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Abstract 160 

Trans-ancestry genetic research promises to improve power to detect genetic signals, fine-mapping 161 

resolution, and performances of polygenic risk score (PRS). We here present a large-scale genome-wide 162 

association study (GWAS) of rheumatoid arthritis (RA) which includes 276,020 samples of five ancestral 163 

groups. We conducted a trans-ancestry meta-analysis and identified 124 loci (P < 5 x 10-8), of which 34 164 

were novel. Candidate genes at the novel loci suggested essential roles of the immune system (e.g., 165 

TNIP2 and TNFRSF11A) and joint tissues (e.g., WISP1) in RA etiology. Trans-ancestry fine mapping 166 

identified putatively causal variants with biological insights (e.g., LEF1). Moreover, PRS based on trans-167 

ancestry GWAS outperformed PRS based on single-ancestry GWAS and had comparable performance 168 

between European and East Asian populations. Our study provides multiple insights into the etiology of 169 

RA and improves genetic predictability of RA. 170 

  171 
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Main text 172 

Rheumatoid arthritis (RA) is an autoimmune disease in which the immune system attacks the synovium 173 

in the joints, leading to chronic tissue inflammation, joint destruction, and disability. While recent 174 

therapeutic developments now alter the course of disease, RA mechanisms have yet to be fully 175 

elucidated and a cure has yet to be identified. RA can be divided into two major subtypes (seropositive 176 

and seronegative RA) based on the presence or absence of RA-specific serum antibodies (rheumatoid 177 

factor or anti-citrullinated peptide antibodies)1. Since RA is highly heritable2–4, genetic research has the 178 

potential to advance our understanding of its pathology. Indeed, previous studies successfully identified 179 

candidates of causal alleles, genes, pathways, and cell types2,5–7. For example, previous studies 180 

suggested that CD4+ effector T cells play a central role and the T cell receptor signaling pathway drives 181 

autoimmunity in RA7–10. 182 

Trans-ancestry genetic research has multiple advantages over single-ancestry analysis. First, 183 

genome-wide association study (GWAS) in a single ancestry can be underpowered to detect signals 184 

from a causal allele with low allele frequency in that ancestry. As notable examples, the causal alleles 185 

can be ancestry-specific, as shown in studies for other complex diseases11–13. Having multiple ancestries 186 

with different allele frequency spectrum can improve the power. Second, single-ancestry GWAS are 187 

hampered by the specific linkage disequilibrium (LD) structure in that ancestry, which could obscure the 188 

ability to effectively fine-map an associated locus14,15. Trans-ancestry GWAS can improve fine-mapping 189 

resolution by leveraging the distinct LD structures in each ancestry15–17. Third, PRS generally has limited 190 

transferability across ancestries. For example, when the PRS model is developed based on GWAS in 191 

European (EUR) populations, PRS performs poorly in non-EUR populations18. PRS based on trans-192 

ancestry GWAS can potentially improve its performance in multiple ancestries19,20; this is a clinically 193 

important topic since PRS can benefit patients via precision medicine. Although many RA genetic studies 194 

were conducted in non-EUR populations2,3,17,21–24, they were relatively small in the sample sizes, and 195 

much larger research efforts have focused on EUR populations6,25–32.  196 

Here, we report a large-scale trans-ancestry GWAS of RA, including individuals of EUR, East 197 

Asian (EAS), African (AFR), South Asian (SAS), and Arabian (ARB) ancestries. While seropositive and 198 
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seronegative RA are associated with phenotypic differences, they have shared heritability33, and their 199 

risk alleles appear to be similar outside of the major histocompatibility complex (MHC) locus34. Therefore, 200 

we initially focused on all RA, and then we restricted cases to seropositive patients. After identifying 201 

novel loci, we conducted fine-mapping to elucidate potential molecular mechanism of risk alleles. We 202 

examined the extent to which genetic signals are shared across ancestries while also investigating 203 

ancestry-specific genetic signals. We developed PRS models using our GWAS results and compared 204 

their performances across all ancestries. Our study provides multiple insights into the etiology of RA and 205 

highlights the importance and further needs of diversifying the ancestral background of GWAS 206 

participants. 207 

 208 

RESULTS 209 

Trans- and single-ancestry GWAS  210 

We included 37 cohorts comprising 35,871 RA patients and 240,149 control individuals of EUR, EAS, 211 

AFR, SAS, and ARB ancestry (Figure 1a; Supplementary Table 1 and 2); 22,350 cases and 74,823 212 

controls in 25 EUR cohorts; 11,025 cases and 162,608 controls in eight EAS cohorts; 999 cases and 213 

1,108 controls in two AFR cohorts; 986 cases and 1,258 controls in one SAS cohort; and 511 cases and 214 

352 controls in one ARB cohort. RA-specific serum antibodies were measured in 31,963 (89%) of cases; 215 

among them 27,448 (86%) were seropositive and 4,515 (14%) were seronegative (Supplementary 216 

Table 1; Methods). To confirm the diversity of ancestral backgrounds, we projected each individual’s 217 

genotype into principal component (PC) space which was calculated using all individuals in 1000 218 

Genomes Project Phase 3 (1KG Phase3). We further conducted uniform manifold approximation and 219 

projection (UMAP) using their top 20 PC scores. This revealed finer scale ancestral structure, and 220 

confirmed that our study represented many 1KG Phase 3 ancestries (Figure 1b and 1c; Extended Data 221 

Figure 1). 222 

After quality control and imputation, we conducted GWAS in each cohort by logistic regression 223 

(Methods). We calculated genomic inflation using all variants outside of the MHC locus and observed 224 

little evidence of statistical inflation (mean of lambda = 1.01; S.D = 0.04; Supplementary Table 1). 225 
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Primary analysis included all cases, while we restricted cases to seropositive patients in a secondary 226 

analysis. 227 

We then conducted a meta-analysis using all cohorts across five ancestries by the inverse-228 

variance weighted fixed effect model (trans-ancestry GWAS). We observed almost identical effect sizes 229 

between this trans-ancestry GWAS and the previously reported 100 RA risk alleles2 (Pearson’s r = 0.98 230 

and P = 2.8 x 10-82; Supplementary Figure 1; Supplementary Table 3). We detected 108 genome-wide 231 

significant loci (P < 5 × 10−8) in this trans-ancestry study: 106 autosomal loci and two loci on the X 232 

chromosome (Supplementary Table 4 and 5). For ancestries with multiple cohorts (EUR, EAS, and 233 

AFR), we also conducted a meta-analysis within each ancestry by the same strategy (EUR-, EAS-, and 234 

AFR-GWAS). EUR-GWAS identified three additional autosomal loci which were not significant in trans-235 

ancestry GWAS (Supplementary Table 4). GWAS of seropositive RA additionally detected 13 236 

autosomal loci (Supplementary Table 4). In total, we detected significant signals at 122 autosomal loci 237 

outside of the MHC locus and two loci on the X chromosome (Supplementary Table 4 and 5; we 238 

provided Manhattan and QQ plots in Supplementary Figure 2). Among these 122, 34 autosomal loci 239 

were novel (Table 1). Notably, 25 novel loci had not been implicated in any other autoimmune diseases 240 

(Supplementary Table 4; Methods). 241 

To quantify the heritability, we analyzed our GWAS results using stratified-linkage disequilibrium 242 

score regression (S-LDSC)10 (Supplementary Table 2). Since S-LDSC assumes GWAS has samples 243 

from a single ancestral background and a sufficient sample size, we restricted this analysis to EUR- and 244 

EAS-GWAS. The heritability explained by non-MHC common variants was similar between EUR and 245 

EAS; the liability scale heritability was 0.14 (S.E. = 0.01) for EUR and 0.13 (S.E. = 0.01) for EAS 246 

(Methods). LDSC also confirmed that the amount of potential bias in the GWAS results was minimal; 247 

LDSC’s intercept = 1.03 for EUR and 1.02 for EAS (Supplementary Table 2).  248 

 249 

Fine-mapping analysis 250 

We fine-mapped these 122 autosomal loci using approximate Bayesian factor (ABF)35 (Methods). The 251 

95% credible sets included only one variant at seven loci (Figure 2a). Of these seven, six have not been 252 
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reported in prior studies that conducted trans-ancestry fine-mapping of RA17,36 (Supplementary Table 253 

6). The 95% credible sets included less than ten variants at 43 loci (Figure 2a). We identified 35 fine-254 

mapped variants with posterior inclusion probability (PIP) greater than 0.5, which agree with and largely 255 

subsume prior fine-mapping results6,17,36; in addition, nine novel loci are represented (Figure 2b; 256 

Supplementary Figure 3; Supplementary Table 6). The proportion of non-synonymous variants was 257 

higher in the credible set variants with high PIP (PIP > 0.5) than low PIP (odds ratio (OR) = 9.3; one-258 

sided Fisher exact test P = 0.02; Figure 2c). 259 

We quantified the 95% credible set variants within open chromatin regions in 18 hematopoietic 260 

populations using gchromVAR software37. Consistent with previous analyses, we observed the strongest 261 

enrichment in CD4+ T cells (P = 5.4 x 10-4; Extended Data Figure 2). For example, rs58107865 at the 262 

LEF1 locus (PIP > 0.99), rs7731626 at the ANKRD55 locus (PIP > 0.99), and rs10556591 at the ETS1 263 

locus (PIP = 0.84) are located within CD4+ T cell-specific open chromatin regions (Z score > 2; 264 

Supplementary Table 6; Methods). Among them, rs58107865 is a novel risk variant and suggested the 265 

importance of regulatory T cells (T-reg) in RA biology (Figure 2d); LEF1 synergizes with FOXP3 to 266 

reinforce the gene networks essential for T-regs38. These results recapitulated a critical role of CD4+ T 267 

cells, especially T-regs, in RA biology. 268 

As expected, compared with single-ancestry GWAS, trans-ancestry GWAS produced smaller 269 

sized credible sets and higher PIP (one-sided paired Wilcoxon text P < 3.1 x 10-11 and < 1.1 x 10-9, 270 

respectively) (Figure 2a; Supplementary Figure 3). For example, the WDFY4 locus included 6,391 271 

variants in the EUR 95% credible set, 64 variants in the EAS set, but only one in the trans-ancestry set, a 272 

missense variant of WDFY4 (rs7097397; R1816Q; Figure 2e). Using a down-sampling experiment, we 273 

confirmed that this benefit was due to diversified LD structures as well as the increased sample size 274 

(Supplementary Figure 3; Supplementary Note). 275 

 276 

Conditional analysis 277 

We conducted conditional analyses in each cohort to explore associations independent from the lead 278 

variants and meta-analyzed the results using the same strategy. We detected 24 independent signals at 279 
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21 loci (P < 5.0 × 10−8; Supplementary Table 7). Consistent with previous results6,31, we observed the 280 

largest number of independent associations at the IL2RA, TYK2, and TNFAIP3 loci, where we observed 281 

three independent alleles (Extended Data Figure 3). The first and second lead variants at the TYK2 282 

locus were missense variants predicted to have damaging effects on TYK2 protein function (SIFT score 283 

< 0.01; Supplementary Table 8). 284 

In the IL6R locus, the conditional analysis identified two variants, rs12126142 (the first lead 285 

variant) and rs4341355 (the second lead variant), that were weakly correlated with each other but 286 

independently associated with RA (r2 = 0.23 and 0.15 in EUR and EAS of 1KG Phase 3, respectively; 287 

Supplementary Table 7). Interestingly, their protective alleles (rs12126142-A and rs4341355-C) almost 288 

always create a haplotype with the risk allele of the other variant (Extended Data Figure 4). Hence, the 289 

conditional analysis disentangled the independent yet mutually attenuating signals (Figure 3a). By 290 

analyzing expression quantitative trait loci (eQTL) and splicing quantitative trait loci (sQTL) in three 291 

immune cells from Blueprint consortium (CD4+ T cells, monocytes, and neutrophils)39, we found that 292 

rs12126142 and rs4341355 are likely to affect IL6R transcripts via different mechanisms. GWAS signals 293 

conditioned on rs4341355 colocalized with sQTL signals in monocytes (posterior probability of 294 

colocalization estimated by coloc software40 (PPcoloc) > 0.99; Figure 3b; Supplementary Table 9); this 295 

sQTL signal corresponds to a previously-reported splicing isoform of soluble IL6R41. On the other hand, 296 

GWAS signals conditioned on rs12126142 colocalized with eQTL signals in CD4+ T cells (PPcoloc = 0.97; 297 

Figure 3b; Supplementary Table 9). Therefore, our results suggested that both splicing and total 298 

expression of IL6R independently influence the RA genetic risk. 299 

Our conditional analyses also suggested interesting biology at the PADI4-PADI2 locus. We found 300 

two independent associations at this locus: esv3585367 (the first lead variant at a PADI4 intron) and 301 

rs2076616 (the second lead variant at a PADI2 intron), consistent with previous studies17,42 (Figure 4a; 302 

Supplementary Table 7). In sQTL results from the Blueprint consortium39, both PADI4 and PADI2 sQTL 303 

signals in neutrophils were colocalized with corresponding GWAS associations (PPcoloc = 0.98 and 0.79, 304 

respectively; Supplementary Table 9), suggesting that alternative splicing of PADI4 and PADI2 likely 305 

increases the RA risk.  306 
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PADI4 is critical for RA because it encodes an enzyme that citrullinates proteins, the main target 307 

for autoantibody in RA23,43–45. However, unlike IL6R with two functionally distinct isoforms41, full picture of 308 

PADI4 splicing isoforms has not been extensively studied. To elucidate detailed molecular biology at the 309 

PADI4 locus, we generated long-read sequencing datasets and inspected full-length PADI4 transcripts. 310 

We identified a novel and probably non-functional splice isoform that produces a truncated protein-311 

arginine deiminase (PAD) domain, an essential catalytic domain with two calcium-binding sites46 (Figure 312 

4b). Next, we differentially quantified PADI4 isoforms using RNA-seq data from 105 Japanese donors5. 313 

We found that the risk allele (esv3585367-A) was associated with the decrease of the non-functional 314 

novel isoform and the increase of the functionally intact isoform (Figure 4c). Notably, the allelic effect on 315 

the total expression, which had been conventionally used for eQTL studies, was not predictive of that on 316 

the functional isoform (the right panel in Figure 4c). Together, our analysis provided a novel genetic 317 

mechanism of PADI4 and highlighted the importance of thoroughly investigating splice isoforms at the 318 

risk loci using long-read sequencing. 319 

 320 

Candidate causal genes at the associated loci 321 

We next inferred the possible molecular consequences of all 148 detected variants: 124 lead variants 322 

(including two variants on the X chromosome) and 24 secondary variants detected by the conditional 323 

analysis. 324 

We first focused on coding variants in LD with the lead variants in this GWAS (r2 > 0.6 both in 325 

EUR and EAS samples in 1KG Phase 3; Methods). We found missense variants that may drive genetic 326 

signals at two novel loci (Table 1; Supplementary Table 8). An example is rs2269495 (A313V of 327 

TNIP2), in LD with a lead variant rs4690029 (r2 = 0.65 and 0.89 in EUR and EAS of 1KG Phase 3, 328 

respectively). rs2269495 is predicted to have a damaging effect on TNIP2 protein function (SIFT score = 329 

0.02; Supplementary Table 8). The protein product of TNIP2 interacts with A20 (encoded by TNFAIP3) 330 

and inhibits NF-κB activation induced by TNF. Mice with a defective mutant TNIP2 displayed intestinal 331 

inflammation and hypersensitivity to experimental colitis47. In addition, TNIP1, a homolog of TNIP2, was 332 

identified as one of the novel loci in this GWAS (Supplementary Table 4). Together, these results 333 
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suggested that TNIP1 and TNIP2 are novel candidate causal genes of RA. Combined with the well-334 

established TNFAIP3 locus (ref48; Supplementary Table 4), these findings further supported the 335 

importance of the TNFAIP3-axis in RA biology.  336 

We next inferred the possible molecular consequences using QTLs. We analyzed eQTL and 337 

sQTL in three immune cells from Blueprint consortium (CD4+ T cells, monocytes, and neutrophils) and 338 

multiple tissues from GTEx consortium39,49. We found colocalizing QTL signals at 11 novel loci (PPcoloc > 339 

0.7; Table 1; Supplementary Table 9 and 10). Several novel loci with colocalizing QTL signals 340 

suggested the biology of the non-immune systems, including joint tissues. For example, the risk allele of 341 

rs55762233 was associated with the increased expression of CILP2 (PPcoloc = 0.82), which encodes a 342 

component of the cartilage extracellular matrix. Its homologous gene, CILP1, was recently reported as 343 

one of the candidate autoantigens of RA50. Therefore, the protein product of CILP2 might also have a 344 

critical role in RA biology. 345 

We then searched for other biologically plausible genes which might explain novel signals and 346 

found several genes whose importance was supported by previous knowledge (Table 1; 347 

Supplementary Table 4). First, TNFRSF11A encodes RANK, a key regulator of osteoclast. Its ligand 348 

RANKL has been investigated as a potential therapeutic target51,52. TNFRSF11A is a causal gene for 349 

several bone-related Mendelian disorders53–55. Second, WISP1 encodes a protein essential for 350 

osteoblast differentiation and bone formation56,57. In addition, WISP1 is highly expressed in HLA-DRAhi 351 

inflammatory sublining fibroblasts, which are dramatically expanded and pathogenic in RA synovium58. 352 

Third, FLT3 encodes a tyrosine kinase that regulates hematopoiesis and knocking out of whose ligand 353 

suppressed arthritis in model mice59. A damaging variant of FLT3 was suggested to be associated with 354 

RA (P = 4.3 × 10−4) and other autoimmune diseases60.  355 

 356 

Differences and similarities of genetic risk across ancestries 357 

We next searched for ancestry-specific signals at 122 autosomal loci. We defined ancestry-specificity 358 

when the lead variant in each locus is monomorphic in EUR or EAS samples of 1KG Phase 3. We found 359 

five EUR-specific signals: rs2476601 (a PTPN22 missense variant), rs9826420 located in STAG1 360 
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intronic region, rs7943728 (a FADS2 eQTL), and rs34536443 and rs12720356 (both TYK2 missense 361 

variants). EAS-GWAS also identified an EAS-specific signal at the TYK2 locus: rs55882956, another 362 

TYK2 missense variant. We thus detected two EUR-specific and one EAS-specific signal at the TYK2 363 

locus (Extended Data Figure 5). All these ancestry-specific signals were also reported by previous 364 

studies2,25,61. This study was underpowered to detect specific signals in non-EUR and non-EAS 365 

ancestries (Supplementary Figure 4 and Supplementary Note). Although ancestry-specific signals are 366 

relatively few, they include predominantly large effect size variants, many of which are missense, and 367 

hence they are valuable resources to understand the etiology of RA.  368 

Although we found these ancestry-specific signals, this study showed that genetic signals are 369 

generally shared across ancestries. We compared effect sizes between EUR-GWAS with non-EUR-370 

GWASs at the 30 fine-mapped variants (PIP > 0.5; Methods). We found that the effect sizes were 371 

strongly correlated among five ancestries (Pearson’s r = 0.56-0.91; Supplementary Figure 5; 372 

Supplementary Note). In addition, we targeted genome-wide variants and tested the trans-ancestry 373 

genetic correlation between EUR- and EAS-GWAS using popcorn software62 (we restricted this analysis 374 

to EUR- and EAS-GWAS to avoid a biased correlation estimate caused by the small sample size). We 375 

again found a strong correlation (0.64 (S.E.=0.08); P = 4.4 x 10-17; P value reported is for a test that the 376 

correlation is different from 0). 377 

 378 

Genetic risk differences between seropositive and seronegative RA 379 

The presence or absence of autoantibodies (rheumatoid factor and anti-citrullinated peptide antibodies) 380 

defines two major subgroups of RA: seropositive and seronegative RA1. We tested the differences in 381 

genetic signals between them at the 122 significant autosomal loci. Although their effect sizes were 382 

significantly correlated in general (Pearson’s r = 0.76; P = 3.2 x 10-23), we found significant heterogeneity 383 

in effect size estimates at the nine loci: CCR6, CTLA4, NFKBIE-TMEM151B, PADI4, PTPN22, RAD51B, 384 

SMIM20-RBPJ, TNFRSF14-AS1, and UBASH3A (Phet < 0.05/122; Extended Data Figure 6). Effect size 385 

estimates were larger in seropositive RA at all the nine loci, and these findings suggested etiological 386 

differences between seropositive and seronegative RA. For example, CCR6 has critical roles in B cell 387 
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antibody production63,64. Together, these findings suggested generally shared genetic risks between 388 

seropositive and seronegative RA outside of the MHC locus, although substantial differences exist 389 

around biologically relevant genes. 390 

 391 

Genome-wide distributions of heritability 392 

To acquire insights into RA biology, we estimated the heritability enrichments within gene regulatory 393 

regions using S-LDSC10, a method to infer the genome-wide distribution of all causal variants irrespective 394 

of their effect sizes. We again restricted this analysis to EUR- and EAS-GWAS. We utilized 707 IMPACT 395 

regulatory annotations, which reflect comprehensive cell-type-specific transcription factor (TF) 396 

activities65. Briefly, IMPACT probabilistically annotates each nucleotide genome-wide on a scale from 0 397 

to 1, and we considered genomic regions scoring in the top 5% of each annotation. We detected 398 

significant enrichments in 114 annotations in either of EUR and EAS (P < 0.05/707 = 7.1 x 10-5; Figure 399 

5a and Supplementary Table 11). The amount of heritability explained by each annotation was highly 400 

concordant between EUR and EAS (Pearson’s r = 0.92; P = 1.3 x 10-290; Figure 5b), and we did not 401 

observe significant heterogeneities between EUR and EAS estimates (Phet > 0.05/707 = 7.1 x 10-5). 402 

Among annotations with significant enrichments, the one which explained the largest fraction of EUR 403 

heritability was CD4+ T cell T-bet annotation (90%; S.E. = 11%). This annotation explained 94% (S.E. = 404 

12%) of EAS heritability consistent with analyses on previous GWAS results66. Although four out of 114 405 

significant annotations were derived from non-immune cells, controlling the effect of CD4+ T cell T-bet 406 

annotation canceled out all four enrichments. We also analyzed 396 histone mark annotations, but they 407 

were less enriched in RA heritability than CD4+ T cell T-bet annotation (Extended Data Figure 7; 408 

Supplementary Table 12; Supplementary Note). In addition to identifying candidate critical TFs in RA 409 

pathology, these results also suggested that the distribution of causal variants is shared between EUR 410 

and EAS.  411 

 We next tested whether the findings in S-LDSC analysis can be recapitulated in fine-mapped 412 

variants from genome-wide significant loci. We analyzed credible set variants and found that high PIP 413 

variants (> 0.5) were enriched in high IMPACT score variants for CD4+ T cell T-bet annotation (> 0.5), 414 
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compared with low PIP variants (Figure 2c; Extended Data Figure 8; OR = 8.7; one-sided Fisher exact 415 

test P = 1.5 x 10-4). We found six variants which possess high PIP and high IMPACT score, and one of 416 

them was a novel association at the intronic region of LEF1 (rs58107865; Supplementary Table 6). 417 

Together, both polygenic and fine-mapped signals support the critical roles of CD4+ T cell’s T-bet activity 418 

in RA pathology. 419 

 420 

PRS performance across five ancestries 421 

Our results showed that trans-ancestry GWAS can detect causal variants more efficiently than single-422 

ancestry GWAS and these causal variants are strongly enriched within the CD4+ T cell T-bet annotation. 423 

Therefore, we hypothesized that trans-ancestry GWAS and CD4+ T cell T-bet annotation can improve 424 

PRS performances in non-EUR populations. To test this, we developed PRS models with six different 425 

conditions using combinations of two components: i) two variant selection settings (we used all variants 426 

or variants within the top 5% of the CD4+ T cell T-bet annotation and refer PRS based on each of them 427 

as standard or functionally-informed PRS, respectively) and ii) three GWAS settings (we used trans-428 

ancestry, EUR-, or EAS-GWAS and refer PRS based on each of them as trans-ancestry, EUR-, or EAS-429 

PRS, respectively). We designed our study so that there were no overlapping samples; when we 430 

evaluated the PRS performance in a given cohort, we re-conducted meta-analysis excluding that cohort 431 

to develop PRS models (Figure 6a; Methods). We defined the performance of PRS by phenotypic 432 

variance (pseudo-R2) explained by PRS. We tested PRS performances using ten different P value 433 

thresholds. We then selected the threshold with the best performance in each of the six PRS conditions 434 

separately and utilized this threshold for the following analyses. 435 

We first evaluated the variant selection settings used for PRS (standard and functionally-informed 436 

PRS). Consistent with our recent study65, functionally-informed PRS improved the application of PRS 437 

constructed from different ancestries (EUR-PRS applied to non-EUR cohorts or EAS-PRS applied to 438 

non-EAS cohorts). Functionally-informed PRS increased R2 by 2.7 fold on average, and we observed the 439 

improvement in 32 of 41 applications (one-sided sign test P = 2.2 x 10-4; Figure 6b; Supplementary 440 

Table 13). On the other hand, also consistent with our recent study65, this improvement was relatively 441 
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small in the application of PRS constructed from the same ancestry (EUR-PRS applied to EUR cohorts 442 

or EAS-PRS applied to EAS cohorts). Functionally-informed PRS increased R2 by 1.3 fold on average, 443 

and we observed the improvement in 21 out of 33 applications (one-sided sign test P = 0.08; Figure 6b; 444 

Supplementary Table 13). PRS based on single-ancestry GWAS is affected by LD structures of GWAS 445 

participants’ ancestral backgrounds; this can reduce performance in prediction when we apply this PRS 446 

to ancestries with different LD structures. These results confirmed that functionally-informed PRS can 447 

mitigate this problem. Expectedly, for trans-ancestry PRS, which prioritizes causal variants over variants 448 

solely associated through linkage, the benefit of functionally-informed PRS was very subtle; functionally-449 

informed PRS increased R2 only by 1.02 fold on average, and we observed the improvement only in 16 450 

out of 37 applications (one-sided sign test P = 0.84; Figure 6b; Supplementary Table 13). Since CD4+ 451 

T cell T-bet annotation always had beneficial or neutral effects on PRS performances, we used 452 

functionally-informed PRS for the following analyses. 453 

We next evaluated the GWAS settings used for PRS (trans-ancestry, EUR-, and EAS-PRS). 454 

Consistent with a recent study14, trans-ancestry PRS outperformed EUR-PRS and EAS-PRS; mean R2 455 

across 37 cohorts were 0.054, 0.041, and 0.022, in trans-ancestry, EUR-, and EAS-PRS, respectively 456 

(Figure 6c; Supplementary Table 13). Even for EUR cohorts for which the largest same-ancestry 457 

GWAS was available, trans-ancestry PRS outperformed EUR-PRS (one-sided paired Wilcoxon test P = 458 

3.3 x 10-4; Extended Data Figure 9). 459 

Finally, we compared the performance of trans-ancestry PRS in each population. The best 460 

performance was found in the EUR cohorts (mean R2 = 0.059; Figure 6c; Supplementary Table 13). 461 

Strikingly, the PRS explained around half of the heritability by the non-MHC common variants, which is 462 

the theoretical upper limitation (Supplementary Table 2). Even without the MHC region, we were able to 463 

identify 9.9% of the EUR population with an inherited genetic predisposition that conferred three times 464 

increased risk for RA (Figure 6d; Methods). The performance in the EAS cohorts was comparable with 465 

the EUR cohorts; the mean R2 was 0.057 (Wilcoxon test P = 0.67 compared with EUR cohorts), and we 466 

were able to identify 5.5% of the EAS population with three times increased risk (Figure 6c and 6d). 467 

However, we observed poor PRS performances in AFR, SAS, and ARB cohorts; the mean R2 was 0.018 468 
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(Wilcoxon test P = 0.002 compared with EUR cohorts), and we were able to identify only 0.62% of these 469 

populations with three times increased risk (Figure 6c and 6d; Extended Data Figure 10). Together, 470 

trans-ancestry PRS exhibited the best performance in all ancestries in this study. However, the PRS 471 

performance in each ancestry was substantially affected by its sample size in this trans-ancestry GWAS, 472 

which firmly claims that it is imperative to increase the sample sizes of underrepresented ancestries to 473 

equalize genetic predictability of disease status. 474 

 475 

DISCUSSION 476 

This study identified 34 novel genetic signals and less than ten 95% credible sets at 43 loci. By using 477 

multiple functional annotations and prior immunological knowledge, we provided their potential molecular 478 

consequences. In addition to the novel loci, our comprehensive analyses provided novel biological 479 

interpretations to the known loci (e.g., the IL6R and PADI4 loci). We conducted detailed analyses on 480 

ancestry specificity; although most genetic signals are shared across ancestries, we observed some 481 

ancestry-specific signals. We also found several candidates of critical TFs contributing to RA biology. 482 

This trans-ancestry study thus substantially advanced our understanding of RA biology. 483 

We utilized the molecular QTL database to infer risk allele’s gene regulatory function. This 484 

approach is a standard approach but has a limited ability to explore the allelic role comprehensively, as 485 

reported in a previous study67. Since gene regulation is highly cell-type or cell-state specific, we need to 486 

extend the QTL experimental conditions to overcome this limitation. Single-cell QTL analysis may also 487 

represent a promising strategy68. Another promising approach is inducing risk alleles in target cell 488 

populations using gene-editing techniques; previous studies reported the feasibility of this approach69–71. 489 

Future advance in functional genetics would improve the biological insight from our GWAS. 490 

Our study had insufficient power to detect significant signals for seronegative RA outside of the 491 

MHC region due to a limited sample size (4,515 cases of seronegative RA). Although we observed 492 

shared genetic risks between them (Extended Data Figure 6), this analysis was restricted to the loci 493 

detected in all RA or seropositive RA. To unveil the specific etiology of seronegative RA further, we need 494 

cohorts that are larger and have better representation of seronegative RA. 495 
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 Poor PRS performance in non-EUR ancestries is becoming one of the major challenges in human 496 

genetics. Conducting a trans-ancestry GWAS on a large scale is a promising strategy to mitigate this 497 

issue. Indeed, trans-ancestry PRS performance in EAS cohorts was comparable to those in EUR 498 

cohorts, demonstrating that this study mitigated inequality of genetic benefit at least partially (Figure 6c). 499 

However, this study was underpowered to detect specific signals in non-EUR and non-EAS ancestries, 500 

resulting in poor PRS performance in these ancestries. To overcome these limitations, we need further 501 

efforts to diversify GWAS and increase sample sizes of underrepresented ancestries as in other common 502 

complex diseases.  503 
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Table 1. Novel RA risk loci detected in this study. 504 

Statistics in the GWAS setting with the lowest P values were provided (see Supplementary Table 4 for 505 

details). The genomic coordinate is according to GRCh37. Predicted causal gene, predicted molecular 506 

consequences using eQTL or non-synonymous variants (see Supplementary Table 8-10 for details); 507 

OR, odds ratio (the effect allele is the alternative allele); L95, lower 95% confidence interval; U95, upper 508 

95% confidence interval; allele freq., allele frequency of the effect allele. 509 

                  Allele freq. in 1KG Phase 3 

Rs ID Chr. Position Nearest gene 
Predicted  
causal gene OR L95 U95 P value EAS EUR AFR SAS 

rs41269479 1 42,166,782 HIVEP3 NA 1.15 1.09 1.20 2.51E-08 0.26 0.28 0.08 0.42 
rs41313373 1 92,940,411 GFI1 EVI5(eQTL) 1.12 1.08 1.16 1.08E-08 0.01 0.14 0.01 0.10 
rs1188620266 1 235,800,357 GNG4 GNG4(eQTL) 0.91 0.88 0.94 2.06E-08 0.83 0.61 0.22 0.70 
rs143259280 2 70,209,168 PCBP1-AS1 C2orf42(eQTL) 1.09 1.06 1.12 2.13E-08 0.46 0.32 0.89 0.32 

rs77574423 3 11,984,744 TAMM41, 
SYN2 SYN2(eQTL) 1.10 1.07 1.14 1.35E-08 0.56 0.72 0.57 0.74 

rs62264113 3 127,292,333 TPRA1 TPRA1(eQTL) 0.92 0.89 0.95 4.66E-08 0.27 0.08 0.01 0.21 

rs4687070 3 189,306,650 TPRG1, 
TP63 NA 1.15 1.09 1.20 6.07E-09 0.02 0.07 0.03 0.14 

rs4690029 4 2,722,815 FAM193A TNIP2(p.A313V) 0.94 0.92 0.96 2.83E-09 0.40 0.41 0.59 0.47 
rs138066321 4 80,952,409 ANTXR2 ANTXR2(eQTL) 0.93 0.91 0.95 4.48E-10 0.38 0.45 0.09 0.32 
rs58107865 4 109,061,618 LEF1 NA 0.84 0.80 0.88 4.92E-14 0.21 0.01 0.00 0.03 

rs56787183 5 40,499,290 LINC00603, 
PTGER4 NA 0.85 0.80 0.90 2.15E-09 0.09 0.00 0.04 0.02 

rs244468 5 142,604,421 ARHGAP26 NA 1.07 1.05 1.10 8.19E-09 0.79 0.51 0.41 0.60 
rs1422673 5 150,438,988 TNIP1 NA 1.10 1.06 1.14 1.56E-08 0.50 0.19 0.39 0.29 

rs113532504 6 15,195,682 LINC01108, 
JARID2 JARID2(eQTL) 1.10 1.07 1.14 3.42E-08 0.06 0.10 0.36 0.10 

rs67318457 6 23,925,021 LOC105374972, 
NRSN1 NA 1.08 1.05 1.11 1.10E-08 0.14 0.27 0.37 0.05 

rs940825 7 17,207,164 AGR3, 
AHR NA 1.11 1.07 1.16 3.39E-08 0.18 0.12 0.05 0.06 

rs182199544 7 27,084,581 SKAP2, 
HOXA1 

HOXA3(eQTL), 
HOXA4(eQTL) 0.87 0.84 0.91 3.61E-09 0.01 0.08 0.36 0.03 

rs6583441 7 50,361,874 IKZF1 NA 0.95 0.93 0.97 4.69E-08 0.53 0.47 0.33 0.41 

rs6979218 7 99,893,148 CASTOR3, 
SPDYE3 

PILRA(p.R78G) 
PVRIG(p.N81D) 1.09 1.06 1.12 2.24E-11 0.38 0.75 0.91 0.72 

rs11777380 8 134,211,965 WISP1 NA 0.92 0.90 0.95 3.00E-10 0.17 0.32 0.08 0.19 
rs911760 9 5,438,435 PLGRKT NA 1.15 1.09 1.20 2.15E-08 0.23 0.19 0.33 0.28 

rs734094 11 2,323,220 C11orf21, 
TSPAN32 NA 1.08 1.05 1.10 3.40E-08 0.19 0.40 0.43 0.45 

rs1427749 12 46,370,116 SCAF11 ARID2(eQTL), 
SLC38A1(eQTL) 0.93 0.90 0.95 1.17E-08 0.89 0.80 0.91 0.95 

rs61944750 13 28,634,933 FLT3 NA 0.91 0.88 0.94 1.69E-08 0.05 0.21 0.09 0.09 

rs2147161 13 42,982,302 AKAP11, 
LINC02341 NA 1.10 1.06 1.13 2.73E-08 0.13 0.21 0.02 0.28 

rs175714 14 75,981,856 JDP2, 
BATF NA 0.94 0.92 0.96 4.14E-08 0.43 0.60 0.30 0.64 

rs115284761 15 77,326,836 PSTPIP1 NA 0.91 0.89 0.94 1.71E-11 0.28 0.25 0.15 0.23 
rs11375064 17 25,904,074 KSR1 NA 1.08 1.05 1.11 3.92E-08 0.44 0.60 0.53 0.47 
rs591549 18 3,542,247 DLGAP1 NA 0.91 0.88 0.94 9.14E-09 0.35 0.68 0.42 0.61 
rs371734407 18 60,009,634 TNFRSF11A NA 1.10 1.06 1.14 4.14E-08 0.44 0.59 0.50 0.52 
rs10415976 19 941,603 ARID3A NA 0.92 0.90 0.95 2.90E-08 0.47 0.08 0.35 0.25 

rs55762233 19 19,367,319 HAPLN4 

CILP2(eQTL), 
COMP(eQTL), 
HAPLN4(eQTL), 
LPAR2(eQTL), 
SUGP1(eQTL), 
TM6SF2(eQTL), 
TSSK6(eQTL), 
YJEFN3(eQTL), 
ZNF101(eQTL) 

1.10 1.07 1.14 1.43E-09 0.02 0.17 0.32 0.14 

rs28373672 19 36,213,072 KMT2B LIN37(eQTL) 0.93 0.91 0.96 3.33E-08 0.24 0.23 0.62 0.29 

rs8106598 19 52,017,940 SIGLEC12, 
SIGLEC6 NA 1.08 1.05 1.11 3.12E-08 0.08 0.22 0.32 0.17 

 510 
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 511 

Figure 1. Diverse ancestral background in this GWAS participants. 512 

(a) Study design of this GWAS. The total number of cases and controls are provided.  513 

(b) PCA plot of all GWAS samples. We projected each individual’s imputed genotype into a PC space 514 

which was calculated using all individuals in 1KG Phase3. The samples are colored by its ancestry 515 

group. 516 

(c) UMAP plots of all GWAS samples. We conducted UMAP analysis using their top 20 PC scores. The 517 

samples in a cohort were colored by the country/region-level group of that cohort (Supplementary Table 518 

1). When a cohort recruited participants from multiple countries, we did not plot its samples.  519 
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 520 

Figure 2. Fine-mapping analysis identified candidates of causal variants. 521 

(a) Among 122 autosomal loci analyzed, we counted the number of loci whose 95% credible set size was 522 

in a specified range. The results from EAS-, EUR- and trans-ancestry GWAS are provided. 523 

(b) The PIP of the lead variant and the size of 95% credible set at the 122 autosomal loci analyzed. The 524 

name of novel loci whose PIP was greater than 0.75 are labeled. We used trans-ancestry GWAS results. 525 

(c) In each range of PIP (the total number of variants were provided on the top), we calculated the 526 

proportion of non-synonymous variants or variants with high IMPACT score (CD4+ T cell T-bet annotation 527 

> 0.5). 528 

(d) A fine-mapped variant at the LEF1 locus within CD4+ T cell specific open chromatin regions. P values 529 

of trans-ancestry GWAS are provided with dense view of immune cell ATAC-seq data (density indicate 530 

the read coverage) and vertebrate conservation data from UCSC genome browser 531 

(http://genome.ucsc.edu).  532 

(e) P values in the WDFY4 locus in EAS- and trans-ancestry GWAS. We provide r2 between each variant 533 

and the lead variant (rs7097397) by different colors. For trans-ancestry GWAS, we used intersection of 534 

LD variants in EUR and EAS ancestries. 535 

 536 
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 537 

Figure 3. Splicing and total expression of IL6R jointly contribute to RA risk. 538 

(a) The 1st lead variant (rs12126142; red) and the 2nd lead variant (rs4341355; blue) are mutually 539 

attenuating their signals (controlling the effect of the other increased their signals). Conditional analysis 540 

was conducted in each cohort and the results were meta-analyzed using the inverse-variance weighted 541 

fixed effect model. We used trans-ancestry GWAS results. 542 

(b) P values of sQTL signals of IL6R (phenotype id: ENSG00000160712.8.17_154422457 in Blueprint 543 

dataset) and eQTL signals of IL6R (total expression of IL6R). 544 

We highlighted variants in LD with the lead variant by red or blue (r2 > 0.6 in both EUR and EAS 545 

ancestries). 546 

  547 
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 548 
 549 

Figure 4. Splicing of PADI4 contributes to RA risk. 550 

(a)  Conditional analyses identified two independent associations at the PADI4 locus: esv3585367 (red) 551 

and rs2076616 (blue). We used trans-ancestry GWAS results. We highlighted variants in LD with the 552 

lead variant by red or blue (r2 > 0.6 in both EUR and EAS ancestries). 553 

(b) A novel PADI4 splice isoform confirmed by long-read sequencing datasets. PADI4-novel, a novel 554 

isoform we identified. PADI4-201, a functional isoform. PADI4-novel has an elongation of exon 10 which 555 

leads to an early stop codon and a truncated PAD domain at the C-terminus. PAD domain is an essential 556 

catalytic domain46, and highly conserved across other PADI genes.  557 

(c) The total expression and the expression of three isoforms of PADI4 were plotted with the imputed 558 

dosages of the risk allele (esv3585367-A). The isoform structures were shown in (b). We analyzed a 559 

RNA-seq dataset of 105 Japanese healthy individuals reported in a previous study5. We used peripheral 560 

blood leukocytes (neutrophils are its main component) and monocytes, both have high PADI4 expression 561 

levels. P values from linear regression are provided. Within each boxplot, the horizontal lines reflect the 562 

median, the top and bottom of each box reflect the interquartile range (IQR), and the whiskers reflect the 563 

maximum and minimum values within each grouping no further than 1.5 x IQR from the hinge. 564 

  565 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21267132doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21267132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

 566 
Figure 5. S-LDSC analysis suggested similar causal variant distributions in EUR- and EAS-GWAS. 567 

(a) EUR- and EAS-GWAS results were analyzed by S-LDSC using 707 IMPACT annotations. P value 568 

indicates significance of non-zero tau (per variant heritability) of each annotation. Each annotation was 569 

colored by its cell type category. Horizontal dashed line indicates Bonferroni-corrected P value threshold 570 

(0.05/707 = 7.1 x 10-5).  571 

(b) The estimate and its 95% confidence interval of the heritability proportion explained by top 5% of 572 

IMPACT annotations. When a heritability enrichment was significant (P < 0.05/707 = 7.1 x 10-5), that 573 

annotation was colored by the type of GWAS (“Both” indicates the annotation was significant both in 574 

EUR- and EAS-GWAS). 575 

  576 
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 577 
Figure 6. Functional annotation and trans-ancestry GWAS improved PRS performances. 578 

(a) The strategy of our PRS analysis. We utilized PRS based on three GWAS settings; two single-579 

ancestry PRS (EUR- and EAS-PRS) and a trans-ancestry PRS. Single ancestry PRS had two types of 580 

applications; same-ancestry application of PRS (EUR-PRS applied to EUR cohorts or EAS-PRS applied 581 

to EAS cohorts) and different-ancestry application of PRS (EUR-PRS applied to non-EUR cohorts or 582 

EAS-PRS applied to non-EAS cohorts). When we applied a PRS model to a cohort included in a GWAS 583 

setting, we re-conducted the meta-analysis excluding that cohort to avoid overlapped samples. The 584 

numbers of each application are provided. 585 

(b) The improvements in PRS performance (pseudo-R2) by CD4+ T cell T-bet IMPACT annotation. Fold 586 

change indicates R2 in functionally-informed PRS divided by R2 in the standard PRS. We compared three 587 

conditions: same-ancestry application of single ancestry PRS (n=33), different-ancestry application of 588 

single ancestry PRS (n=41), and trans-ancestry PRS (n=37). One-sided sign test P value is provided.  589 

(c) The performance (liability-scale R2) of three different PRS models. The results of three PRS models 590 

in all cohorts are shown on the left panel. The results of trans-ancestry PRS in three cohort groups are 591 

shown on the right panel. The differences in R2 were assessed by Wilcoxon test. In all conditions, CD4+ 592 

T cell T-bet IMPACT annotation was utilized to select variants. 593 

(d) PRS distribution differences between case and controls. Trans-ancestry PRS with CD4+ T cell T-bet 594 

IMPACT annotation was used. In each cohort, PRS was scaled using mean and SD of the control 595 

samples, and individual level data were merged across cohorts in an ancestral group. For a given PRS 596 

value at the right tail of PRS distribution, we compared the case-control ratios between individuals whose 597 

PRS is higher than that value and individuals whose PRS is lower than that value, and calculated the 598 

odds ratio (OR). The PRS values with OR = 3 are shown by solid vertical lines. 599 

Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the 600 

interquartile range (IQR), and the whiskers reflect the maximum and minimum values within each 601 

grouping no further than 1.5 x IQR from the hinge. 602 
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Methods 603 

Study participants 604 

We included 35,871 RA patients and 240,149 control individuals of EUR, EAS, AFR, SAS, and ARB 605 

ancestry from 37 cohorts (Supplementary Table 1). All RA cases fulfilled the 1987 American College of 606 

Rheumatology (ACR) criteria72 or the 2010 ACR/the European League Against Rheumatism criteria73, or 607 

were diagnosed with RA by a professional rheumatologist. Among 35,871 patients, seropositivity status 608 

was available for 31,963; 27,448 were seropositive and 4,515 were seronegative (Supplementary Table 609 

1). We defined seropositivity as the presence of rheumatoid factor or anti-citrullinated peptide antibodies. 610 

When a seropositive and seronegative GWAS has less than 50 cases, we excluded it from this study 611 

since GWAS with too few samples produces unstable statistics. All cohorts obtained informed consent 612 

from all participants by following the protocols approved by their institutional ethical committees. We 613 

have complied with all relevant ethical regulations. 614 

 615 

Genotyping and imputation 616 

Genotyping platform and all quality control (QC) parameters of each cohort were provided in 617 

Supplementary Table 1. For QC of samples, we excluded those with (i) low sample call rate, (ii) closely 618 

related individuals, and (iii) outliers in terms of ancestries identified by PCA using the genotyped samples 619 

and all 1KG Phase 3 samples. Since 1KG Phase 3 does not include ARB samples, we did not exclude 620 

individuals in ARB cohort based on ancestral outliers. For QC of genotypes, we excluded variants 621 

meeting any of the following criteria: (i) low call rate, (ii) low MAF, and (iii) low P value for Hardy 622 

Weinberg equilibrium (HWE). Post-QC genotype data of each cohort was pre-phased using Shapeit2 or 623 

Eagle2 software. For EUR, AFR, and ARB cohorts, we conducted imputation with Minimac3 or Minimac4 624 

software using the 1KG Phase 3 reference panel. For EAS and SAS cohorts, we conducted imputation 625 

with Minimac3 or Minimac4 using a reference panel which were generated by merging 1KG Phase 3 626 

panel and whole genome sequence (WGS) data of each population (Supplementary Table 1); we used 627 

WGS data of 1,037 Japanese74, 89 Korean75, 7 Chinese76 or 96 Malaysian individuals77. For QC of 628 

imputed genotype data, we excluded low imputation quality variants (imputation r2 < 0.3) from each 629 
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cohort, excluded variants with minor allele count less than ten in the reference panel, and then we 630 

included variants which passed QC in at least five cohorts; we finally included 20,990,826 autosomal 631 

variants and 736,614 X chromosome variants. The genomic coordinate is according to GRCh37 in all 632 

analyses. 633 

 634 

PCA and UMAP using all GWAS participants 635 

To assess the ancestral background diversity of all GWAS participants, we projected them into the same 636 

PC space based on their imputed genotype data. From variants which passed QC criteria in all 37 637 

cohorts (imputation r2 ≥ 0.3), we first identified 12,196 independent imputed variants (r2 < 0.2 in EUR 638 

samples of 1KG Phase 3). Due to data access restrictions, we were not able to transfer raw imputed 639 

genotype data across different institutes, and hence we were not able to conduct one PCA using all 640 

individuals. Therefore, we first conducted PCA using these variants and all 1KG Phase3 samples, and 641 

calculated the loadings of each variant for top 20 PCs. We then calculated each individual’s PC scores 642 

using these loadings and imputed dosage of our GWAS samples. We further conducted UMAP by umap 643 

package in R using these top 20 PC scores (n_neighbors = 30 and min_dist = 0.8).  644 

 645 

Genome-wide association analysis 646 

We conducted GWAS in each cohort by a logistic regression model using PLINK2 software. We included 647 

age, sex, and genotype PCs within each cohort as covariates (details of covariates were provided in 648 

Supplementary Table 1). We then conducted meta-analysis using all cohorts by the inverse-variance 649 

weighted fixed effect model as implemented in METAL (trans-ancestry GWAS). For ancestries with 650 

multiple cohorts, we similarly conducted meta-analysis within each ancestry (EUR-, EAS-, and AFR-651 

GWAS). When the seropositivity status was available, we also conducted GWAS only using seropositive 652 

RA samples and controls. We defined a locus as a genomic region within ±1 Mb from the lead variant, 653 

and we considered a locus as novel when it did not include any variants previously reported for RA. For 654 

non-RA autoimmune diseases (systemic lupus erythematosus, systemic sclerosis, Sjögren's syndrome, 655 

dermatomyositis, juvenile dermatomyositis, and polymyositis), we used ±0.5 Mb window from the lead 656 
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variant. We defined reported variants as significant variants (P < 5 x 10-8) reported in the GWAS Catalog 657 

(https://www.ebi.ac.uk/gwas/; e104_r2021-10-06) and those reported in previous literatures which we 658 

searched manually. Since we need a unique analytical strategy for the MHC locus, we excluded the 659 

MHC region (chr6:25Mb-35Mb) from this study, which will be reported in an accompanying project.  660 

We performed stepwise conditional analysis within ±1 Mb from the lead variant. We conducted 661 

the same logistic regression model but including the dosages of the lead variants (index variants in the 662 

first round of conditional analysis) as covariates in each cohort; when the lead variants did not exist in 663 

post-QC imputed genotype data of a cohort (imputation r2 ≥ 0.3), we exclude that cohort from the 664 

analysis. We then conducted meta-analysis using the same strategy, and identified the 2nd lead variant. 665 

We repeated these processes by sequentially adding the identified lead variants as covariates until we 666 

did not detect any significant associations (P < 5 x 10-8).  667 

 668 

Estimation of heritability and bias in GWAS results 669 

We estimated heritability and confounding bias in EUR- and EAS-GWAS results with S-LDSC (version 670 

1.0.0) using the baselineLD model (version 2.1). For EUR-GWAS, we utilized LD scores calculated in 671 

EUR samples in 1KG Phase3. For EAS-GWAS, we utilized LD scores calculated in EAS samples in 1KG 672 

Phase3. Since LDSC required a large sample size in GWAS (typically > 5K individuals), we restricted 673 

this analysis to EUR- and EAS-GWAS. We estimated prevalence of RA was 0.5% in both ancestries. 674 

 675 

Fine-mapping analysis 676 

We conducted fine-mapping analysis using approximate Bayesian factor (ABF) and constructed 95% 677 

credible set for each significant locus35. We used trans-ancestry GWAS results. We included all the 122 678 

autosomal loci (P < 5.0 × 10−8). We calculated ABF of each variant according to equation (1): 679 

𝐴𝐵𝐹 =	&
𝑆𝐸!

𝑆𝐸! +𝜔
𝑒𝑥𝑝 .

𝜔𝛽!

2𝑆𝐸!(𝑆𝐸! 	+ 	𝜔)
3 680 
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where 𝛽 and 𝑆𝐸 are the variant’s effect size and standard error, respectively; 𝜔 denotes the prior 681 

variance in allelic effects (we empirically set this value to be 0.04)78. For each locus, we calculated 682 

posterior inclusion probability (PIP) of variant 𝑘 according to equation (2): 683 

𝑃𝐼𝑃" =	
𝐴𝐵𝐹"
∑ 𝐴𝐵𝐹##

 684 

where 𝑗 denotes all the variants included in the locus. We sorted all variants in order of decreasing PIP 685 

and constructed 95% credible set including variants from the top PIP until the cumulative PIP reached 686 

0.95. When we compared the fine-mapping resolution across different GWAS setting, we also applied 687 

this fine-mapping strategy to EUR-GWAS and EAS-GWAS for all the 122 autosomal loci. 688 

 689 

Functional interpretation of fine-mapped variants 690 

We quantified the enrichment of the 95% credible set variants at the 113 autosomal loci within ATAC-seq 691 

peaks in 18 hematopoietic populations using gchromVAR software37. We utilized the default parameters 692 

and ATAC-seq data processed by the developers. To access the specificity of a given ATAC-seq peak, 693 

we first normalized the read count of that peak in all 18 hematopoietic populations (each peak’s read 694 

count was divided by the total read counts, scaled by 1000,000, added 1 as an offset value, and log2-695 

transformed), and transformed these 18 normalized counts into Z-scores.  696 

 697 

Functional interpretation of associated variants 698 

We inferred the possible molecular consequences of all 148 variants detected in this study. We first 699 

focused on coding variants in LD with the lead variants in this GWAS (r2 > 0.6 both in EUR and EAS 700 

samples in 1KG Phase 3; when the lead variant is monomorphic in one ancestry, we only utilized the 701 

other ancestry). To annotate coding variants, we used ANNOVAR and assessed their potential impacts 702 

on protein function; we reported SIFT and Polyphen2 (HDIV) scores. To interpret their effects on gene 703 

regulation, we tested colocalization of our GWAS signals and eQTL or sQTL signals using coloc 704 

software40. We analyzed eQTL and sQTL results from Blueprint consortium database (CD4+ T cells, 705 

monocytes, and neutrophils) and eQTL results from v7 GTEx project database (48 tissues)39,49. Since 706 

coloc assumes GWAS and QTL signals are obtained from the same ancestry group, we only used EUR-707 
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GWAS results for this analysis. We defined GWAS and QTL signals are colocalizated when the posterior 708 

probability estimated by coloc software > 0.7. 709 

 710 

Capture RNA-seq of PADI4 isoforms 711 

We obtained total RNAs from THP-1 cells after stimulation with PMA for 72h, which induces the 712 

expression of PADI479. We reverse-transcribed the RNA (10 ng) into cDNAs with Smart-seq2 primers80, 713 

and then amplified them by 10 cycles of polymerase chain reaction. We hybridized PADI4 isoforms with 714 

xGen Lockdown Probes (5’-biotinylated 120-mer DNA probes synthesized by Integrated DNA 715 

Technologies) designed for all exons of PADI4 main isoform. We captured the hybridized cDNAs with 716 

streptavidin-conjugated magnetic beads and then sequenced them with MinION sequencer using LSK-717 

109 kit (Oxford Nanopore Technologies). We analyzed the sequenced reads with FLAIR 718 

(https://github.com/BrooksLabUCSC/flair). 719 

We then performed sQTL analysis targeting PADI4 using the eQTL data of peripheral blood 720 

subsets5. We reassembled and quantified the RNA-seq reads for PADI4 isoforms including the newly 721 

discovered isoform using Cufflinks (http://cole-trapnell-lab.github.io/cufflinks/). We calculated the isoform 722 

ratio by dividing each isoform expression (FPKM) over total isoform expression. We used QTLtools 723 

(https://qtltools.github.io/qtltools/) for association testing. 724 

 725 

Stratified linkage disequilibrium score regression 726 

We conducted stratified LD score regression (S-LDSC) to partition heritability. For this analysis, we used 727 

707 cell-type-specific IMPACT annotations and 396 histone mark annotations65,81. IMPACT regulatory 728 

annotations were created by aggregating 5,345 epigenetic datasets to predict binding patterns of 142 729 

transcription factors across 245 cell types. We computed annotation-specific LD scores using the EUR 730 

samples in 1KG Phase3 to analyze EUR-GWAS results. Similarly, we used EAS samples in 1KG Phase3 731 

to analyze EAS-GWAS results. We estimated heritability enrichment of each annotation, while controlling 732 

for the 53 categories of the full baseline model. When we controlled the effect of an annotation, we 733 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21267132doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21267132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

conducted the same S-LDSC analysis but additionally including that annotation in a single model. We 734 

excluded variants in the MHC region (chr6:25 Mb-35 Mb).  735 

 736 

Trans-ancestry comparison of genetic signals 737 

We first sought to compare the effect size estimates among GWAS results from each ancestry at the 738 

lead variants. However, the lead variants are not always the causal variants, and hence we restricted our 739 

targets to fine-mapped lead variants (PIP > 0.5). In addition, we excluded rare variants from this analysis 740 

because the effect sizes could not be accurately estimated for rare variants (MAF < 0.01 in either of the 741 

major ancestries in 1KG Phase 3). We finally included 30 fine-mapped variants for this analysis. 742 

We next obtained trans-ancestry genetic-effect correlation using Popcorn software (version 1.0)62. 743 

We used summary statistics of EUR- and EAS-GWAS, and selected association statistics from variants 744 

with at least non-missing genotype from 5,000 individuals. We also excluded the MHC region from the 745 

analysis because of its complex LD structure. Using these post-QC summary statistics, we calculated the 746 

trans-ancestry genetic-effect correlation between EUR and EAS with precomputed cross-ancestry scores 747 

for EUR and EAS 1000 Genomes ancestries provided by the authors. 748 

 749 

Polygenic risk score 750 

We used the pruning and thresholding method to calculate PRS in this study. We developed PRS 751 

models with six different conditions using combinations of two components; i) two variant selection 752 

settings used for PRS ((a) all variants or (b) variants within top 5% of the CD4+ T cell T-bet IMPACT 753 

annotation) and ii) three GWAS settings used for PRS (we used trans-ancestry, EUR-, or EAS-GWAS 754 

and refer PRS based on each of them as trans-ancestry, EUR-, or EAS-PRS, respectively). We designed 755 

our study so that the samples used in constructing PRS be independent from the samples in validation. 756 

When we evaluated the PRS performance in a given cohort, we re-conducted GWAS meta-analysis 757 

excluding that cohort to develop PRS models (Figure 6a). Before pruning, we removed rare variants 758 

from three GWAS results to reduce unstable effect estimates in PRS (MAF < 0.01 in EUR samples of 759 

1KG Phase3 for EUR- and trans-ancestry GWAS; and MAF < 0.01 in EAS samples of 1KG Phase3 for 760 
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EAS-GWAS). We also restricted this analysis to the variants which exist both in the GWAS results and 761 

post-QC imputed genotype of a cohort for which we apply PRS; and then we selected variants based on 762 

IMPACT annotation or utilized all variants (as described above). To LD-prune variants (r2 < 0.2), we used 763 

haplotype information in EUR samples of 1KG Phase3 for EUR- and trans-ancestry GWAS and EAS 764 

samples of 1KG Phase3 for EAS-GWAS. For each of six conditions, we used 10 different P value 765 

thresholds: 0.1, 0.03, 0.01, 0.003, 0.001, 3.0 x 10-4, 1.0 x 10-4, 3.0 x 10-5, 1.0 x 10-5, and 5.0 x 10-8; we 766 

thus ended up having 60 different PRS models (6 conditions x 10 P value thresholds). We applied these 767 

60 PRS models to 37 cohorts and applied a logistic regression model using per-individual PRS including 768 

the same covariates as used in GWAS; we evaluated PRS performances by Nagelkerke R2. In each of 769 

six PRS conditions, we selected the P value threshold with the largest average Nagelkerke R2, and used 770 

this P value threshold for the following analyses.  771 

 To discuss the PRS distribution in an ancestry, we first calculated PRS in each cohort using a 772 

specified condition; we next scaled those PRS values using the mean and the standard deviation of the 773 

PRS only of the control samples in that cohort; and we then merged PRS values across cohorts in an 774 

ancestry. We approximated the PRS distribution in general population by using that in control samples. 775 

For a given PRS value (at the right tail of PRS distribution), we compared the case-control ratios 776 

between individuals whose PRS is higher than that value and individuals whose PRS is lower than (or 777 

equal to) that value and calculated the odds ratio; and we then identified the minimum PRS value which 778 

showed odds ratio larger than three.  779 

780 
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Data availability: The summary statistics and the PRS model with the best performance are publicly 781 

available at the following link: 782 

https://data.cyverse.org/dav-anon/iplant/home/kazuyoshiishigaki/ra_gwas/ra_gwas-10-28-2021.tar.  783 

The codes are available at our website: 784 

https://github.com/immunogenomics/RA_GWAS. 785 
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