cataluña. In this section we
aim to assess the policies effect on daily COVID19 incidence, however, some comments are required.

Quantifying the policies impact on reductions in the number of new cases is more difficult than quantifying its impact on
mobility. That is, mobility levels over time are roughly constant and predictable which allows us to build a strong counter-factual
and thus when a policy shock has been implemented we can use this counter-factual in order to measure the real causal impact
of that policy. Using new COVID19 case data presents more difficult problems since outbreaks are unpredictable and different
regions experience fluctuations and peaks in COVID19 cases at different times, this renders the models used in this paper
obsolete when applied to COVID19 case data. Consider Figure 1 which plots the number of new cases over time since the
start of the pandemic. There are three regions with high peaks, Madrid experienced its peak before that of Cataluña and would
therefore not make a good counter-factual after the policy. Andalucía and Cataluña peaked during the same period however,
both CCAAs introduced strict counter measures to reduce the number of cases and both their number of new cases fell at the
same time and therefore Andalucía would not make a suitable counter-factual either.

We compute the growth rate ratio in the number of cases for each CCAA as follows.

GRt =
log(∑t

t−13
Ci

14
)

log(∑t
t−20

Ci

21
)

(1)

Where Ci is the number of cases for an autonomous community i at time t.

Figure 7 shows the growth rate ratio for the number of cases over time for all autonomous communities. The growth rate
began to increase in the month leading up to when regional governments introduced different policies. The growth rate in
Cataluña began to decrease after an initial 2-3 week lag once the policy came into effect. Figure 14 shows that the growth rate

13/26



0.96

1.00

1.04

1.08

sep. oct. nov. dic.

G
ro

w
th

 R
at

e 
R

at
io

Andalucia
Aragon
Asturias

Canarias
Cantabria
Castilla y Leon

Cataluña
Comunidad Valenciana
Extremadura

Galicia
Islas Baleares
La Rioja

Madrid
Murcia
Navarra

Growth Rate Ratio of Cases

Figure 7. Growth Rate Ratio (GR) of cases: All autonomous communities are shown as points with Cataluña shown as the
thicker line plot for ease of composition. The shaded area corresponds to when the policy of closing bars and restaurants in
Cataluña was implemented.

in the number of cases began to increase in December, before Christmas and when the policy was not enforced.

Figure 8 shows the same calculation as in equation 1 but applied to the mobility time series. The growth rate ratio for
mobility began to increase from September for many CCAAs, this could be attributed to people returning from their second
homes after the summer break.

We next anticipate that there is a lag between the movement of people and becoming infected with COVID19, due to
the lag in symptoms, reporting etc. We firstly normalise the mobility data, fixed to the first week of October as follows
in equation 2. The first week of October is the first week in our sample data. Moreover, the data is normalised such that,
each Monday is normalised to the first Monday of October, each Tuesday is normalised to the first Tuesday of October and so on.

MRt
j =

∑i j V t
i j

∑i j V
to
i j

(2)

Where to corresponds to the mobility data for each corresponding weekday at the beginning of October. Next, we compute
the Pearson correlation coefficients with a 95% confidence interval for lags 1:40 as shown in Figure 9. We finally take the
optimal lag of 21 and plot the scatter-plot between the growth rate ratio defined in equation 1 and the normalised mobility
defined in equation 2. The results can be seen in Figure 10. There is an association between increased mobility and an increase
in the growth rate ratio.
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Figure 8. Growth Rate Ratio (GR) of mobility: All autonomous communities are shown as points with Cataluña shown as
the thicker line plot for ease of composition. The shaded area corresponds to when the policy of closing bars and restaurants in
Cataluña was implemented.
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the reporting of cases for each regional healthcare systems.

16/26



0.96

0.98

1.00

1.02

0.7 0.8 0.9 1.0 1.1
Normalised Mobility

G
ro

w
th

 R
at

e 
R

at
io

Scatter−plot between the GR Ratio and Normalised Mobility

Figure 10. Scatter-plot between the Growth Rate Ratio in the number of cases and the normalised mobility: There
appears to be some relationship between an increase in mobility and an increase in the growth rate ratio for the optimal lag of
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3 Conclusion
This paper quantifies the impact of mobility on the closing of bars and restaurants in Cataluña using a number of causal
inference models. Overall we find that this policy reduced mobility in Cataluña, but it not only reduced mobility, it caused
people to change the way they behave and respond to the policy, with trips across regions being affected more than trips within
regions. This finding is significant since people did not substitute meeting friends and family at bars and restaurants with
meeting friends and family in other locations, people simply stayed within their own MITMA region, reducing their overall
mobility and changed the way in which people went about their daily business. The findings of this paper are 3-fold. (a) we
quantify the impact of the policy of closing bars and restaurants down during a 5 week period on mobility. (b) we find that
people changed their social behaviours in a direct response to the policy, reducing their mobility relatively more so on weekends
than on weekdays, additionally people changed their longer distance travel habits whilst leaving shorter distance travel habits
relatively unchanged. (c) we find that there is some evidence that the policy slowed the growth rate of COVID19 incidence in
Cataluña.

4 Methods
4.1 Mobility Data Records
Mobility data records comes from a study conducted by the Ministerio de Transportes, Movilidad y Agenda Urbana (MITMA)
https://www.mitma.gob.es/ministerio/covid-19/evolucion-movilidad-big-data. The study col-
lects data of mobility and distribution of the population in Spain from 13 million anonymised mobile-phone lines provided by a
single mobile operator whose subscribers are evenly distributed. More specifically, the data is reported on a geographical layer
composed of 2850 mobility zones across the whole of Spain where each mobility zone corresponds to a district or group of
districts in densely populated areas, and to municipalities or groups of municipalities in regions with low population density
(see Figure 11). The unit to measure mobility is the trip and the data contains the number of trips between and within mobility
zones reported in and hourly basis. The start of a trip event is defined as when a user moves more than 500 meters and the
end of the trip is defined as when that user remains in an antenna coverage area for more than 20 minutes. Thus, a person
moving from region A to region B and remains in region B for longer than 20 minutes is defined as a trip between regions.
Moreover a person who remains in region A and is connected to antenna Ai then moves to antenna A j is defined as a trip
within region. We collected mobility data from 01-09-2020 to 30-11-2020 for all 17 autonomous communities in Spain using
the Flow-Maps systems. https://github.com/bsc-flowmaps/ Note: due to data handling issues, País Vasco and
Castilla-La Mancha were omited. Figure 11 shows the different mobility zones for all of Spain, the colours do not hold meaning
and are simply coloured for easier illustration of the different MITMA areas.

After retrieving the raw mobility data reported by hour, we aggregate it by summing the the total trips between and within
mobility zones for each individual day, to obtain mobility reported on a daily basis. Using the daily mobility data we construct
origin-destination (OD) matrices for each day t. Table 4.1 represent and example of OD matrix where rows correspond to the
origin zone and the columns correspond to the destination zone and each entry corresponds to the total daily trips from origin
to destination.

Destinationt
Ad Bd . . . Zd

O
ri

gi
n t Ao 5639 1873 1072

Bo 2192 7692 1965
. . . . . .
Zo 1129 1834 6393

Following the example of Table 4.1, trips from Ao to Bd are associated with trips leaving MITMA zone Ao and going
to MITMA zone Bd and are the outgoing trips from MITMA zone Ao. Incoming trips are defined as the opposite and thus
trips which began at Bd and went to Ao. The trips going from Ao to Ad are internal trips (the diagonal of the matrix) or the
number of trips within MITMA zone A . Furthermore, for each mobility zone on a given date we define the following four
mobility indexes: i) incoming mobility; ii) outgoing mobility; iii) internal mobility; and iv) the total mobility. More formally,
the incoming data takes the column sums of the OD matrix minus the diagonal, the outgoing data takes the row sums of the OD
matrix minus the diagonal, the internal is just the diagonal and the total is incoming+outgoing+ internal.

4.2 Linear regression
We first run a linear regression model in order to see the effects on weekday and weekend mobility. We expect to see that
the closure of bars and restaurants will have a greater effect on the weekend then on the weekdays since mobility is largely
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Figure 11. MITMA Regions: Each coloured polygon corresponds to a mobility zone. Naturally, smaller mobility zones are
located in densely populated areas such as Madrid, Barcelona and along the coast.
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unaffected by people commuting to and from work but is affected by peoples decision to go and socialise on the weekends. We
estimate the following for policy status j, at time t:

outcome jt = β0 +β1 · timet +β2 · level j +β3 · trend jt + ε jt (3)

Where, outcome jt is mobility for MITMA region j at time t, β0 is the intercept of the existing level at point 0, β1 gives
the existing trend in mobility before the policy, level takes on a value of 0 before the policy and 1 after the policy with its β2
capturing the impact of the policy, β3 captures the change in trend.

4.3 Difference-in-differences (DiD)
We use a Difference-in-difference technique to infer the causal impact of a policy. That is, with two groups and two periods,
the DiD estimator is defined as the difference in average outcome in the treatment group before and after treatment minus the
difference in average outcome in the control group before and after treatment. Here the outcome variable is a daily time-series of
mobility data and therefore we are considering mobility before the policy intervention and mobility after the policy intervention.
Consider equation 4 in which Cataluña corresponds to the treatment group, denoted as T and other CCAAs, for instance Madrid
corresponds to the control group, denoted as C. Therefore, ȳT

0 corresponds to the average mobility for a given mobility zone
in Cataluña before the policy, ȳT

1 the average mobility in a given mobility zone in Cataluña after the policy and ȳC
1 and ȳT

0
corresponds to the average mobility in a given mobility zone in a CCAA (excluding Cataluña) before and after the policy. Thus,
the causal impact of the policy can be given as the difference of these two differences. It is important to note that the data is

normalised by;
x−min(x)

max(x)−min(x)
, bounded by [0,1].

DiD = ȳT
1 − ȳT

0 − (ȳC
1 − ȳC

0 ) (4)

Pre Post Post-Pre Difference
Treatment ȳT

0 ȳT
1 ȳT

1 − ȳT
0

Control ȳC
0 ȳC

1 ȳC
1 − ȳC

0
T-C Difference ȳT

0 − ȳC
0 ȳT

1 − ȳC
1 ȳT

1 − ȳC
1 − (ȳT

0 − ȳC
0 )

Table 4. Diff-in-diff: Difference-in-difference estimates

4.4 Bayesian structural time-series
We use Bayesian structural time series to infer the causal impact of a policy by explicitly modelling the counter-factual
observed before and after an intervention (see (29) and (30)). The model assumes that the outcome time series can be explained
in terms of a set of control time series that were themselves not affected by the intervention. Furthermore, the relation between
the treated series and control series is assumed to be stable during the post-intervention period. This allow us to generalises the
results obtained using the difference-in-difference approach. The model is first estimated using pre-intervention data, and then
an intervention period occurs and the model then tries to predicts the post-intervention period. The difference between the
prediction and the observed data can be thought of as the causal impact of the policy. For the pre-intervention period we take
mobility before the policy and for the post-intervention period we take mobility after the policy.

Consider the following state-space model for time-series data.

yt = ZT
t αt + εt (5)

αt+1 = Ttαt +Rtηt (6)

In which, εt N (0,σ2
t ) and ηt N (0,Qt) are independent of all other unknowns. The observation equation 5 links the

observed data yt to a latent d-dimensional state vector αt and the state equation 6 governs the evolution of the state vector αt
through time. yt is a scalar, Zt is a d-dimensional output vector, Tt is a d ×d transition matrix, Rt is a d ×q control matrix, εt is
a scalar observation error with noise variance σt and ηt is a q-dimensional system error with a q×q state-diffusion matrix Qt ,
where qd. More details can be found in (30).
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Figure 12. 14-Day rolling average for different mobility types. Only the top 4 CCAA’s are reported for ease of composition.
It is evident that after the policy, Cataluña’s mobility dropped significantly for incoming, outgoing and total and began
increasing once the restrictions on bars and restaurants eased. The same can not be said for the internal mobility type.

5 Appendix

Notes
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Figure 13. Bayesian structural time-series model: This figure follows on from Figure 6 in which we report a case where the
control was not suitable for Cataluña. The pairwise differences hover around zero and the cumulative mobility returns back to
zero suggesting that causal inference cannot be inferred from this control group. As Table 3 shows, Andalucia is not
statistically significant and the sign of the relative effect is positive, not negative as one would expect.

Internal
CCAA Lower Average Upper SD P-value

Andalucia -6.3 -4.1 -1.7 1.2 ***
Aragon -9.4 -7.2 -5.1 1.1 ***
Asturias -4.7 -1.7 1.2 1.5
Balearsilles -8.3 -6.0 -3.5 1.2 ***
Canarias -8.2 -6.1 -3.8 1.1 ***
Cantabria -7.2 -3.4 0.7 1.9 *
Castillaleon -5.9 -3.2 -0.5 1.4 **
Ceuta -14.5 -10.4 -6.3 2.0 **
Extremadura -10.4 -7.8 -5.2 1.4 ***
Galicia -8.6 -6.2 -3.7 1.3 ***
Larioja -10.4 -8.1 -5.7 1.2 ***
Madrid -11.9 -9.5 -7.2 1.2 ***
Melilla -8.0 -4.7 -1.7 1.6 **
Murcia -7.6 -5.2 -2.7 1.2 ***
Navarra -9.2 -7.1 -4.9 1.1 ***
Valencia -8.9 -6.4 -3.9 1.3 ***

Note:
All values in %
1 *** 0.1%, ** 1%, * 5%, . 10% significance levels

Table 5. Bayesian Structural Time Series Estimates
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Figure 14. Growth Rate (GR) of cases from August until December for four of the most populous regions in Spain. The
shaded area corresponds to when the policy of closing bars and restaurants was implemented.

Outgoing
CCAA Lower Average Upper SD P-value

Andalucia -3.6 0.1 3.8 1.8
Aragon -9.4 -6.4 -3.3 1.6 ***
Asturias -5.3 -1.5 2.5 2.0
Balearsilles -10.5 -7.4 -4.0 1.7 ***
Canarias -13.4 -10.7 -7.7 1.5 ***
Cantabria -6.9 -3.2 0.8 1.9 .
Castillaleon -8.6 -5.8 -2.4 1.6 ***
Ceuta -16.2 -13.3 -10.4 1.5 ***
Extremadura -11.9 -8.6 -5.2 1.7 ***
Galicia -6.2 -2.5 1.1 1.8 .
Larioja -9.8 -6.4 -2.8 1.8 ***
Madrid -15.4 -12.7 -9.8 1.4 ***
Melilla -7.3 -3.2 0.9 2.1 .
Murcia -8.8 -5.7 -2.5 1.6 **
Navarra -9.9 -7.0 -3.8 1.5 ***
Valencia -12.7 -9.5 -6.1 1.7 ***

Note:
All values in %
1 *** 0.1%, ** 1%, * 5%, . 10% significance levels

Table 6. Bayesian Structural Time Series Estimates
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Total
CCAA Lower Average Upper SD P-value

Andalucia -4.2 -0.9 2.7 1.8
Aragon -9.5 -6.6 -3.4 1.5 ***
Asturias -5.4 -1.5 2.2 1.9
Balearsilles -10.3 -7.4 -4.6 1.5 ***
Canarias -12.8 -10.0 -7.2 1.4 ***
Cantabria -6.9 -3.0 1.1 2.0 .
Castillaleon -8.6 -5.4 -2.4 1.6 ***
Ceuta -16.8 -13.7 -10.6 1.6 ***
Extremadura -11.8 -8.7 -5.2 1.7 ***
Galicia -6.3 -3.0 0.6 1.8 *
Larioja -9.7 -6.6 -3.5 1.6 ***
Madrid -15.0 -12.3 -9.6 1.4 ***
Melilla -7.2 -3.2 1.0 2.0 .
Murcia -8.7 -5.8 -2.8 1.5 ***
Navarra -9.7 -6.9 -3.9 1.5 ***
Valencia -12.1 -9.1 -6.1 1.6 ***

Note:
All values in %
1 *** 0.1%, ** 1%, * 5%, . 10% significance levels

Table 7. Bayesian Structural Time Series Estimates
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