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Abstract: Statins remain one of the most prescribed medications worldwide. While effective in 20 
decreasing atherosclerotic cardiovascular disease risk, statin use is associated with several side 21 
effects for a subset of patients, including disrupted metabolic control and increased risk of type 22 
II diabetes. We investigated the potential role of the gut microbiome in modifying patient 23 
response to statin therapy. In a cohort of >1840 individuals, we find that the hydrolyzed 24 
substrate for 3-hydroxy-3-methylglutarate-CoA (HMG-CoA) reductase, HMG, may serve as a 25 
reliable marker for statin on-target effects. Through exploring gut microbiome associations 26 
between blood-derived measures of statin effectiveness and metabolic health parameters 27 
among statin users and non-users, we find that heterogeneity in statin response is associated 28 
with variation in the gut microbiome. A Bacteroides rich, α-diversity depleted, microbiome 29 
composition corresponds to the strongest statin on-target response, but also greatest disruption 30 
to glucose homeostasis, indicating lower treatment doses and/or complementary therapies may 31 
be beneficial in those individuals. Our findings suggest a potential path towards personalizing 32 
statin treatment through gut microbiome monitoring. 33 
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Introduction: 52 
Between 25% - 30% of older adults across the United States and Europe take statins regularly 53 
for the purpose of treating or preventing atherosclerotic cardiovascular disease (ACVD), making 54 
statins one of the most prescribed medications in the developed world 1,2. While statins have 55 
proven to be highly effective in decreasing ACVD-associated mortality, considerable 56 
heterogeneity exists in terms of efficacy (i.e., lowering low density lipoprotein (LDL) cholesterol) 57 
3. Furthermore, statin use can give rise to a number of side effects in a subset of patients, 58 
including myopathy, disrupted glucose control, and increased risk of developing type II diabetes 59 
(T2D) 4–8. Several guidelines exist for which at-risk populations should be prescribed statins and 60 
at what intensity 9. However, despite considerable progress in identifying pharmacological 10 and 61 
genetic factors 11 contributing to heterogeneity in statin response, personalized approaches to 62 
statin therapy remain limited. Many times, treatment decisions are made through trial and error 63 
between the clinician and patient to obtain an optimal tolerable dose 12. Avoiding this trial-and-64 
error phase through individualized analysis of genetic, physiological, and health parameters has 65 
the potential to improve drug tolerance, adherence, and long-term health benefits, as well as 66 
guide complementary therapies aimed at mitigating side effects. 67 

Several studies have recently demonstrated a link between the gut microbiome and 68 
statin use 13,14. Similar to other prescription drugs, statins are widely metabolized by gut bacteria 69 
into secondary compounds 15,16. This indicates that the gut microbiome may impact statin 70 
bioavailability or potency to its host, contributing to the interindividual variability in LDL response 71 
seen among statin users 17. Additionally, biochemical modification of statins by gut bacteria 72 
could potentially contribute to side effects of the drug 18. Independent of statins, the gut 73 
microbiome has a well characterized role in contributing to host metabolic health through 74 
regulating insulin sensitivity, blood glucose, and inflammation, hence sharing considerable 75 
overlap with off-target effects of statin therapy 19,20. 76 

Statin intake has also been implicated in shifting gut microbiome composition, where 77 
primarily obese individuals taking statins were less likely to be classified into a putative gut 78 
microbiome compositional state, or ‘enterotype’, defined by high relative abundance of 79 
Bacteroides and a depletion of short-chain fatty acid (SCFA) producing Firmicutes taxa 21. 80 
However, contradictory findings in animal models have also been reported, where a statin 81 
intervention decreased abundance of SCFA-producing taxa and, consequently, the gut 82 
ecosystem’s capacity to produce butyrate 22.  83 

Given the numerous documented interactions between the gut microbiome and statins, 84 
and the established effect of the gut microbiome on metabolic health, we sought to explore the 85 
potential role of the gut microbiome in modifying the effect of statins on inhibiting their target 86 
enzyme 3-hydroxy-3-methylglutarate-CoA (HMG-CoA) reductase, as well as influencing the 87 
negative side effects of statins on metabolic health parameters. We analyzed data from over 88 
1840 deeply-phenotyped individuals with extensive medication histories, clinical laboratory 89 
tests, plasma metabolomics, whole genome and stool 16S rRNA gene amplicon sequencing 90 
data. We found that heterogeneity in statin on-target effects and off-target metabolic disruption 91 
could be explained by variation in the composition of the gut microbiome. Overall, our results 92 
suggest that, with further study and refinement, the taxonomic composition of the gut 93 
microbiome may be used to inform personalized statin therapies. 94 
 95 
Results: 96 
 97 
Cohort 98 
The study population is presented in Fig. 1A and Table S1 (see also Methods). Briefly, a total of 99 
1848 adults were included in the present analysis. Individuals in this cohort were self-enrolled in 100 
a now closed Scientific Wellness company (Arivale, Inc), had available plasma metabolomics 101 
and clinical laboratory data, and provided detailed information on prescription medication use. 102 
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Of these 1848 Arivale participants, 244 were confidently identified as statin users, of which 97 103 
provided detailed information on both dosage and type of statin prescribed. 104 
 105 
Plasma HMG is a marker of statin use and on-target effects 106 
The mechanism of action of statins is to inhibit the rate-limiting enzyme of de novo cholesterol 107 
synthesis, HMG-CoA reductase 23. Thus, we first sought to explore whether elevated plasma 108 
levels of the hydrolyzed substrate for this enzyme, HMG (measured in our broad untargeted 109 
metabolomics panel), could serve as a reliable marker of statin use (Fig. 1B). Plasma HMG 110 
levels were significantly higher in statin users than in non-users, consistent with our initial 111 
hypothesis and the drug’s well-established mechanism of action (Fig. 1C, generalized linear 112 
models (GLMs) adjusted for sex, age, and BMI, Quest Diagnostics β(95% confidence interval 113 
(CI)): 0.23 (0.16-0.31), P=9.2e-10), Lab Corp. of America (LCA) β(95% CI):0.28(0.23-0.34), 114 
P=9.8e-25). HMG levels further showed a negative correlation with blood LDL-cholesterol 115 
across two independent clinical lab vendors, but exclusively in statin users, indicating that 116 
plasma HMG may not only reflect statin use but also the extent to which statins inhibit their 117 
target enzyme (Fig. 1C, GLM adjusted for sex, age, and BMI, Quest β(95% CI): -0.12 (-0.19-118 
0.05), P=0.0019), LCA β(95% CI):-0.07(-1.2 - -0.01), P=0.020)). 119 

The negative association between HMG and LDL-cholesterol, observed exclusively in 120 
statin users, indicates that this compound may serve as a proxy for statin efficacy. However, it is 121 
also possible HMG simply reflects patient adherence, where individuals who take the drug as 122 
prescribed have higher HMG and lower LDL-cholesterol than those who do not. To further 123 
evaluate the robustness of HMG as a marker for statin on-target effects, we explored its 124 
correspondence to variable doses of statins prescribed in a subset of statin users where this 125 
information was available (n=97). Different statins (atorvastatin, simvastatin, etc.) exhibit 126 
different potencies and are often prescribed at variable doses. To synchronize medical practices 127 
in terms of statin therapy, the American Heart Association (AHA) released guidelines for 128 
adjusting statin doses across all types of statins, which cluster into one of three intensity 129 
categories (low, moderate, and high) aimed at achieving desired decreases in LDL-cholesterol 130 
of <30%, 30-49%, ≥50%, respectively 9. Based on these AHA guidelines, a daily 40mg dose of 131 
Rosuvastatin would place a patient in the high intensity category, while the same dose of 132 
Fluvastatin would place a patient in the low intensity group. Hence, we re-classified participants 133 
into their respective therapy intensity groups based on the AHA guidelines (Fig. 1A) and 134 
evaluated the associations between therapy intensity, plasma HMG, and blood LDL-cholesterol 135 
levels. Therapy intensity showed a positive dose response relationship with HMG, independent 136 
of sex, age, and BMI (GLM adj. β(95% CI):0.15(0.12-0.17), P=1.1e-22)). Consistently, an 137 
inverse relationship was observed between therapy intensity and blood LDL-cholesterol (Fig. 138 
1D, Ordinary Least Square (OLS) regression adjusted for sex, age, BMI and clinical lab vendor, 139 
β(95% CI):-15(-18 - -12), P=6.7e-20). 140 

Previous large-scale pharmacogenomic studies of statin users have identified several 141 
single nucleotide polymorphisms (SNPs) predisposing patients to variable responses to statin 142 
therapy. To evaluate if plasma HMG captures known genetic variability in statin response, we 143 
tested associations between HMG and 9 SNPs most strongly associated with statin-mediated 144 
decrease in LDL-cholesterol in previous studies 11, using GLMs with a statin-by-genetic variant 145 
interaction term while adjusting for sex, age, BMI and genetic ancestry (see Methods). Of the 9 146 
SNPs tested, 2 SNPs in close linkage disequilibrium (rs445925 and rs7412 mapping to the 147 
APOC1 and APOE genes, respectively, r > 0.80 in Caucasians) showed significant associations 148 
with HMG, that were dependent on statin intake (i.e., the effect was only present in statin users, 149 
FDR<0.05), in the directions consistent with the previously described associations of the same 150 
variants with statin response (Fig. S1, Table S2). Interestingly, running the same analysis with 151 
LDL-cholesterol instead of plasma HMG as an outcome variable (both measured from the same 152 
blood draw) did not reveal the same statin-dependent interactions (Table S2). In the case of 153 
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both rs445925 and rs7412, carrying at least one copy of the minor allele was associated with a 154 
decrease in LDL-cholesterol across statin users and non-users alike, hence providing no 155 
additional insight into statin-specific effects when measured cross-sectionally (Fig. S1). 156 
Together, our combined analyses of statin use, statin therapy intensity and genetic variants 157 
known to modify statin response indicate that HMG may provide additional insight into statin on-158 
target effects, not captured by a snapshot measurement of LDL-cholesterol. 159 
 160 
Statin use is associated with subtle differences in the gut microbiome 161 
Given the previously established associations between the gut microbiome and statin use, we 162 
next investigated whether statin intake is associated with changes in gut microbiome 163 
composition. Consistent with previous research, statin use showed a significant association with 164 
interindividual variability in gut microbiome composition, using the Bray-Curtis dissimilarity 165 
metric  (PERMANOVA unadjusted model R2=0.0025, P=0.00067, model adjusted for 166 
microbiome vendor, sex, age, and BMI, R2=0.0021, P=0.0017) and Weighted UniFrac 167 
(unadjusted model R2=0.0017, P=0.031, model adjusted for the same covariates as the Bray-168 
Curtis model, R2=0.0013, P=0.065) (Fig. 2A, Fig. S1). Statin intake was further associated with 169 
a modest decrease in one of the two α-diversity metrics calculated (OLS regression models 170 
predicting Shannon diversity adjusted for the same covariates as PERMANOVA, adj. β(95% 171 
CI):-0.095 (-0.16 - -0.028), P=0.0051) (Fig. 2B). When looking at specific statin therapy intensity 172 
for a subset of participants where this information was available, there was no monotonic dose-173 
response relationship with gut α-diversity, with only individuals receiving moderate intensity 174 
statin therapy demonstrating a significant decrease in measures of gut α-diversity relative to 175 
non-users (Fig. 2C, Fig. S1). 176 
 177 
Gut microbiome α- and ß-diversity correlate with markers of statin efficacy 178 
Next, we investigated whether gut microbiome beta-diversity may explain interindividual 179 
heterogeneity in response to statin therapy. Using HMG as a proxy for statin inhibition of its 180 
target enzyme, we modelled correspondence between statin on-target effects and interindividual 181 
variability in gut microbiome ß-diversity using PERMANOVA and including a statin-by-HMG 182 
interaction term. The interaction terms had permutation-based p-values of 0.0070 (R2=0.0017) 183 
and 0.0013 (R2=0.0032) for Bray-Curtis and Weighted UniFrac metrics, respectively, which 184 
remained significant after adjusting for microbiome vendor, BMI, sex, and age (Fig. 2A, Fig. S1). 185 
These results indicate that HMG correspondence to gut microbiome composition is dependent 186 
on statin intake, similar to the HMG-SNP associations reported earlier (Fig. S1). Very similar 187 
patterns were observed for gut α-diversity, where, once again, the association between our 188 
proxy for statin efficacy, HMG, and gut α-diversity was dependent on statin intake (Figure 2D). 189 
Plotting the association between gut α-diversity and HMG stratified by statin use revealed that, 190 
among statin users, higher α-diversity corresponded to lower plasma HMG levels, indicating 191 
decreased on-target effects of the drug in individuals with more diverse microbiomes (Fig. 2D). 192 
The negative association between HMG and α-diversity in statin users was also orthogonal to 193 
genetic variants predisposing individuals to variable statin responses. Running a stepwise 194 
forward regression model predicting HMG levels using the 9 SNPs previously associated with 195 
statin response explained an additional 3.2% of variance in HMG, on top of age (i.e. the base 196 
model). Including observed ASVs as a measure of gut diversity in the model in addition to age 197 
and the chosen SNPs increased the percent variance explained by an additional 3.9% 198 
(complete model R2=0.185). 199 

To further exclude the possibility that individuals with higher α-diversity are generally 200 
healthier and simply prescribed less potent statin therapies to begin with, thus leading to lower 201 
levels of HMG, we further adjusted our models for dosage intensity in the subset of participants 202 
with microbiome data where this information was available (n=75). In this smaller group of 203 
individuals, associations between gut α-diversity and HMG were not impacted by correcting for 204 
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statin intensity (Fig. 2E & Fig. S2). Similar results were observed when investigating statin 205 
dependent associations between LDL-cholesterol and gut α-diversity, although to a weaker 206 
extent (OLS models predicting LDL-cholesterol adjusted for clinical lab and microbiome 207 
vendors, sex, age, and BMI, statin-by-Shannon diversity interaction term β(95% CI):12.2(2.5-208 
22.0), P=0.014, statin-by-Observed Amplicon Sequence Variants (ASVs) interaction term β(95% 209 
CI):0.042(0.00086-0.084), P=0.044, Fig. S2). A weaker interaction effect with LDL cholesterol is 210 
to be expected, given the cross-sectional nature of our study and our inability to capture the 211 
percent decrease in LDL-cholesterol from baseline following the initiation of statin treatment, 212 
one of the most common and direct measures of statin effectiveness 3,17. 213 

As another measure of gut microbiome correspondence to statin response, we tested 214 
the association between measures of gut α-diversity and the likelihood of having reached pre-215 
defined target LDL-cholesterol levels for statin users (<70mg/dL and <100mg/dL). These are 216 
clinically relevant targets, as clinicians are recommended to adjust dosage and type of statin 217 
prescribed to reach these levels of LDL-cholesterol depending on the presence of specific 218 
ASCVD risk factors in their patients 24. Both Shannon diversity and Observed ASVs showed 219 
negative associations with likelihood of having reached target LDL-levels among statin users 220 
(Multivariable logistic regression adjusted for clinical lab vendor, sex, age, BMI, and T2D status 221 
[a common criteria, in combination with one or more CVD risk factors, where more aggressive 222 
LDL-lowering therapy is pursued]):  Odds Ratios (OR) ranging from 0.60-0.69, Table 1). 223 
Together, these results indicate that gut microbiome composition can explain a significant 224 
proportion of variability in statin on-target effects in a generally healthy community-dwelling 225 
population. 226 
 227 
Statin-associated changes in on- and off-target effects are dependent on microbiome 228 
compositional states 229 
Prior work on the gut microbiome and statins has relied on clustering individuals into 230 
microbiome-based compositional states called ‘enterotypes’ 25,26. A recent study revealed that 231 
statin intake among obese individuals was associated with lower prevalence of the Bacteroides 232 
2 (Bac.2) enterotype, which is generally considered to be less healthy than other broad 233 
enterotype groupings common to cohorts in the United States and Europe 21. To evaluate the 234 
extent to which these coarse ecological groupings might help explain interindividual variation in 235 
statin on- and off-target effects, we stratified our cohort into enterotypes. Using a previously 236 
established method for enterotype identification, Dirichlet multinomial mixture (DMM) modeling 237 
27, the participants in the Arivale cohort separated optimally into four groups, according to the 238 
Bayesian Information Criterion (BIC), consistent with some, but not all, previous human gut 239 
microbiome studies (Bacteroides 1 (Bac.1), Bac.2, Ruminococcaceae (Rum.), and Prevotella 240 
(Prev.) clusters) 21,26–28 (Fig. 3A, Fig. S2). The four enterotypes identified showed very similar 241 
characteristics to those described previously in European cohorts, with two Bacteroides-242 
dominated enterotypes (Bac.1 and Bac.2), with the Bac.2 enterotype being further characterized 243 
by decreased α-diversity and a depletion of SCFA-producing commensals like Faecalibacterium 244 
and Subdoligranulum (Fig. 3B, Fig. S2). The Rum. enterotype was enriched for taxa primarily 245 
from the Firmicutes phylum, as well as Akkermansia (Fig. S2, Data S1), consistent with previous 246 
findings 25. The Prev. enterotype was the smallest in size and characterized by high relative 247 
abundance of the Prevotella genus (Fig. 3D, Data S1). 248 

We first attempted to replicate previous findings 21 documenting an observed lower 249 
prevalence of the Bac.2 enterotype in obese individuals taking statins. Consistent with previous 250 
results, obesity itself was associated with a higher likelihood of being assigned to the Bac.2 251 
enterotype (Multivariable logistic regression adjusted for microbiome vendor, sex, and age, 252 
OR(95%CI): 1.8 (1.4-2.3), P=5.0e-5). However, contrary to the original findings, we actually 253 
observed a higher prevalence of the Bac.2 enterotype among statin users compared to non-254 
users, particularly among obese individuals (Fig. 3E). This association among obese individuals 255 
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was further confirmed using multivariable logistic regression adjusting for sex, age, and 256 
microbiome vendor (OR (95%CI): 2.1 (1.2-3.7), P=0.013, n=462).  257 

We next set out to explore whether an individual’s enterotype was associated with their 258 
response to statin therapy. Focusing on statin on-target effects, we observed a significant 259 
enterotype-by-statin interaction when modeling blood HMG levels (P=0.044, unadjusted 260 
analysis of variance (ANOVA), P=0.034, analysis of covariance (ANCOVA) adjusted for 261 
microbiome vendor, clinical lab vendor, sex, age, and BMI). Stratifying the cohort by enterotypes 262 
and comparing statin users to non-users revealed statin use within the Bac.2 enterotype 263 
correlated with the highest HMG levels (37% mean increase relative to non-users), followed by 264 
the Bac.1 (24%) and Rum. enterotypes (18%). Interestingly, individuals with a Prev. enterotype 265 
showed no significant difference in HMG between statin users and non-users, although our 266 
sample size for this enterotype was small and thus this result needs to be interpreted with 267 
caution (Fig. 3F). Similar results were obtained when evaluating statin-by-enterotype interaction 268 
effects on LDL-cholesterol levels (P=0.021, unadjusted ANOVA, P=0.0032, ANCOVA adjusted 269 
for same covariates as HMG models), with statin users with a Bac.2 enterotype demonstrating 270 
lowest LDL-cholesterol levels (-33%) relative to non-users within the same enterotype (Fig. S3). 271 
Statin users who were assigned the Bac.2 enterotype were also two to four-times more likely to 272 
have reached common LDL-cholesterol target levels for statin-users at higher risk for ASCVD 273 
(Table 1). Collectively, these results suggest that microbiome enterotypes may reflect the extent 274 
to which statins inhibit HMG-CoA reductase and reduce LDL-cholesterol levels across 275 
individuals. 276 

Statin use has previously been associated with disrupted glucose control and increased 277 
risk of developing T2D in a subset of patients 5,7,29. Given the known role of the gut microbiome 278 
in contributing to metabolic homeostasis, and the variable metabolic profiles previously 279 
observed across different microbiome enterotypes 21,30, we investigated whether enterotypes 280 
may modify the association between statin use and markers of insulin resistance. Focusing 281 
initially on Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) 31,32, we tested for 282 
an enterotype-by-statin interaction effect while adjusting for microbiome vendor, clinical lab 283 
vendor, sex, age, BMI, LDL-cholesterol, and plasma HMG using ANCOVA. Individuals showed 284 
variable responses to statin therapy based on their microbiome enterotype, with Bac.2 285 
individuals on statins demonstrating the highest levels of HOMA-IR relative to non-statin users, 286 
while Rum. individuals showed no significant difference in HOMA-IR between statin users and 287 
non-users (ANOVA unadjusted interaction term P=0.0037, ANCOVA covariate adjusted 288 
Interaction term P=0.0495, Fig. 3G, Table 2). It is worth noting that in the subset of participants 289 
where dosage intensity information was available, all three intensities (low, moderate, high) 290 
were associated with a comparable increase in HOMA-IR, suggesting that differences in therapy 291 
intensity are likely not the main driver behind the observed statin-enterotype interaction (Fig. 292 
S2). 293 

We next expanded our analysis into additional markers of metabolic health, including 294 
fasting insulin and blood glucose, as well as glycated hemoglobin A1c. There was a significant 295 
enterotype-by-statin interaction across all tested metabolic parameters, which remained 296 
significant after adjusting for covariates across all markers other than insulin (Table 1, Fig. S3). 297 
As individuals with T2D are often recommended to take statins, we further adjusted all models 298 
for T2D status in participants where this information was available (N=1691, T2D n=66), which 299 
did not change the significance of enterotype-by-statin interaction effects observed (Table 2). 300 
Collectively, these results suggest that gut microbiome composition may modify how statins 301 
influence off-target physiology, particularly glucose homeostasis. 302 
 303 
Discussion 304 
There is considerable heterogeneity in response to statin therapy among individuals, both in 305 
terms of on-target effects (lowering LDL-cholesterol) and likelihood of experiencing unwanted 306 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.02.21267193doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.02.21267193
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

side-effects 3,7,29. Herein, we report that variation in gut microbiome taxonomic composition can 307 
explain interindividual variability in statin responses. The main findings of our analyses are as 308 
follows: 1) HMG measured in plasma is a robust marker of both statin use and statin on-target 309 
effects, which also reflects known genetic variability in statin responses; 2) Gut α-diversity 310 
negatively correlates with HMG exclusively in statin users, independent of dose intensity and 311 
genetic predisposition, indicating a more diverse microbiome may interfere with statin on-target 312 
effects; 3) Enterotype analysis further confirms similar patterns of microbiome modification of 313 
statin response, with the Bacteroides dominant, α-diversity-depleted Bac.2 enterotype showing 314 
the highest plasma HMG and lowest LDL-cholesterol levels among statin users; and 4) Of the 315 
four enterotypes identified, individuals with the Bac.2 followed by Bac.1 enterotypes experience 316 
greatest disruption to glucose control when on statins, while the Firmicutes rich Rum. enterotype 317 
appears most protective, indicating variable risk of statin-mediated metabolic side effects based 318 
on gut microbiome composition. Collectively, our findings indicate that the gut microbiome 319 
influences statin actions. With further refinement, knowledge of these effects may inform statin 320 
therapy guidelines and help personalize ASCVD treatment. 321 
 To the best of our knowledge, measuring HMG in large observational studies for the 322 
purpose of exploring statin-mediated effects has not been previously proposed. The conversion 323 
of HMG-CoA to HMG is dependent on the hydrolysis of the thioester bond linking HMG to its 324 
Coenzyme-A moiety, which has been previously shown to be facilitated by at least one known 325 
thioesterase (peroxisomal acyl-CoA thioesterase 2) 33. Relatively little is known about the 326 
accumulation of HMG with statin therapy and the pathways involved, which warrants further 327 
research. Nevertheless, there are several advantages for including HMG along with LDL-328 
cholesterol measurements when evaluating statin effects. For one, given the limitations of a 329 
cross-sectional study design like ours, HMG may provide more time-invariant insight into statin 330 
efficacy, as opposed to LDL-cholesterol, which would require knowledge of pre-statin 331 
cholesterol levels to calculate the percent decrease in LDL over time 3. This seemed to be the 332 
case in our genetics analysis, where cross-sectional measurements of plasma HMG were able 333 
to capture previously reported genetic variability in statin response while LDL-cholesterol 334 
measurements from the same blood draw were less sensitive. In addition, plasma HMG could 335 
prove useful when evaluating statin off-target effects on metabolic health parameters, where 336 
statistical models could be adjusted for HMG to account for variability in statin on-target effects, 337 
as was done in our analysis exploring markers of insulin resistance. 338 

An intriguing finding in the present analysis was an absence of statin-associated 339 
metabolic disruption in individuals with a Rum. enterotype (Fig. 3G, Fig. S3). Statin use in this 340 
group was still associated with increased plasma HMG and decreased LDL-cholesterol levels 341 
(Fig. 3F, Fig. S3), indicating that patients with this microbiome composition type may benefit 342 
from statin therapy without an increased risk of unwanted metabolic complications. There are 343 
several possible explanations for this observation. For example, the Rum. enterotype is 344 
enriched in the genus Akkermansia, as well as several butyrate-producing taxa, which are 345 
known to positively impact host metabolism through multiple mechanisms (Table S2, Fig. S2) 346 
25,34, potentially serving as a buffer against statin off-target effects on glucose homeostasis. In 347 
addition, statins and other prescription drugs have been previously shown to be most readily 348 
metabolized by species within the Bacteroides genus, of which the Rum. enterotype is most 349 
depleted. The lower degree of drug metabolism by Firmicutes taxa comprising the Rum. 350 
enterotype may therefore be potentially protective from statin off-target effects. Consistently, 351 
both Bacteroides rich Bac.1 and Bac.2 enterotypes showed highest levels of markers of insulin 352 
resistance with statin use. 353 

Statin use in individuals with the Bac.2 enterotype was associated with the strongest on-354 
target effects (i.e., high plasma HMG and low LDL-cholesterol levels) but also greatest 355 
metabolic disruption among all four enterotypes (Fig. 3F-G, Fig. S3). This is consistent with 356 
previous observational studies that have identified an association between the magnitude of 357 
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decrease in LDL-cholesterol with statin use and risk of developing T2D (i.e., the greater the 358 
percent decrease in LDL-cholesterol with statin therapy, the higher the risk of new onset T2D) 359 
6,35. One possible mechanism behind the reported association is the previously mentioned ability 360 
of Bacteroides species to metabolize prescription drugs, including statins 15. Bacteroides 361 
dominance within both the Bac.1 and Bac.2 enterotypes may modify drug activity, impacting 362 
both potency and potential side effects. Paired with depletion of several major butyrate-363 
producing taxa within the Bac.2 enterotype (Fig. 3D, Fig. S1, Data S1), this bacterial 364 
composition may put patients at particularly high risk of metabolic complications. If this were 365 
indeed the case, individuals with a Bac.2 enterotype could benefit most from lower intensity 366 
therapy, which might still achieve the desired percent decrease in LDL-cholesterol while 367 
mitigating potential metabolic disruptions. Complementary pro- or prebiotic interventions could 368 
also be potentially pursued in these individuals. However, further experimental work is needed 369 
to fully elucidate the microbiome-statin interactions that may be driving the reported 370 
associations. 371 

While our present investigation identified very similar enterotype structure to a previous 372 
study on statin use and the gut microbiome by Veiera-Silva et al. 21, our analysis also showed 373 
conflicting results in terms of prevalence of the putatively dysbiotic Bac.2 enterotype among 374 
obese statin users (Fig. 3E). One possible explanation for this discrepancy is that in the original 375 
study individuals were primarily prescribed Simvastatin (48% of statin users), which is a lower 376 
intensity HMG-CoA reductase inhibitor than the most commonly prescribed Atorvastatin in our 377 
cohort (53% of all statin users). The different statin types may have a different impact on the gut 378 
microbiome. Alternatively, the studied population of obese statin users in the original study by 379 
Veiera-Silva et al. may have been healthier and hence prescribed lower intensity therapies than 380 
the cohort presented in this study, resulting in these variable findings. Finally, additional 381 
confounding variables may be responsible for the observed shifts in enterotype proportions 382 
among obese statin users across both studies. It’s worth noting that, while the prior study 21 383 
focused on how statins might influence the composition of the microbiome, our study focused on 384 
how the composition of the microbiome impacts the on- and off-target effects of statins in the 385 
host. Our analyses indicate that statins have a detectable, but very weak effect on the 386 
composition of the gut microbiome, while the gut microbiome appears to have a more sizable 387 
impact on host responses to statin treatment. 388 

Growing evidence suggests a bidirectional interaction between prescription medication 389 
use and the gut microbiome, which may inform drug treatment for hundreds of millions of people 390 
worldwide. Here we present a proof-of-concept study on how gut microbiome composition may 391 
be used to stratify patients to inform statin therapy. As our understanding of microbe-drug 392 
interactions deepens, gut microbiome modification and monitoring hold promise for informing 393 
pharmacological treatment optimization. 394 
 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 
 407 
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Methods: 409 
Cohort: The Arivale cohort consists of adults (18+ years old) who self-enrolled in a now closed 410 
lifestyle intervention program (Arivale, Inc. 2015-2019) 36–39. The lifestyle intervention was 411 
designed to improve a number of key outcomes based on longitudinal profiling of clinical 412 
biomarkers and individualized coaching. For the present study, only individuals who filled out 413 
medication questionnaires, and/or reported their prescription medication information directly to 414 
their coach during a 1-on-1 session, were included. Participants further had to have available 415 
fasting plasma metabolomics and clinical laboratory test data (N=1848). Only baseline 416 
measurements and corresponding medication doses at the start of the program were 417 
considered, i.e. before any lifestyle interventions were recommended. Of the 1848 participants 418 
originally included, after excluding individuals who reported taking antibiotics in that last 3 419 
months, 1512 had available stool 16S rRNA gene sequencing data. Similar to the larger Arivale 420 
population, the majority of participants of this study were residents of Washington and California 421 
when in the program. Although the cohort tends to be leaner than the general U.S. population 422 
(prevalence of obesity is 31% relative to the national prevalence of 42%40), it is representative of 423 
the populations in the states where the majority of the participants were located. The cohort is 424 
further predominantly female (63%) and is skewed towards Caucasians (81%). Additional 425 
demographic information on the cohort is provided in Table S1. 426 
Microbiome Analysis 427 

Stool samples in the Arivale cohort were collected using kits developed by two 428 
microbiome vendors (DNAGenotek or Second Genome), and processed as described 429 
previously 37,41. Briefly, stool sample collection kits with proprietary chemical DNA stabilizers to 430 
maintain DNA integrity at ambient temperatures were shipped directly to participants’ homes 431 
and then shipped back to the vendors. Gut microbiome sequencing data in the form of FASTQ 432 
files were then obtained from the vendors on the basis of either the 300-bp paired-end MiSeq 433 
profiling of the 16S V3 + V4 region (DNAgenotek) or 250-bp paired-end MiSeq profiling of the 434 
16S V4 region (Second Genome). Downstream analysis was performed using a denoise 435 
workflow from mbtools (https://github.com/gibbons-lab/mbtools) that wraps functions from 436 
DADA2. DADA2 42 error models were first trained separately for each sequencing run and 437 
subsequently used to obtain amplicon sequence variants (ASVs) for each sample. Next, 438 
chimera removal was performed using the de novo DADA2 algorithm, which removed  ~17% of 439 
all reads. Taxonomy assignment was performed using the RDP classifier with the SILVA 440 
database (version 132). In summary, 99% of the reads could be classified to the family level, 441 
89% to the genus level and 32% to the species level. Sequence variants were aligned to each 442 
other using DECIPHER 43 and multiple sequence alignment was trimmed by removing each 443 
position that consisted of more than 50% gaps. The resulting core alignment was then used to 444 
reconstruct a phylogenetic tree using FastTree 44. Downstream gut microbiome analysis was 445 
conducted using the Phyloseq Package in R (v 3.6) 45. Gut microbiome samples were first 446 
rarefied to an even sampling depth of 25596 reads, corresponding to the minimum number of 447 
reads per sample in the dataset. Bray-Curtis 46 and Weighted UniFrac 47 dissimilarity matrices 448 
were calculated at the genus-level using the Phyloseq package. Alpha-diversity measures were 449 
calculated at the ASV-level using the Phyloseq Package. Enterotype analysis was performed 450 
using Dirichlet Multinomial Mixture (DMM) modeling on the rarefied genus-level count data, as 451 
previously described 27. For selecting the optimal number of DMM groups in our cohort (i.e. 452 
enterotypes), we used the Bayesian information criterion (BIC) (Fig.S2).  453 

However, BIC as a model penalization metric is not without limitations and tends to err 454 
on the side of underfitting (i.e., estimating a smaller number of clusters). The Laplace 455 
approximation for model penalization 27, on the other hand, did not identify an optimal number of 456 
clusters in this particular dataset (out to a maximal number of eight clusters tested), indicating 457 
limited statistical evidence for a small number of coarse-grained compositional states within our 458 
cohort (Fig. S2). Nevertheless, the main enterotype groupings tend to be relatively consistent 459 
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from study-to-study in large U.S. and European populations, even if the statistical evidence for 460 
such states is somewhat limited 26. Given that the four BIC-identified enterotypes in our cohort 461 
show strikingly similar taxonomic signatures to those identified in prior work on statins 21, we 462 
moved forward with an analysis of these compositional states and how they relate to statin 463 
response. 464 
Clinical Laboratory Tests 465 
Blood draws for all assays were performed by trained phlebotomists at LabCorp (n=1309) or 466 
Quest (n=553) service centers, and assaying was performed in CLIA-certified laboratory 467 
facilities by the vendors. Blood samples for clinical laboratory tests were obtained at the same 468 
time as the metabolomics blood draw, and only the baseline sample prior to any lifestyle 469 
coaching intervention was considered. Prior to the blood draw, Arivale participants were advised 470 
to avoid alcohol, vigorous exercise, aspartame, and monosodium glutamate for 24 hours, and to 471 
begin fasting 12 hours in advance. 472 
Plasma Metabolomics 473 
Plasma HMG was measured as part of the metabolomics data generated by Metabolon, Inc., on 474 
the same blood draws as clinical laboratory tests. Raw metabolomics data was normalized as 475 
described previously 36,37. Values were median scaled within each batch, such that the median 476 
value for each metabolite was 1. To adjust for possible batch effects, further normalization 477 
across batches was performed by dividing the median-scaled value of each metabolite by the 478 
corresponding average value for the same metabolite in technical control samples processed in 479 
the same batch. The same technical control samples were used to ensure the comparability of 480 
abundance estimates obtained across batches.  481 
Genetics Analysis 482 
Participant DNA was extracted from whole blood and, following quality control and purification, 483 
as needed, underwent 150 PE whole genome sequencing (WGS) using Illumina’s HiSeq X at 484 
30x coverage as described previously 48. Variant calling was performed by the vendor using the 485 
pipeline that follows GATK’s Best Practices, using Haplotype Caller and hg19 build as the 486 
reference genome. A total of 1747 participants (~94% of the present cohort) had available WGS 487 
data and were used in the present analysis. Following extensive quality control and assurance, 488 
genetic ancestry was calculated as principal components (PCs) using a set of ~100,000 489 
ancestry-informative SNP markers as described previously 49. SNPs chosen for testing 490 
associations with HMG were based on prior studies investigating genetic predisposition to statin 491 
efficacy defined as percent decrease in LDL-cholesterol from baseline, and included the 492 
following variants: rs10455872, rs2199936, rs2900478, rs4420638, rs445925, rs5908, 493 
rs646776, rs7412, and rs8014194 11. To model the association between SNPs and HMG in 494 
statin users, individuals homozygous and heterozygous for the minor allele were grouped 495 
together. Statistical analysis was performed on each SNP individually using GLM with a Gamma 496 
distribution and a log-link function within the statsmodels module in Python, with HMG as the 497 
dependent variable and a statin-by-SNP interaction term. The interaction term tests for a 498 
significant association between HMG and statin use, that is modified by the SNP of interest (i.e. 499 
the effect of statins on HMG are variable based on the genetic variant). Models were further 500 
adjusted for sex, age, BMI and the first 7 ancestry PCs. Ordinary Least Square (OLS) 501 
regression models with the same covariates and interaction term were also run with LDL-502 
cholesterol as the dependent variable. Type-1 error was controlled using the Benjamini-503 
Hochberg method (FDR<0.05). 504 
Statistical Analysis 505 
Depending on the statistical approach, analysis was conducted using either R (v 3.6) or Python 506 
(v 3.7). Of the 1848 participants included in our study, 73 had missing data on sex and age, 66 507 
on BMI, and 81 on HMG. These missing values were imputed using plasma metabolomics data 508 
and the K nearest neighbor algorithm implemented through the sklearn.impute module in 509 
Python. The associations of plasma HMG levels with LDL-cholesterol, statin intensity, and 510 
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measures of gut alpha-diversity were all tested using Generalized Linear Models (GLM) with a 511 
Gamma distribution and a log-link function within the statsmodels module in Python, with HMG 512 
as the dependent variable. OLS regression (Python) was used whenever LDL-cholesterol or 513 
measures of gut alpha-diversity were the dependent variables. Testing for associations between 514 
variables and interindividual variability in gut microbiome composition was conducted using 515 
permutational multivariate analysis of variance (PERMANOVA) through the Adonis package in 516 
R using both the genus-level Bray-Curtis and Weighted UniFrac dissimilarity matrices. The 517 
number of permutations to obtain P-values was set to 3000. 518 

For assessing dose-response relationships between HMG/LDL-cholesterol and dosage 519 
intensity (Fig. 1D), dosage was recoded into an ordinal variable (0(none/no statins), 1(low), 520 
2(moderate), 3(high)), and the significance of the β-coefficient for that variable from covariate 521 
adjusted models predicting either HMG(GLM adjusted for  sex, age, and BMI) or LDL-522 
cholesterol (OLS adjusted for sex, age, BMI, and clinical lab vendor) was reported. Wherever 523 
associations were visualized using box plots or scatter plots, the residuals (values adjusted for 524 
covariates from either GLM or OLS models) were plotted instead of the original values. For 525 
comparing the differences in prevalence of the four enterotypes among statin users and non-526 
users, the χ2 test was performed using the chisq.test function in R. When evaluating the 527 
association between obesity and Bac.2 enterotype, as well as statin use and Bac.2 enterotype 528 
among obese participants, multivariable logistic regression models were generated through the 529 
statsmodels module in Python with Bac.2 membership (versus all other enterotypes) as the 530 
dependent variable. 531 
 When testing for significant enterotype-by-statin interactions, HMG and metabolic 532 
parameters (blood glucose, blood insulin, HOMA-IR, and HbA1c) were log transformed prior to 533 
fitting the models. Analysis of Variance (ANOVA) or covariance (ANCOVA) models were then 534 
used to test for significant interactions (ANOVA (measure ~ 535 
statin_use+enterotype+statin_use*enterotype) for unadjusted models and ANCOVA 536 
(measure~covariate 1+covariate 2+... covariateX+ statin_use+ enterotype+ 537 
statin_use*enterotype) for covariate adjusted models)) using the statsmodels module in Python. 538 
If a significant interaction was present, post-hoc comparisons were performed between statin 539 
users and non-users within each enterotype on the covariate adjusted values (residuals) using 540 
two-sample t-tests, with Bonferroni corrected P<0.05 considered statistically significant. 541 
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 771 

Fig. 1 Plasma HMG correlates with statin use and statin LDL-response. A) Frequency of statin use, 772 
type of statin taken, and number of participants with available data for each ‘omics for each participant 773 
included in the present analysis. B) Diagram of de novo cholesterol synthesis pathway, with HMG and the 774 
rate-limiting enzyme inhibited by statins highlighted. C) Scatterplots of LDL-cholesterol and plasma HMG 775 
in statin non-users (blue) and users (red) separately, across two different clinical laboratory test vendors 776 
used in the cohort. The lines shown are the y~x regression lines, and the shaded regions are 95% 777 
confidence intervals for the slope of each line. Below each scatter plot is the Spearman correlation 778 
coefficient and corresponding p-value. Adj. β(95%CI) corresponds to the β-coefficient for LDL cholesterol 779 
from GLMs predicting plasma HMG, adjusted for sex, age, and BMI. Also shown to the right of each 780 
scatter plot are kernel density plots for plasma HMG in statin users and non-users. The black lines 781 
indicate the mean of each group, and the p-value corresponds to the effect size of the difference between 782 
statin users and non-users from GLMs adjusted for the same covariates as above. D) Relationship 783 
between statin intensity therapy and plasma HMG as well LDL cholesterol levels for the subset of 784 
participants in the cohort who had available dosage intensity data (n=97). The lines shown are the y~x 785 
regression lines, and the shaded regions are 95% confidence intervals for the slope of each line. P-value 786 
corresponds to the dose-response relationship between therapy intensity and either plasma HMG (top 787 
box plot) or LDL cholesterol (bottom box plot). Values on the y-axis are analyte levels adjusted for 788 
covariates (residuals). Box plots represent the interquartile range (25th to 75th percentile, IQR), with the 789 
middle line denoting the median; whiskers span 1.5 × IQR, points beyond this range are shown 790 
individually. 791 
 792 
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 793 
Fig.2 Gut microbiome composition is associated with markers of statin efficacy. A) Proportion of 794 
variance explained by statin use, plasma HMG levels, and a statin-by-HMG interaction term from 795 
unadjusted PERMANOVA models or models adjusted for sex, age, BMI, and microbiome vendor using 796 
the Weighted UniFrac genus-level dissimilarity matrix. Grey area corresponds to the cumulative R-797 
squared of variables added to the model prior to the variable indicated on the x-axis, while the colored 798 
areas of the bars represent the additional variance explained by that variable. B) Measures of gut α-799 
diversity in statin users compared to non-users. The β-coefficient, 95%CI and p-value shown is derived 800 
from OLS models predicting each of the α-diversity measures adjusted for microbiome vendor, sex, age, 801 
and BMI. Values on the y-axis are diversity measures adjusted for these covariates (residuals). C) 802 
Measures of Observed ASVs in statin users and non-users with known therapy intensity (low, moderate, 803 
high). P-values shown correspond to β-coefficients from OLS models predicting Observed ASVs 804 
comparing each intensity group to the no statin control group, adjusted for the same covariates as in B). 805 
D) Plasma HMG levels among statin users and non-users across tertiles of gut α-diversity. Interaction P 806 
corresponds to the statin-by-α-diversity interaction term p-value from GLM predicting plasma HMG 807 
adjusted for the same covariates as in B) and C). Values on the y-axis are diversity measures adjusted 808 
for these covariates (residuals).  Box plots represent the interquartile range (25th to 75th percentile, IQR), 809 
with the middle line denoting the median; whiskers span 1.5 × IQR, points beyond this range are shown 810 
individually. E) Scatter plots of Observed ASVs (x-axis) and covariate adjusted plasma HMG levels 811 
(residuals) (y-axis) in statin users with known dosage therapy intensity as well as statin non-users. Levels 812 
were adjusted for the same covariates as in B), as well as dosage intensity. 813 
 814 
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 820 
Fig. 3: Statin associations with markers of efficacy and metabolic side effects are microbiome 821 
enterotype dependent. A) Principal Coordinate Analysis (PCoA) plot of the genus-level Bray-Curtis 822 
Dissimilarity matrix color-coded by enterotypes. B-D) Relative abundance of Bacteroides (B), Prevotella 823 
(C), and Faecalibacterium (D) genera across the four enterotypes identified in the cohort. E) Proportion of 824 
each enterotype in statin users and non-users across the whole cohort (left) and stratified by obesity 825 
status (right). F) Plasma HMG levels among statin users and non-users stratified by enterotype. 826 
Interaction P corresponds to the statin-by-enterotype interaction term p-value from unadjusted ANOVA 827 
models, while the cov. Adj. interaction P corresponds to the statin-by-enterotype interaction term p-value 828 
from covariate adjusted ANCOVA models. Plasma HMG levels shown on the y-axis are values adjusted 829 
for the same covariates (residuals). G) HOMA-IR measures among statin users and non-users stratified 830 
by enterotype. Interaction P corresponds to the statin-by-enterotype interaction term p-value from 831 
unadjusted ANOVA models, while the cov. Adj. interaction P corresponds to the statin-by-enterotype 832 
interaction term p-value from ANCOVA models adjusted for covariates. P-values above the box plots in F) 833 
and G) correspond to tests of significance between statin non-users and statin users within each 834 
enterotype using two-samples t-test. Differences with Bonferroni corrected P<0.05 were considered 835 
statistically significant and are highlighted in red. Box plots represent the interquartile range (25th to 75th 836 
percentile, IQR), with the middle line denoting the median; whiskers span 1.5 × IQR, points beyond this 837 
range are shown individually. 838 
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  <100 mg/dL (n cases=132, N total=197) <70 mg/dL (n cases=44, N total=197) 

  
Cov. adj. 

OR(95%CI) 
Cov. & T2D adj. 

OR(95%CI) 
Cov. adj. 

OR(95%CI) 
Cov. & T2D adj. 

OR(95%CI) 

Shannon 
diversity 0.69 (0.49-0.97) 0.72 (0.50-1.03) 0.67 (0.48-0.95) 0.60 (0.41-0.87) 

Observed ASVs 0.67 (0.47-0.95) 0.67 (0.45-0.98) 0.66 (0.45-0.95) 0.62 (0.40-0.96) 

Bac.2 enterotype 2.19 (1.04-4.60) 2.11 (0.95-4.66) 3.61 (1.68-7.77) 4.33 (1.83-10.25) 

 846 
Table 1. Gut microbiome measures correlate with having reached LDL-cholesterol target levels 847 
among statin users. Odds Ratios (OR) for each gut microbiome measure from logistic regression 848 
models predicting having achieved either <100 mg/dL or <70 mg/dL target LDL-cholesterol level among 849 
statin users. The Bac.2 enterotype was compared against all other enterotypes. Measures of α-diversity 850 
were scaled and centered prior to analysis for easier comparison of effect sizes. Models were adjusted for 851 
clinical laboratory and microbiome vendors, age, sex, and BMI. Further adjustment for T2D status was 852 
done in participants where this information was available (n=174). Significant OR (P<0.05) are highlighted 853 
in red.  854 
 855 
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Measure 

Percent median increase in each 
measure and P-value  

Between statin-users and non-users for 
each enterotype 

F-value and corresponding P-value for statin*enterotype 
interaction term  

predicting each measure 

 
Bac.1 Rum. Bac.2 Prev. 

Unadjusted 
model 

N=1848 

Covariate adj. 
model N=1848 

Covariate and diabetes 
adj. model N=1691 

HOMA-
IR 73%, 

P=7.2e-07 
21% 

P=0.27 
99% 

P=1.2e-04 
29% 

P=0.33 
F=4.5,  

P=0.0037 
F=2.6,  

P=0.0495 
F=2.6,  

P=0.049 

Insulin 63% 
P=5.6e-06 

19% 
P=0.17 

89% 
P=9.1e-04 

22% 
P=0.25 

F=3.0,  
P=0.032 

F=1.4,  
P=0.23 

F=1.5,  
P=0.22 

Glucose 6.6% 
P=9.7e-04 

4.5% 
P=0.51 

9.3% 
P=8.1e-04 

7.6% 
P=0.84 

F=6.4, 
P=0.00025 

F=4.4,  
P=0.0041 

F=3.9,  
P=0.0092 

HbA1c 5.6% 
P=2.0e-03 

1.9% 
P=0.16 

7.3% 
P=1.2e-04 

1.8% 
P=0.57 

F=8.1,  
P=2.3E-05 

F=6.3, 
P=0.00030 

F=3.4,  
P=0.017 

 881 
Table 2. Gut microbiome enterotypes modify the association between statin use and markers of 882 
glucose homeostasis. Percent median increase in the first four columns corresponds to the percent 883 
difference in each marker between statin users and non-users within each enterotype. P-values in these 884 
columns correspond to t-tests comparing covariate adjusted values between statin users and non-users. 885 
Values shown are raw p-values, and those that remained significant after correcting for type-1-error 886 
(Bonferroni P<0.05) are highlighted in red. The last three columns in the table show the F- and p-values 887 
for the statin-by-enterotype interaction term from ANOVA (unadjusted) and ANCOVA (covariate adjusted) 888 
models predicting each of the specified markers of glucose homeostasis. Covariate adjusted models were 889 
adjusted for microbiome vendor, clinical lab vendor, sex, age, BMI, LDL cholesterol and plasma HMG. 890 
Last column corresponds to models adjusted for the same covariates as well as T2D status (yes/no, 891 
N=1691, T2D n=64). P-values<0.05 are colored in red. Abbreviations: HOMA-IR: Homeostatic Model 892 
Assessment for Insulin Resistance; HbA1c: Glycated Hemoglobin A1c. 893 
 894 
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Fig. S1. Gut alpha-diversity is anti-correlated with markers of statin on-target effects. A) 909 
LDL-cholesterol and plasma HMG measures in individuals stratified by statin use and genotype. 910 
Provided is the P-value for the statin-by-SNP interaction term from GLM (HMG) or OLS (LDL) 911 
models adjusted for sex, age, BMI and the first 7 ancestry principle components. B) Proportion 912 
of variance explained by statin use, plasma HMG levels, and a statin-by-HMG interaction term 913 
from unadjusted PERMANOVA models (statin use + HMG + statin use-by-HMG) or models 914 
adjusted for sex, age, BMI, and microbiome vendor using the Bray-Curtis genus-level 915 
dissimilarity matrix. Grey area corresponds to the cumulative R-squared of variables added to 916 
the model prior to the variable indicated on the x-axis, while the colored areas of the bars 917 
represent the additional variance explained by that variable. C) Measures of Observed ASVs in 918 
non-users and across statin users with known therapy intensity (low, moderate, high). D-E) 919 
Scatter plots of Shannon diversity (x-axis) and covariate adjusted plasma HMG levels (y-axis) in 920 
statin users with known dosage therapy intensity (D) and statin non-users (E). HMG values 921 
have been adjusted for the same covariates as in B), as well as statin intensity. Also provided 922 
are the spearman correlation coefficients and their corresponding P-value, as well as adjusted 923 
β-coefficients from GLM predicting HMG levels adjusted for the same covariates as in C) as well 924 
as dosage intensity. F-G) Scatter plots of Shannon diversity (x-axis) and covariate adjusted 925 
LDL-cholesterol levels (y-axis) in all statin users (F) and statin users with known therapy 926 
intensity (G), where LDL values were further adjusted for therapy intensity. F) Scatter plot of 927 
Shannon diversity (x-axis) and covariate adjusted LDL-cholesterol (y-axis) in statin non-users 928 
adjusted for the same covariates as in F).  929 
 930 
 931 
 932 
 933 
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 935 
Fig. S2. Enterotypes differ in their relative abundance of SCFA-producing taxa. A) 936 
Measure of model fit using the Bayesian information criterion (BIC) (top) across an increasing 937 
number of Dirichlet components as well as Laplace approximation (bottom) in the Arivale cohort. 938 
Specifying 4 components resulted in best model performance using BIC and is highlighted by 939 
the dotted red line. B) Gut alpha-diversity measures using Observed ASVs across the four 940 
enterotypes. C-D) Relative abundance of the genus Akkermansia (C) and Subdoligranulum (D) 941 
across the four enterotypes identified in the Arivale cohort. P-value from a non-parametric 942 
Kruskal-Wallis test comparing differences across all four enterotypes is provided in the top right 943 
corner. D) HOMA-IR levels across statin non-users and statin users with known therapy 944 
intensity. To the right are the β-coefficients, 95% confidence intervals, and P-values from OLS 945 
regression models predicting log(HOMA-IR) adjusted for clinical lab vendor, microbiome vendor, 946 
sex, age, BMI, and LDL cholesterol. HOMA-IR values on the y-axis have been adjusted for the 947 
same covariates. Box plots represent the interquartile range (25th to 75th percentile, IQR), with 948 
the middle line denoting the median; whiskers span 1.5 × IQR, points beyond this range are 949 
shown individually. 950 
 951 
 952 
 953 
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 958 
Fig. S3: Microbiome enterotypes modify markers of statin on and off-target effects. A) 959 
Blood LDL-cholesterol levels among statin users and non-users stratified by enterotype. 960 
Interaction P corresponds to the statin-by-enterotype interaction term P-value from unadjusted 961 
ANOVA models, while the cov. Adj. interaction P corresponds to the statin-by-enterotype 962 
interaction term P-value from ANCOVA models adjusted for clinical lab vendor, microbiome 963 
vendor, sex, age, BMI and LDL cholesterol. Values shown on the y-axis are values adjusted for 964 
the same covariates (residuals). B) HbA1c measures among statin users and non-users 965 
stratified by enterotype. Interaction P corresponds to an unadjusted interaction term P-value as 966 
in A), while the cov. Adj. interaction P corresponds to the statin-by-enterotype interaction term 967 
P-value from ANCOVA models adjusted for clinical lab vendor, microbiome vendor, sex, age, 968 
BMI, HMG and LDL cholesterol. Values shown on the y-axis are values adjusted for the same 969 
covariates (residuals). P-values above the box plots across A)-B) correspond to tests of 970 
significance between statin non-users and statin users within each enterotype using two-971 
samples t-test on covariate adjusted values (residuals). Differences with Bonferroni corrected 972 
P<0.05 were considered statistically significant and are highlighted in red. Box plots represent 973 
the interquartile range (25th to 75th percentile, IQR), with the middle line denoting the median; 974 
whiskers span 1.5 × IQR, points beyond this range are shown individually. 975 
 976 
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 No. of 
missing 
values 

Non-users 
(n=1604) 

Statin users 
(n=244) 

Whole 
cohort 
(n=1848) 

P-Value Statistical 
Test 

 

Mean Age (s.d.) 0 
47.3 (10.9) 59.1 (10.1) 48.8 (11.5) <0.001 Two Sample 

T-test 

Mean BMI (s.d.) 0 
27.8 (6.5) 30.1 (6.2) 28.1 (6.5) <0.001 Two Sample 

T-test 

Mean LDL (mg/dL) (s.d.) 0 
115.9 (32.8) 95.0 (28.8) 113.2 (33.1) <0.001 Two Sample 

T-test 

Median HOMA-IR (index) 
[IQR]  

0 
1.8 [1.3,2.8] 3.1 [2.0,5.1] 1.9 [1.3,3.1] <0.001 Kruskal-

Wallis 

Mean Glucose (mg/dL) (s.d.) 0 
92.9 (16.5) 106.7 (35.9) 94.7 (20.7) <0.001 

Two Sample 
T-test 

Diabetes (n)(%) 157 
26 (1.8) 40 (18.7) 66 (3.9) <0.001 Chi-squared 

Sex (n) (% Female) 0 
1046 (65.2) 119 (48.8) 1165 (63.0) <0.001 Chi-squared 

Clinical lab vendor 
(n)  (% Quest) 

0 
463 (28.9) 90 (36.9) 553 (29.9) 0.013 Chi-squared 

Microbiome vendor (n) (% 
DNAGenotek) 

110 
689 (45.8) 112 (48.1) 801 (46.1) 0.56 Chi-squared 

Race (% white) 72 
1227 (80.1) 207 (84.8) 1434 (80.7) 0.097 Chi-squared 

Table S1. Arivale participant demographics stratified by statin use. No. of missing values 977 
corresponds to the total number of missing values across the cohort due to either participants 978 
not providing that information (diabetes status, race) or not having that omics data available 979 
(microbiome). ‘P-Value’ corresponds to statistical analysis testing the difference between statin 980 
users and non-users, with the type of statistical test used shown in the last column. 981 
Abbreviations: BMI: body mass index; LDL: low-density lipoprotein cholesterol; HOMA-IR: 982 
Homeostatic Model Assessment for Insulin Resistance; IQR: interquartile range. 983 
 984 
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    HMG (N=1734) LDL-Cholesterol (N=1734) 

SNP rsid 

At least one copy of the 
minor allele 
(proportion) 

Adj.  β-
coeff s.e. 

P-
value 

Corr. P-
value 

Adj.  β-
coeff s.e. 

P-
value 

Corr. P-
value 

rs10455872 0.11 -0.0207 0.0338 0.5402 0.6690 -4.5819 3.5322 0.1947 0.4333 

rs2199936 0.23 -0.0157 0.0245 0.5211 0.6690 -0.2432 2.5747 0.9247 0.9966 

rs2900478 0.29 -0.0110 0.0237 0.6427 0.6690 1.0850 2.4733 0.6609 0.9966 

rs4420638 0.30 -0.0178 0.0228 0.4350 0.6690 -3.4403 2.3689 0.1466 0.4333 

rs445925 0.18 0.0907 0.0324 0.0052 0.0207 -0.0143 3.3645 0.9966 0.9966 

rs7412 0.12 0.1513 0.0453 0.0009 0.0068 0.7567 4.6668 0.8712 0.9966 

rs646776 0.37 0.0096 0.0224 0.6690 0.6690 4.1731 2.3359 0.0742 0.4333 

rs8014194 0.46 0.0347 0.0215 0.1068 0.2849 2.7833 2.2520 0.2166 0.4333 

 994 
Table S2. Correspondence of HMG with SNPs previously associated with statin 995 
response.  β-coefficients, standard error (s.e.) and the corresponding p-value for the SNP-by-996 
statin interaction term predicting either HMG (GLM) or LDL-cholesterol levels (OLS regression) 997 
across the Arivale cohort with available genetics data. Models were adjusted for sex, age, BMI 998 
and the first 7 ancestry PCs. “Corr. P-value” corresponds to the P-value for each β-coefficient 999 
after correcting for multiple hypothesis testing (FDR<0.05). Significant P-values are highlighted 1000 
in red. 1001 
 1002 
 1003 

Data S1. Significant genus differences across enterotypes. List of 85 genera significantly 1004 
differing across enterotypes tested using a Kruskal-Wallis test (Bonferroni P<0.05). Each 1005 
enterotype column corresponds to the median relative abundance of a particular genus for that 1006 
enterotype. 1007 
 1008 

 1009 
 1010 
  1011 
 1012 
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