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ABSTRACT  

BACKGROUND: Long-term ozone (O3) exposure could lead to a series of non-
communicable diseases and increase the mortality risks. However, cohort-based studies 
were still rather rare, and inconsistent exposure metrics might impair the credibility of 
epidemiological evidence synthetisation. To provide more accurate meta-estimation, this 
review updated the systematic review with inclusion of recent studies and summarised 
the quantitative associations between O3 exposure and cause-specific mortality risks 
based on unified exposure metrics.  

METHODS: Research articles reporting relative risks between incremental long-term O3 
exposure and causes of mortality covering all-cause, cardiovascular diseases, respiratory 
diseases, chronic obstructive pulmonary disease, pneumonia, ischaemic heart diseases, 
ischaemic stroke, congestive heart failure, cerebrovascular diseases, and lung cancer, 
estimated from cohort studies were identified through systematic searches in MEDLINE, 
Embase and Web of Science. Cross-metric conversion factors were estimated linearly by 
decadal of observations during 1990-2019. DerSimonian and Laird random effect meta-
regression was applied to pool the relative risks.  

RESULTS: A total of 20 studies involving 97,766,404 participants were included in the 
systematic review. After linearly adjusting the inconsistent O3 exposure metrics into 
congruity, the pooled relative risks (RR) associated with every 10 nmol mol-1 (ppbV) 
incremental O3 exposure, by mean of warm-season daily maximum 8-hour average 
metric, was: 1.010 with 95% confidence interval (CI) ranging 1.005–1.015 for all-cause 
mortality; 1.027 (95% CI: 1.004–1.049) for respiratory mortality; 1.061 (95% CI: 1.006–
1.119) for COPD mortality; 1.028 (95% CI: 1.001–1.058) for cardiovascular mortality; 
and 1.102 (95% CI: 1.046–1.162) for congestive heart failure mortality. Positive but 
insignificant mortality risk associations were found for ischaemic heart diseases, stroke, 
pneumonia, and lung cancer.  

DISCUSSIONS: This review covered up-to-date studies, expanded the O3-exposure 
associated mortality causes into wider range of categories, and firstly highlighted the 
issue of inconsistency in O3 exposure metrics. Non-intercept linear regression-based 
cross-metric RR conversion was another innovation, but limitation lay in the observation 
reliance, indicating further calibration with more credible observations available. Large 
uncertainties in the multi-study pooled RRs would inspire more future studies to 
corroborate or contradict the results from this review.  
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CONCLUSIONS: Adjustment for exposure metrics laid more solid foundation for multi-
study meta-analysis, the results of which revealed unneglectable cardiopulmonary 
hazards from long-term O3 exposure.  

REGISTRATION: The review was registered in PROSPERO (CRD42021270637).  

FUNDING: This study is mainly funded by UK Natural Environment Research Council, 
UK National Centre for Atmospheric Science, Australian Research Council and 
Australian National Health and Medical Research Council.  
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Highlights  

1. Updated evidence for O3-mortality associations from 20 cohorts has been provided.  
2. Adjusted various O3 exposure metrics can provide more accurate risk estimations.  
3. Long-term O3-exposure was associated with increased mortality from all-causes, respiratory 

disease, COPD, cardiovascular disease and congestive heart failure.  
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1 INTRODUCTION  

Atmospheric ozone (O3) is a short-lived climate forcer.1 Besides warming the global 
atmosphere, O3 in the stratosphere can abate the radiation hazards from ultraviolet rays 
onto organisms, while O3 in the ambient air is of detrimental defects on ecosystem and 
human health,2-4 and hence health effects caused from exposure to surface O3 have 
become a serious public concern. Short-term (i.e. hours to days) exposure to high-level 
O3 can cause a series of acute symptoms like asthma, respiratory tract infection, 
myocardial infarction, and cardiac arrest;5-8 and long-term (i.e. over years) exposure can 
lead to chronic health outcomes including but not limited to preterm delivery, stroke, 
chronic obstructive pulmonary diseases, and cerebrovascular diseases.9-12 Long-term 
ambient O3 exposure was estimated to be responsible for over 0.36 million premature 
deaths globally in 2019 in the Global Burden of Disease (GBD).13  

Systematic reviews summarising the associations between negative health outcomes 
and O3 exposures, for both the short-term and long-term, have been performed in 
previous studies.14-16 Studies on short-term O3 exposure-induced morbidities are 
comparatively more abundant than the long-term O3 exposure studies where the 
epidemiological evidences are less congruous; and some deficiencies are spotted in the 
two reviews for long-term O3 exposure-associated mortality risk studies,15, 16 the primary 
issue of which is the inconsistent use of various O3 exposure metrics. As a secondary 
photolytic gaseous air pollutant, the warm-season and diurnal concentrations of surface 
O3 will be much higher than cool-season and nocturnal concentrations,17, 18 and thus the 
average and peak metrics of O3 concentrations shall be of drastically different realistic 
implications.19 Under this circumstance, directly pooling the relative risks scaled in 
different metrics might lead to biases.  

Atkinson et al. (2016) explored 6 types of mortality causes, but searched the 
literatures only till 2015;16 while Huangfu et al. (2019) updated the searches to 2018, but 
only 3 types of mortality causes were considered.15 We thus determine to update the 
review on the health effects of O3 to include more categories of mortalities together with 
covering the most recent publications. Additionally, GBD estimations ascribed long-term 
O3-exposure induced all-cause mortality for chronic obstructive pulmonary disease,13 
which might lead to underestimations without considering other causes. It is reasonable 
to deduce that long-term O3 exposure will exacerbate the mortality of certain diseases 
given that the short-term exposure increases the morbidity risks of the same diseases, and 
thus scrutinising epidemiological evidences for multiple causes of mortality will provide 
more credible supports to fill in this gap.  
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To fill the gaps not addressed by the previous two reviews, we updated the 
systematic review and meta-analysis for long-term O3 exposure and cause-specific 
mortality risks. We took advantages of global systemic stationary observations to explore 
the approaches to adjust the various exposure metrics, and pooled the multi-study risks 
with the unified exposure metric, the mean of warm-season daily maximum 8-hour 
average, in response to suggestions from the Lancet global environmental health 
collaboration.20  

 

2. METHODS 

2.1 Search strategy 

We searched 3 research databases (MEDLINE, Embase, and Web of Science) from 1 
September, 2015 till 15 July, 2021 to finish our systematic review and meta-analysis, 
updated from 2 previous reviews on long-term O3 exposure-associated mortality.15, 16 
Search strategies referred to these 2 previous systematic reviews with modifications as 
listed in Table S1. Health outcomes considered in the systematic review were: mortality 
from (1) all causes (AC, ICD9: 001-799, ICD10: A00-R99); (2) all respiratory diseases 
(RESP, ICD9: 460-519, ICD10: J00-J98); (3) chronic obstructive pulmonary diseases and 
allied conditions (COPD, ICD9: 490-496, ICD10: J19-J46); (4) all cardiovascular 
diseases (CVD, ICD9: 390-459, ICD10:I00-I98); (5) all cerebrovascular diseases (CEVD, 
ICD9: 430-438, ICD10: I60-I69); (6) ischaemic heart disease (IHD, ICD9: 410-414, 
ICD10: I20-I25); (7) congestive heart failure (CHF, ICD9: 428, ICD10: I50); (8) 
ischaemic stroke (ICD9: 434, ICD10: I61-I64); (9) pneumonia (ICD9: 480-487, ICD10: 
J12-J18); and (10) lung cancer (LC, ICD9: 162, ICD10: C33-C34).  

2.2 Study eligibility criteria 

Studies were included during screening following the criteria as: (1) the 
epidemiological research should be conducted based on cohorts; (2) the exposure should 
include O3 as an individual risk factor; (3) the health outcomes should be all-cause or 
cause-specific deaths at individual level; (4) studies provided hazard ratio (HR), risk ratio 
(RR) or odds ratio (OR) and their 95% confidence intervals (CIs) clearly and reported by 
every increase unit (e.g. 10-ppbV) of exposure concentrations, assuming linear risk 
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relationship with adjusting key confounders; (6) the study should be published as an 
original research article in scholarly peer-reviewed journals in English. For articles from 
the same cohort, only one single study covering the widest populations and the longest 
follow-up period was reserved for meta-analysis, unless the subgroups of participants and 
study follow-up periods are clearly stated to be of mild overlapping; We followed the 
Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) 
guidelines to process the included studies on ambient O3 exposure induced mortality.  

2.3 Study selection and scrutinisation  

All searched literatures were archived in Clarivate™ Analytics Endnote X9.3.1 
reference manager software. Two literature review investigators (HZS and CL) 
conducted title and abstract pre-screening independently for all web-searched records and 
reviewed the full text for the pre-screened studies. Disagreements were resolved by 
discussions with a third reviewer (PY).  

2.4 Data extraction  

Details from each screened-out literatures were extracted and labelled for the purpose 
of meta-analysis, including (1) the authors with publication year as study labels of 
reference; (2) basic descriptive information of the study cohort embracing the cohort 
name, country, follow-up periods, numbers of cases and total participants, population 
genders and ethnics, exposure metrics, health outcomes, and major confounders; (3) the 
risk association effects preferably quantified in HR (and also RR/OR as substitute 
choices) per unit incremental exposure with 95% confidence interval (CI).  

2.5 Study quality assessment  

All screened-out studies underwent quality evaluation using the Quality Assessment 
Tool of Observational Cohort and Cross-Sectional Studies developed by National 
Institute of Health (NIH) (https://www.nhlbi.nih.gov/health-topics/study-quality-
assessment-tools), aiming to ensure the studies considered for meta-analysis are 
adequately reliable. The assessments were cross-validated by two authors (HZS and CL) 
independently, with the third author (PY) supervising any disagreements. Table S2 listed 
14 assessment items assigned with 1 score for each, and the tallied scores were translated 
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into a literature-specific rating of quality. Studies scoring full-mark 14 were categorised 
to be “Good”, while 10-13 as “Fair” and <10 as “Poor”.  

Besides the quality assessment tool to determine which reviewed studies should be 
included for meta-analysis, characterising the epidemiological evidence quality from the 
included literatures for each cause of mortality was finished through the Grading of 
Recommendations Assessment, Development, and Evaluation (GRADE) system21, 22 to 
yield rating bands ranging across “high”, “moderate”, “low”, and “very low”. This 
grading system by default rated “high-quality” for cohort studies as the starting point of 
evaluation, and the rank would be downgraded by five reasons as existence of (1) risk of 
bias, (2) imprecision, (3) inconsistency, (4) indirectness and (5) publication bias, and 
upgraded by reporting (1) exposure-response trend, (2) residual confounding, and (3) 
reporting strong associations. Publication biases were tested by trim-and-fill method.23 
The review was registered in PROSPERO (CRD42021270637).  

2.6 Exposure adjustment  

2.6.1 Unit unification  

There were two major units used to quantify the surface O3 concentrations, nmol 
mol-1 or parts per billion by volume mixing ratio (ppbV) more frequently used by 
atmospheric modelling researchers,17, 18, 24 and milligram per cubic metre by mass 
concentration (µg/m3) widely used by public health studies.12 These two units are 
interchangeable to each other based on the ideal gas law , if the air 
temperatures (T) and pressures (P) are given, as presented in eqs 1–4.  

              (eq. 1)  

       (eq. 2)  

         (eq. 3)  

  (eq. 4)  

PV = n RT

1 ppbV O3 = 1 × 10−9 m ol
1 m ol

O3
air

1 m ol a ir ⇔ RT
P

× 1 m ol (m3) = 8.314 Pa ⋅ m3 ⋅ K−1 × T
P

(m3)

1 × 10−9 m ol O3 × 47.997g ⋅ m ol−1 = 47.997 × 10−9g O3

1 ppbV O3 = 47.997 × 10−9g × 106μg ⋅ g−1

8.314 Pa ⋅ m3 ⋅ K−1 × T /P m3
O3
air

= 5.773 × 10−3 × P (Pa)
T (K )

O3
air

μg ⋅ m−3
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Assuming T = 298.65 K (25.5°C) and P = 101.325 kPa, the ppbV-µg/m3 conversion 
factor could be approximated as 1 ppbV ~ 1.96 µg/m3. Though the surface air 
temperatures and pressures would vary across seasons, such simplification was still 
widely used in previous studies,15, 25, 26 being of more credibility for long-term surface O3 
studies averaging the surface air temperatures and pressures at longer periods. For 
example, even at very low temperature of 270 K, the conversion factor was 2.17, which 
corroborated the stability of linear conversion.  

2.6.2 Metric unification  

 Surface O3, as a secondary photochemistry pollutant involving photolysis of NO2 to 
trigger chains of radical reactions, has concentrations that will vary significantly between 
day and night-time, and between warm and cool seasons, as discussed by numbers of 
studies.17, 27-30 Under this circumstance, various daily metrics to quantify the surface O3 
concentrations emerged due to series of considerations, which however brought in more 
difficulties to assimilate epidemiological evidences. The previous reviews simply pooled 
the reported risk association strengths without adjusting the diverse metrics,15, 16 which 
we thought was a fatal defect requiring improvements.  

 We therefore designed to update the meta-analysis by unifying the exposure metrics 
for pooled O3 exposure-associated risks. As suggested by U.S. EPA final report of Air 
Quality Criteria for Ozone and Other Photochemical Oxidants,31 linear relationships 
were assumed to estimate the cross-metric conversion factors using long-term reliable 
observations as the Tropospheric Ozone Assessment Report (TOAR) archive19 and China 
National Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/en/) in our 
review, and correlation matrix was used to validate that the presumptions of linearity 
were not violated. We considered 6 complex metrics for mutual conversion as (1) annual 
mean of 24-hour daily average (ADA24), (2) 6-month warm season mean of 24-hour 
daily average (6mDA24), (3) annual mean of daily maximum 8-hour average (ADMA8), 
(4) 6-month warm season mean of daily maximum 8-hour average (6mDMA8), (5) 
annual mean of daily maximum 1-hour average (ADMA1), and (6) 6-month warm season 
mean of daily maximum 1-hour average (6mDMA1). The linear conversion factors (k) 
were mathematically defined by eq 5, to adjust the original metric into the target one with 
irreducible regression errors ε.  

            (eq. 5)  CAdjusted = kOriginal→Adjusted × COriginal + ϵ
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2.7 Meta-analysis  

We collectively named relative risks (RR) for HR/RR/OR throughout our meta-
analysis. All literature-reported RRs were converted into adjusted incremental risk ratios 
with a 10-ppbV O3-exposure increase by target metric (i.e. 6mDMA8 in this study), 
following eq 6 as shown below:  

               (eq. 6)  

where ln is the natural logarithm,  is the originally reported risk estimates 
scaled into 10-ppbV incremental exposure, and  is the conversion factor 
for metric unification. Multi-study pooled risks with 95% confidence interval (CI) were 
calculated from the adjusted RRs by DerSimonian and Laird random effect meta-
regression given the fact that population and methodologies of included researches 
differed with each other.32  

We applied the Higgins  to quantify the heterogeneity across studies. The Higgins 
statistics  is defined as  

                (eq. 6)  

where Q is the Cochran’s non-parametric heterogeneity statistic assessing whether 
there are any cross-study differences in risks based on  distribution and df is the 
corresponding degrees of freedom.33 Low  values indicate no important heterogeneity 
observed and high  values, especially >75%, indicate considerable heterogeneity.  

Subgroup analyses were conducted by grouping the meta-analysis included studies 
upon the six O3 exposure metrics. One-dropout sensitivity analyses were also 
accomplished to test the robustness of synthesised overall risks by meta-analysis. All 
meta-analyses were performed in R 4.1.1 with packages meta and metafor.  

The most widely recognised approach to construct the integrated exposure-response 
(IER)34 relationships required sufficient epidemiological studies to comprehensively 
sample the population exposure levels. However, studies on long-term O3 exposure 
health effects were relatively limited, under which circumstance we made methodological 
modifications to make better use of the variabilities in exposure levels by statistically 

R RAdjusted = e
(

lnRROriginal
kOriginal→Adjusted

)

R ROriginal
kOriginal→Adjusted

I 2

I 2

I2 = Q − d f
Q

× 100 %

χ2

I 2

I 2
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imputing the exposure distributions for each study from the provided statistics (e.g. mean, 
standard deviation, and percentiles) for curve fitting as elaborated in Supplementary Text 
S1. Supplementary Text S2 described the detailed procedures of exposure distribution 
imputations with a demonstration provided in S3, through which high uncertainties were 
observed in the fitted IER curves due to limited number of available studies.  

 

3. RESULTS  

3.1 Study characters  

From the 3 databases during September 2015 till July 2021, a total of 308 studies (70 
from MEDLINE, 93 from Embase, and 145 from Web of Science) were searched; and 
together with 34 additional literatures added manually from the 2 previous systematic 
reviews,15, 16 342 studies underwent duplication censoring, deleting 95 duplicated studies. 
After detailed scrutinisation for 247 studies, a total of 20 studies concerning long-term O3 
exposure and multi-cause mortalities were finally enrolled for quality evaluation, meta-
analysis and further discussions (Figure 1).35-54 Table 1 summarised the basic 
information of the 20 included studies sorted by the publication year and surname of the 
first author.  

3.2 Metrics and exposure assignments  

Our updated systematic review stressed more on the exposure metrics and 
methodologies to obtain O3 exposure, as summarised in Table 2. Abbey et al. (1999),35 
Jerrett et al. (2013)43 and Lipsett et al. (2011)40 did not state the metric they used clearly, 
but based on comparisons between the reported surface O3 concentrations and TOAR 
observational archives, we reasonably assumed ADA24 for the first study, and ADMA8 
for the last two. Details of the metric matching were given in Supplementary Text (S4). 
Lipfert et al. (2006)36 used the highest 95th percentile by hourly resolved O3 
concentrations as the peak exposure metric, which was only used in this one singular 
study, and hence approximated to DMA1. Krewski et al. (2009)38 and Smith et al. 
(2009)39 were both studies on ACS CPS II, and thus the same exposure assignment 
methodologies and metrics were assumed as Jerrett et al. (2009).37 Likewise, Cakmak et 
al. (2018)49 and Weichenthal et al. (2017)48 were assumed to inherit Crouse et al. (2015)45 
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as all these 3 studies were on CANCHEC. Warm season was defined as 6 months from 
April to September by default, but we made no exceptions to 3 studies as Zanobetti et al. 
(2011)41 using May to September, and Crouse et al. (2015)45 and Paul et al. (2020)54 
using May to October, due to limited number of studies searched.  

 Across all included studies, multiple methods were applied to assign O3 exposure 
onto individual-level cohort participants. The most basic way was the nearest neighbour 
matching between participant residential locations and in situ observation sites, which 
were more frequently used in earlier studies.36, 37 A comparatively more complicated way 
was statistical spatial interpolation, by inverse distance weighting43 or ordinary kriging38. 
Full spatial coverage products, such as satellite-based remote-sensing50 and chemistry 
transport models53, were used in some studies by data fusion techniques including but not 
limited to universal kriging,44 Bayesian hierarchical model47 and ensemble learning50 to 
enhance the spatial extrapolation accuracy, which were evaluated to be of higher 
credibility than the basic ones described previously. We also ranked higher the finer 
spatiotemporal resolved surface O3 concentration datasets for exposure assignments.  

 Based on the TOAR and CNEMC in situ observations, the cross-metric linear 
conversion factors were estimated with regression accuracies given in Figure 2. 
Synthesising from recent relevant studies, the 6mDMA8 metric was recommended to 
highlight the peak exposure (Table 2); and therefore, we chose to convert the originally 
reported RRs uniformly into the 6mDMA8 scale as reference. The adjusted RRs for each 
10-ppbV incremental O3 exposure by 6mDMA8 were listed in Table S3. Demonstrations 
for the conversion interpretation and procedures were presented in Supplementary Text 
S5, respectively.  

3.3 Meta-analysis results  

 We conducted meta-analyses for long-term O3 exposure-associated into 10 categories 
of mortalities as (1) all causes (AC), (2) all respiratory diseases (RESP), (3) chronic 
obstructive pulmonary diseases and allied conditions (COPD), (4) all cardiovascular 
diseases (CVD), (5) all cerebrovascular diseases (CEVD), (6) ischaemic heart disease 
(IHD), (7) congestive heart failure (CHF), (8) lung cancer (LC), (9) ischaemic stroke, and 
(10) pneumonia, with the exposure metrics adjusted into 6mDMA8.  
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3.3.1 All-cause mortality 

A total of 18 studies were included into O3 exposure-associated all-cause mortality 
meta-analysis, pooling the overall risk into RR = 1.010 (95% CI: 1.005–1.015, I2: 93.0%) 
with every 10-ppbV incremental exposure by 6mDMA8 as presented in Figure 3. Sub-
group meta-analysis by originally reported metrics concluded the significances of risks 
vary across metrics, as high-concentration highlighted metrics like 6mDMA8 were of the 
highest positive risk (RR = 1.029, 95% CI: 1.001–1.061) while the smoothed metric 
ADA24 reported negative association (RR = 0.992, 95% CI: 0.982–1.002), as shown in 
Figure S1. Another sub-group meta-analysis by cohort population ethnics performed 
significant discrepancies of the risk pattern, as the studies in North America revealed 
positive associations as RR = 1.011 (95% CI: 1.006–1.016), while researches on 
European populations showed reversed risks as RR = 0.921 (95% CI: 0.869–0.976), as 
shown in Figure S2. This manifested that high cross-study heterogeneities originated 
from both metric differentiations and ethnic divergences, the latter of which should have 
attributed more. The funnel plot was visually symmetrical (Figure S3), and studies 
reporting risks below the pooled value were slightly more, indicating no severe potential 
publication biases.  

3.3.2 Respiratory mortality  

Meta-analysis for O3 exposure-associated all respiratory mortality includes 13 
studies, pooling gave the overall RR = 1.027 (95% CI: 1.004–1.049, I2: 82.5%) for every 
10-ppbV incremental by O3 exposure 6mDMA8 (Figure 4). Based on sub-group meta-
analysis for different metrics (Figure S4), peak metrics showed more significant 
increasing risks than ADA24, where most of the heterogeneities from (I2 = 86.5%). 
Cross-metric divergences were generally higher than intra-metric discrepancies. Studies 
on North America populations showed better homogeneity in positive risks (RR = 1.028, 
95% CI: 1.011–1.047, I2 = 82.1%, Figure S5) than the European cohorts, pooling from 
which the overall risks were congruously insignificant (RR = 0.949, 95% CI: 0.795–
1.131, I2 = 18.0%). No apparent positive publication biases were detected according to 
the funnel plot. For the O3-COPD mortality association, pooled RR = 1.061 (95% CI: 
1.006–1.119, I2 = 94.7%) for 10-ppbV incremental O3 exposure by 6mDMA8 from 6 
studies.  
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3.3.3 Cardiovascular mortality 

A total of 12 studies were included to pool the overall O3 exposure-induced CVD 
mortality risks as RR = 1.028 (95% CI: 1.001–1.058, I2 = 97.9%) for each 10-ppbV 
additional O3 exposure by 6mDMA8 (Figure 5). Heavy heterogeneities (I2 > 81.6%) 
were observed through all 4 metric-grouped studies as presented in Figure S6. Positive 
risk associations were found for 10 North American cohorts (RR = 1.038, 95% CI: 
1.008–1.068) while oppositely for 2 European cohorts (RR = 0.936, 95% CI: 0.898–
0.975), as shown in Figure S7. Mild positive publication biases were detected, reflecting 
the actual risk could potentially be lower than the meta-analysis estimation. For 
congestive heart failure-induced mortality, the pooled risk was RR = 1.102 (95% CI: 
1.046–1.162, I2 = 88.6%) with every 10-ppbV elevated O3 exposure by 6mDMA8, but 
might be slightly overestimated by detected positive publication bias.  

3.3.4 Other causes mortality  

The other cause-specific mortality risks attributable to long-term O3 exposure were 
not statistically significant (Figure 6), as IHD mortality risk pooled from 9 studies was 
RR = 1.023 (95% CI: 0.992–1.055, I2 = 97.7%), CEVD mortality risk pooled from 5 
studies was RR = 0.997 (95% CI: 0.973–1.020, I2 = 73.6%), LC mortality risk pooled 
from 10 studies was RR = 0.984 (95% CI: 0.961–1.008, I2 = 80.8%), ischaemic stroke 
mortality risk pooled from 2 studies was RR = 1.003 (95% CI: 0.991–1.016), and 
pneumonia mortality risk pooled from 3 studies was RR = 1.034 (95% CI: 0.954–1.121).  

Potential publication biases were discovered for CEVD and lung cancer, though the 
pooled risks were insignificant, suggesting the authentic risks could moderately deviate 
from our meta-analysis results. Though we conducted meta-analyses for ischaemic stroke 
and pneumonia mortality risks, the included studies were rather few with high 
heterogeneities, and thus it could be improper to conclude no associations between long-
term O3 exposure and mortality risks of ischaemic stroke or pneumonia based on the 
limited evidences collected in our study. For the 8 mortality sub-categories involving no 
less than 4 studies, we also provided pooled risks by 4 widely used metrics in Table 3.  

3.4 Study assessment  

All 20 studies included into our final meta-analysis were rated to be above “Fair” by 
the quality assessment tool for observational cohort studies, as listed in Table S4. Tables 
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S5 presented GRADE epidemiological evidence assessment results for each mortality 
cause from all involved corresponding studies. In brief, the overall judgements for all-
cause, respiratory, and lung cancer mortality risks were “High”, for cerebrovascular 
mortality risk was “Low”, and for the rest cause-specific mortality risks were all 
“Moderate”. The assessment results verified the acceptability of our meta-analyses, with 
more details given in Supplementary Text (S6).  

3.5 Sensitivity analysis  

One-dropout sensitivity analyses showed stable risk estimates as summarised in 
Table S6, except for the lung cancer mortality risks after eliminating Kazemiparkouhi et 
al. (2019), the only study reporting positive risk association,52 while the rest 9 studies 
concluded insignificant or negative risks. Since the metric harmonisation in our study 
was an innovative attempt, we provided both metric-adjusted and unadjusted crude 
results for reference as presented in Table 3.  

 

4. DISCUSSIONS  

4.1 Improvements as an updated review  

This work improves on 2 previous high-quality reviews15, 16 by covering up-to-date 
peer-reviewed studies, and expanding the O3-exposure associated causes of mortality into 
wider range of categories. It is the first systematic review of the association between 
long-term O3 exposure and cause-specific mortality highlighting the issue of inconsistent 
use of exposure metrics to our best knowledge. Since tropospheric O3 is a photochemical 
pollutant which largely depends on solar radiation, the surface O3 concentrations can vary 
drastically between day and night, as well as warmer and cooler seasons. We pointed out 
that a 10-ppbV increase in annual daily 24-hour average concentration (ADA24) is more 
constrained in magnitude than a 10-ppbV increase in warm-season daily 8-hour 
maximum average concentration (6mDMA8) owing to the wider variability in the range 
of the latter metric. Taking the observations by TOAR and CNEMC in situ monitoring 
networks during 1990-2019 as an example, the surface O3 concentrations were 27.6 ± 6.1 
(IQR: 24.1–31.0) ppbV by ADA24, while correspondingly 53.1 ± 10.6 (IQR: 47.7–61.4) 
ppbV by 6mDMA8, which indicated a 10-ppbV change fell below the IQR by the 
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6mDMA8, but could exceed the IQR using the ADA24 metric. This was why we believe 
adjusting the exposure metrics was necessary for O3 exposure-attributable health risk 
meta-analysis.  

We also put forward a feasible approach to mutually convert the O3 exposure 
concentrations and corresponding risk strengths in various metrics by non-intercept linear 
projections following the methodological suggestions from EPA,31 but update the linear 
conversion factors based on global in situ surface O3 observations during 1990-2019. The 
methodological innovation took advantages of multi-dimensional information from the 
original studies, but still inspiring further observation collections and researches for 
corroborations and improvements.  

4.2 Metric relevant issues  

Although linear coefficients were applied onto the cross-metric conversions, 
irreducible noises still existed given the high root mean squared errors (RMSE) as shown 
in Figure 2, which exposed the limitation of risk strength adjustment into the same 
exposure metric by simple linear conversion, as the actual cross-metric relationships 
could be way more complicated. However, there was no other way but using the linear 
conversion coefficients as surrogates to unify the RRs by different metric reported in 
original studies, and thus to avoid uncertainties brought by the conversion of metrics, 
using a promissory consistent exposure metric or estimating the unit excess RRs in 
multiple metrics would be highly advocated in future long-term O3-exposure 
epidemiology studies.  

Such linear conversion of risk associations could be validated by Kazemiparkouhi et 
al. (2020),52 where multiple metrics were applied to estimate the mortality risks. For 
COPD mortality, the RR was 1.072 (95% CI: 1.067–1.077) by 6mDMA1 for every 10-
ppbV additional exposure; and after converting into 6mDMA8 metric using the linear 
coefficient 0.831 (Figure 2), the estimated RR was 1.087 (95% CI: 1.081–1.093), close 
to the literature reported 1.084 (95% CI: 1.079–1.089),52 which justified our linear 
conversion method. Converting Cross-metric linear conversions would not change the 
risk association direction, but using different exposure metrics when estimating the O3-
exposure attributable mortality risks could potentially cause discrepancies. For an 
instance, Kazemiparkouhi et al. (2020) concluded excess hazards of long-term O3 
exposure on all-cause mortality using 6mDMA1 and 6mDMA8 as quantitative metrics, 
but 6mDA24 led to a specious prevention effect (RR = 0.990, 95% CI: 0.988–0.991), 
which should be attributed to the existence of a theoretical exposure safety level for O3 
below which no negative health effects should occur. Under this circumstance, lower-
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level metrics (e.g. ADA24) by averaging the peak O3 exposures might obscure the 
effective doses above the threshold, and also reduce the signal-to-noise ratios, so that 
were of lower credibility in recognising hazardous population exposures than higher-level 
metrics (e.g. 6mDMA8).  

Data mining techniques were able to realise high-accuracy predictions of surface O3 
concentrations, but errors were never avoidable. Carey et al. (2013) used a basic IDW 
spatial interpolation approach to obtain the surface O3 concentrations where the R2 were 
0.24–0.76,42 while years later Di et al. (2018) applied an ensemble learning approach, 
achieving R2 = 0.80, RMSE = 2.91 ppbV.50 Carey et al. (2013) reported the IQR of O3 
exposure concentrations as 3.0 ppbV, which was comparable to the RMSE of Di et al. 
(2018).50 Besides, lower R2 could be accompanied with higher prediction errors, which 
might have concealed the highest and lowest quartiles, and led to failures in 
distinguishing the population-level exposures. This concern had been reflected in our 
subgroup meta-analysis by exposure metrics, that lower-level metrics were more inclined 
to report insignificant risks, which also cast sceptics on the reliability of studies covering 
narrow exposure variabilities. We therefore are in favour of the Lancet suggestions to use 
peak metrics to quantify the long-term O3 exposure such as 6mDMA8, and also think 
highly of the state-of-the-art data techniques to reduce errors in O3 concentration 
prediction, so as to make a distinction between the high- and low-exposure populations.  

4.3 Hierarchical classification of diseases  

The causes of mortalities analysed in our study followed hierarchical subordinate 
relationships, as the all-cause mortality consisted of cardiovascular diseases, respiratory 
diseases, cancer and other causes; chronic obstructive pulmonary disease belonged to 
respiratory category; and ischaemic heart disease, stroke, congestive heart failure and 
other cerebrovascular diseases all subordinated to cardiovascular symptoms. On this 
occasion, estimating all O3-exposure induced mortalities could follow a bottom-up 
scheme by adding up subgroups of diseases. However, for the historical O3-associated 
mortalities, GBD attributed all O3-associated mortalities onto COPD-induced premature 
deaths,20 which we thought were of spaces for further explorations. Long-term O3 
exposure had shown significant association with excess cardiovascular mortalities, and 
thus we should update the mortality estimations in further studies by including CVD 
altogether into consideration.  
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4.4 Application of risks  

The widest applications of the estimated risk association strengths were to project 
how many people would be affected by long-term ambient O3 exposure. For example, 
Malley et al. (2017) estimated 1.23 (95% UI: 0.85–1.62) million respiratory deaths 
attributable to O3 exposure in 2010,55 using the risk strength by Turner et al. (2016) as 
HR = 1.12 (95% UI: 1.08–1.16).47 This estimation was much higher than the 2019 GBD 
report: 0.31 (95% UI: 0.15–0.49) million, as had been highlighted in another recent 
study,24 which should be attributed to the use of high HR value among all included 
studies. We had also found some other studies using one singular HR value for 
population risk estimations,17, 56-59 but we would still encourage further relevant studies 
consider multi-study pooled RRs, which could effectively reduce potential biases from a 
single study.  

4.5 Limitations  

 According to our literature search, cohort-based O3-health studies were still rather 
rare, which could be responsible for the relatively large uncertainties in the meta-analysis 
pooled RRs. Scarcity of credible evidences also restricted the effects of conventional 
approaches to construct exposure-response curves, and our methodological innovation 
would require further relevant studies for substantiation. The cross-metric linear 
conversion factors were estimated relying on observations from available sites, which 
however might not be sufficiently representative of the global residential areas, as 
observational sites in India, Africa, and Latin America were still sparse. With ever-
increasing popularisation of the in situ monitoring networks, the cross-metric conversion 
factors might need calibration with more comprehensive observations, so that the pooled 
RRs should also be updated accordingly.  

4.6 Further study suggestions  

We suggest that further environmental epidemiology studies, especially long-term O3 
exposure related researches, clearly report i) the methodologies to obtain ambient O3 
concentrations, the spatiotemporal resolution, and prediction accuracy of the database; ii) 
the exposure metrics used for risk estimation; and iii) the statistical distribution of the O3 
exposure concentrations. The data-oriented methodologies to accomplish full spatial 
coverage ambient air O3 concentrations for individual-level exposure assignment should 
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be transparent as the construction credibility of air pollution concentration database 
should also be rigorously assessed, which were the foundation of epidemiological follow-
up studies. We would advocate the report of exposure metrics in future O3-health studies 
so as to avoid confusions when comparing the risks with literature and conducting meta-
regression; and empirically, warm-season average (6mDMA8) or daily 8-hour maximum 
by annual average (ADMA8) were more preferred as epidemiological study metrics.19 
We also recommend future studies estimate risks with multiple O3 metrics; and 
describing the statistical distribution of the O3 exposure concentrations are another 
suggested element to assess the reliability of risk estimation models, and would also be 
useful in exposure-response tendency exploration.  

Our review highlights a deficiency existing in current environmental health research 
literatures, that studies on long-term O3 exposure health effects are still rather rare 
compared to particulate matter-based studies.60 Also, the meta-analysis results might be 
geographically-biased, since large-scale O3 exposure health risk studies till 2021 did not 
cover Asia, Africa or Latin America regions. However, there are some thriving cohorts 
such as the Multi-Country Multi-City (MCC) Collaborative Research Network covering 
over 22 countries or regions,61 and the China Kadoorie Biobank (CKB) enrolling over 0.5 
million people,62 working on environmental exposure projects. We are optimistic that 
more research will come out to fill in the literature gap of multi-region population-based 
studies.  

 

5. CONCLUSIONS  

Our state-of-the-science systematic review has summarised cohort studies exploring 
the associations between long-term ambient O3 exposure and multi-cause mortality risks. 
Current studies support O3-exposure attributable additional mortalities caused from all 
causes, respiratory diseases, chronic obstructive pulmonary disease, cardiovascular 
diseases, and congestive heart failure, but no significant mortality risks are found for 
ischaemic heart diseases, all-type cerebrovascular diseases, stroke, pneumonia, and lung 
cancer based on the current evidences. Exposure metrics are crucial for health risk 
estimations of long-term O3 exposure and meta-analysis to pool the multi-study risks, for 
which we develop a linear conversion approach to harmonise the different metrics. 
Further researches on long-term O3 observations and exposure-induced mortalities are 
encouraged to corroborate or contradict our linear conversion factors and meta-analysis 
results by providing more solid evidences, so as to strengthen the O3-health literatures.  
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TABLES  

Table 1 Summary of cohort characteristics included for meta-analysis.  

Study Cohort Country Follow-up  
Duration 

Population  
Type 

Sample  
Size Sex Age Key Confounding Adjustment Mortality Causes 

Abbey et al. 199935 AHSMOG USA 1977-1992 Occupational 6,182 FM 27-95 
age, sex, BMI, smoking, individual 

demographic features∥, lifestyle features⊥, 
medical history 

AC, RESP, LC 

Lipfert et al. 200636 WU-EPRI USA 1976-1996 General 90,070 M 51.2 
(12.0)§ 

age, ethnicity, BMI, smoking, traffic density, 
NO2, CO AC 

Jerrett et al. 200937 ACS CPS II USA 1977-2000 General 448,850 FM 56.6 
age, sex, ethnicity, BMI, smoking, individual 
demographic features, lifestyle features, PM2.5 

AC, RESP, CVD, IHD  

Krewski et al. 200938 ACS CPS II USA 1982-2000 General 531,185 FM ≥ 30 AC, IHD, LC 

Smith et al. 200939 ACS CPS II USA 1982-2000 General 352,242 FM 56.6 AC, RESP, CVD 

Lipsett et al. 201140 CTS USA 1998-2005 Occupational 124,614 F ≥ 20 age, ethnicity, BMI, smoking, lifestyle 
features, medical treatment 

AC, RESP, CVD, IHD, 
stroke, CEVD, LC 

Zanobetti  
et al. 201141 Medicare USA 1985-2006 General 3,210,511 FM ≥ 65 age, sex, ethnicity, medical history COPD 

Carey et al. 201342 CPRD UK 2003-2007 General 824,654 FM 40-89 age, sex, BMI, smoking, individual 
demographic features AC, RESP, LC 

Jerrett et al. 201343 ACS CPS II USA 1982-2000 General 73,711 FM 57.4 
(10.6) 

age, sex, smoking, individual demographic 
features, lifestyle features 

AC, RESP, CVD, IHD, 
stroke, LC 

Bentayeb et al. 201544 GAZEL France 1989-2013 Occupational 20,327 FM 43.7 
(3.5) 

age, sex, BMI, smoking, individual 
demographic features, lifestyle features AC, RESP, CVD 

Crouse et al. 201545 CANCHEC Canada 1991-2006 General 2,521,525 FM ≥ 25 age, sex, individual and area-level 
demographic features, PM2.5, NO2 

AC, RESP, COPD, CVD, 
IHD, CEVD, LC 

Tonne et al. 201646 MINAP UK 2003-2010 General 18,138 FM 68 
(14) 

age, sex, ethnicity, smoking, medical history, 
area-level demographic features AC 

Turner et al. 201647 ACS CPS II USA 1982-2004 General 669,046 FM ≥ 30 age, sex, BMI, smoking, individual and area-
level demographic features, PM2.5, NO2 

AC, RESP, COPD, CVD, 
IHD, CEVD, pneumonia  

Weichenthal  
et al. 201748 CANCHEC Canada 2001-2011 General 2,448,500 FM 25-89 age, sex, ethnicity, individual and area-level 

demographic features AC, RESP, CVD 

Cakmak et al. 201849 CANCHEC Canada 1991-2011 General 2,291,250 FM ≥ 25 age, sex, individual demographic features, 
PM2.5 AC, COPD, IHD, LC 

Di et al. 201850 Medicare USA 2000-2012 General 60,925,443 FM ≥ 65 
age, sex, ethnicity, BMI, smoking, individual 

and area-level demographic features, 
meteorological features, PM2.5 

AC 

Hvidtfeldt  
et al. 201951 DDCH Denmark 1993-1997 General 49,596 FM 50-64 age, sex, BMI, smoking, individual and area-

level demographic features, noise AC, RESP, CVD 

Kazemiparkouhi  
et al. 201952 Medicare USA 2000-2008 General 22,159,190 FM ≥ 65 age, sex, ethnicity, area-level demographic 

features, PM2.5 

AC, RESP, COPD, CVD, 
IHD, CEVD, LC, 

pneumonia  

Lim et al. 201953 NIH-AARP USA 1995-2011 General 548,780 FM 50-71 
age, sex, ethnicity, BMI, smoking, individual 

demographic features, PM2.5, NO2, daily 
maximum temperature 

AC, RESP, COPD, CVD, 
IHD, CEVD, LC, 

pneumonia 

Paul et al. 202054 ONPHEC Canada 1996-2015 Diabetes 452,590 FM 35-85 age, sex, area-level demographic features CVD 
Cohort abbreviations: AHSMOG, Adventist Health Study of Smog; WU-EPRI, Washington University–Electric Power Research Institute; ACS CPS, American Cancer Society 
Cancer Prevention Study; CTS, California Teacher Study; CPRD, Clinical Practice Research Datalink; GAZEL, GAZ de France and ÉLectricité; CANCHEC, Canadian Census 
Health and Environment Cohort; MINAP, National Audit of Myocardial Infarction Project; DDCH, Danish Diet, Cancer and Health; NIH-AARP, National Institute of Health, 
American Association of Retired Persons; ONPHEC, Ontario Population Health and Environment Cohort.  
∥ Demographic features included marital status, education attainment, employment status and occupational class, aboriginal ancestry, visible minority ethnicities, immigrant status 
and residence location (urban or rural), income level and socioeconomic status (SES), and regional population density. Different studies adjusted various combinations of 
demographic features.  
⊥ Lifestyle features included consumptions of alcohol, dietary fat, vegetables and fruits (dietary fibre), and vitamins, and physical activity frequency. Different studies adjusted 
various combinations of lifestyle features.  
§ Population ages were reported by mean with standard deviation (in bracket).  
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Table 2 Data sources and statistical methods of O3 exposure assignment. 
Methodological ratings were based on spatial interpolation and multi-data assimilation 
approaches. Spatial resolutions, exposure metrics, and levels of incremental risk ratio 
were also listed.  

Study Data Sources Methods Resolution Rating Metrics 
Level of 

incremental 
risk ratio 

Abbey et al. 199935 monitoring station observations IDW interpolation NR Low ADMA8 12.03 ppbV 

Lipfert et al. 200636 monitoring station observations nearest matching 
(assumed)† NR Low ADMA1 40 ppbV 

Jerrett et al. 200937 monitoring station observations nearest matching 
(assumed) NR Low 6mDMA1 10 ppbV 

Krewski et al. 200938 monitoring station observations ordinary kriging 
interpolation NR Low 6mDMA1 10 ppbV 

Smith et al. 200939 monitoring station observations nearest matching 
(assumed) NR Low 6mDMA1 1 µg/m³ 

Lipsett et al. 201140 monitoring station observations IDW interpolation 250 m Low ADA24 22.96 ppbV 

Zanobetti  
et al. 201141 monitoring station observations nearest matching 

(assumed) NR Low 6mDMA8 5 ppbV 

Carey et al. 201342 monitoring station observations interpolation  
(IDW assumed) 1 km Low ADA24 3.0 µg/m3 

Jerrett et al. 201343 monitoring station observations IDW interpolation NR Low ADA24 24.1782 
ppbV 

Bentayeb et al. 201544 monitoring station observations, model 
simulation, other auxiliary predictors 

universal kriging 
interpolation 2 km Moderate 6mDMA8 12.3 µg/m3 

Crouse et al. 201545 monitoring station observations, model 
simulation linear data assimilation 21 km Good 6mDMA8 9.5 ppbV 

Tonne et al. 201646 KCLurban air dispersion model simulation NR 20 m Moderate ADA24 5.3 µg/m3 

Turner et al. 201647 monitoring station observations, CMAQ model 
simulation 

hierarchical Bayesian 
space-time data 

assimilation 
12 km High ADMA8 

6mDMA8 10 ppbV 

Weichenthal  
et al. 201748 

monitoring station observations, model 
simulation linear data assimilation 21 km Good 6mDMA8 10.503 ppbV 

Cakmak et al. 201849 monitoring station observations, model 
simulation linear data assimilation 21 km Good 6mDMA8 10 ppbV 

Di et al. 201850 
monitoring station observations, model 

simulation, satellite remote sensing 
observations, other auxiliary predictors 

ensemble machine 
learning 1 km High 6mDA24 10 ppbV 

Hvidtfeldt  
et al. 201951 AirGIS dispersion model simulation NR 1 km Moderate ADA24 10 µg/m3 

Kazemiparkouhi  
et al. 201952 monitoring station observations nearest matching 

(assumed) 6 km Low 
6mDMA1 
6mDMA8 
6mDA24 

10 ppbV 

Lim et al. 201953 monitoring station observations, CMAQ model 
simulation 

Bayesian space-time 
downscaling 12 km High 6mDMA8 10 ppbV 

Paul et al. 202054 monitoring station observations, model 
simulation linear data assimilation 21 km Good 6mDMA8 6.4 ppbV 

† The statistical methods were not clearly stated in literatures, and thus the most basic method was assumed. The nearest neighbourhood matching shall be 
the simplest way to assign spatially sparse observations onto cohort participants, and the inverse distance weighting (IDW) is the simplest spatial 
interpolation approach.  
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Table 3 Pooled RRs for long-term 10-ppbV incremental O3-exposure attributable multi-cause mortalities by 4 most widely 
used metrics and unit unified crude risks without metric harmonisation.  

Mortality causes 6mDMA8 6mDA24 ADMA8 ADA24 Crude 

All causes 1.010 (1.005, 1.015) 1.016 (1.009, 1.025) 1.011 (1.006, 1.017) 1.019 (1.010, 1.029) 1.011 (1.005–1.017) 

Respiratory diseases 1.027 (1.004, 1.049) 1.046 (1.007, 1.085) 1.031 (1.005, 1.057) 1.054 (1.009, 1.100) 1.034 (1.010–1.059) 

Chronic obstructive pulmonary disease 1.061 (1.006, 1.119) 1.106 (1.010, 1.211) 1.071 (1.007, 1.139) 1.125 (1.012, 1.250) 1.060 (1.010–1.113) 

Cardiovascular diseases 1.028 (1.001, 1.058) 1.049 (1.001, 1.100) 1.033 (1.001, 1.067) 1.057 (1.002, 1.118) 1.039 (1.007–1.073) 

Ischaemic heart disease 1.023 (0.992, 1.055) 1.040 (0.987, 1.096) 1.027 (0.991, 1.064) 1.047 (0.985, 1.112) 1.027 (0.995–1.061) 

Congestive heart failure 1.102 (1.046, 1.162) 1.180 (1.079, 1.290) 1.119 (1.053, 1.189) 1.213 (1.093, 1.346) 1.104 (1.042–1.170) 

Cerebrovascular diseases 0.997 (0.973, 1.020) 0.994 (0.955, 1.034) 0.996 (0.969, 1.023) 0.993 (0.947, 1.040) 0.997 (0.970–1.024) 

Lung cancer 0.984 (0.961, 1.008) 0.974 (0.934, 1.013) 0.982 (0.955, 1.009) 0.969 (0.924, 1.015) 0.982 (0.958–1.002) 
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FIGURES  

 
Figure 1 Schematic flowchart of study assessment and selection processes for 
literature review and meta-analysis.  
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Figure 2 Cross-metric linear relationships and conversion accuracies. The cross-
metric linear relationships were scaled by Pearson’s correlation coefficients. The cross-
metric conversion factors with 95% confidence intervals (95% CI) were estimated by 
non-intercept linear regression models, accompanied with fitting accuracies quantified by 
coefficient of determination (R2) and root mean square error (RMSE) in ppbV. The 
conversion factors were defined as multiples from the original metric by column into the 
target harmonised metric by row, e.g. ADMA8 = 1.671 ADA24, R2 = 0.9736, RMSE = 
7.78 ppbV.  
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Figure 3 Pooled estimates of all-cause mortality risk associated with every 10-ppbV 
incremental O3 exposure by 6mDMA8 metric.  
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Figure 4 Pooled estimates of respiratory diseases and COPD mortality risks 
associated with every 10-ppbV incremental O3 exposure by 6mDMA8 metric.  
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Figure 5 Pooled estimates of cardiovascular diseases and congestive heart failure 
mortality risk associated with every 10-ppbV incremental O3 exposure by 6mDMA8 
metric.  
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Figure 6 Pooled estimates of ischaemic heart disease, cerebrovascular diseases, lung 
cancer, ischaemic stroke, and pneumonia mortality risks associated with every 10-
ppbV incremental O3 exposure by 6mDMA8 metric.  
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