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Abstract: 
Background:  Pharmacologic clinical trials for heart failure (HF) with preserved ejection 

fraction (HFpEF) have been largely unsuccessful as compared to those for heart failure with 

reduced ejection fraction (HFrEF).  Whether differences in the genetic underpinnings of these 

HF subtypes may provide insights into the disparate outcomes of these clinical trials remains 

unknown.  

Objectives: We pursued genetic association analyses to compare the genetic architecture of 

HFpEF with that of HFrEF.   

Methods: We created a non-Hispanic White cohort including 19,495 HFrEF and 19,589 HFpEF 

cases among 43,344 unclassified HF cases, and 258,943 controls without HF in the Veterans 

Health Administration Million Veteran Program. We then conducted genome-wide association 

studies of unclassified HF, HFrEF and HFpEF, followed by genetic correlation analyses and 

Mendelian randomization analyses of established HF risk factors with HFrEF and HFpEF. 

Results: We found 13 loci associated with HFrEF at genome-wide significance, but only one 

associated with HFpEF.  Among genome-wide significant loci for HFrEF, four loci were not 

associated with any HF risk factor. The single locus identified for HFpEF (FTO) is a known 

marker for obesity.  Genetically determined associations were widely different between HFrEF 

and HFpEF for several risk factors including coronary artery disease, lipid levels, and pulse 

pressure.   

Conclusions: The modest genetic discovery for HFpEF compared to HFrEF despite a robust 

sample size indicates that HFpEF, as currently defined, likely represents the amalgamation of 

several, distinct pathobiological entities. Development of consensus sub-phenotyping of HFpEF 

is paramount to better dissect the underlying genetic signals and contributors to HFpEF.  

 

Condensed Abstract: We utilized a large, uniformly phenotyped, single cohort of heart failure 

sub-classified into heart failure with reduced (HFrEF) and preserved ejection fraction (HFpEF) 

based on current clinical definitions, to conduct detailed genetic analyses of the two HF sub-

types.  We found different genetic architectures and distinct genetic association profiles of 

HFrEF and HFpEF suggesting differences in underlying pathobiology. Furthermore, the low 

yield of HFpEF genome-wide association study (GWAS) compared to similarly powered HFrEF 

GWAS underscores the heterogeneity of HFpEF and the urgent need for developing consensus 

sub-phenotyping of HFpEF to improve the discovery in genetic mechanisms and therapeutic 

interventions.  

 

Key Words: Genome-wide Association Study; Genetic Correlation; Mendelian Randomization; 

Precision Medicine; Heart Failure  
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Abbreviations 
 
GWAS – Genome-wide association study 

GWS – Genome wide significant 

HF – Heart Failure 

HFpEF – Heart failure with preserved ejection fraction 

HFrEF – Heart failure with reduced ejection fraction 

MVP – Million Veteran Program 

SNP – Single nucleotide polymorphism 

VA – Veterans Affairs 
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Introduction 

Heart failure (HF) affects approximately 64 million people worldwide and 6.2 million 

adults in the United States.(1,2)  While major advances in therapy have reduced the morbidity 

and mortality due to heart failure with reduced ejection fraction (HFrEF), there is significant 

residual risk of adverse outcomes.(3) Therapeutic options are limited for heart failure with 

preserved ejection fraction (HFpEF), which accounts for approximately half of all cases of HF, 

with large scale clinical trials largely failing to demonstrate conclusive benefits. (4,5) Agents that 

have reduced the progression of myocardial remodeling and reduced adverse outcomes in HFrEF 

have not demonstrated comparable benefit in HFpEF.   

Genomic analyses of large cohorts represent promising approaches to better understand 

the pathobiology of HFrEF and HFpEF. (6,7)   A recent GWAS meta-analysis of multiple 

cohorts of European ancestry has identified several genomic loci associated with unclassified 

HF, although similar genomic analyses focused on HFrEF and HFpEF are lacking.(8) The 

Million Veteran Program (MVP) is a large biobank linked to extensive national Veterans Affairs 

(VA) electronic health record (EHR) databases. Using algorithms developed to curate HFrEF 

and HFpEF phenotypes in the national VA databases based on current consensus definitions,(9) 

we extensively explored the genetic architecture of each HF subtype in a single large cohort in 

the MVP. In addition to demonstrating the disparate genetic underpinnings of HFrEF and 

HFpEF, our results highlight the marked heterogeneity of the HFpEF phenotype, and the urgent 

need to develop consensus approaches to sub-phenotype HFpEF to enable pathophysiological 

and therapeutic discovery.   
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Methods 

Datasets 

Million Veteran Program: The design of MVP has been previously described.(10) 

Veterans were recruited from over 60 Veterans Health Administration medical centers 

nationwide since 2011. A unique feature of MVP is the linkage of a large biobank to an 

extensive, national, database from 2003 onward that integrates multiple elements such as 

diagnosis codes, procedure codes, laboratory values, and imaging reports, which permits detailed 

phenotyping of this large cohort. MVP has received ethical and study protocol approval by the 

Veterans Affairs Central Institutional Review Board in accordance with the principles outlined in 

the Declaration of Helsinki.  

UK Biobank: UK Biobank is a prospective study with over 500,000 participants aged 40–

69 years recruited in 2006–2010 with extensive phenotypic and genotypic data.(11)  

Phenotyping of Heart Failure, HFrEF, and HFpEF  

Our HF phenotyping algorithms utilize both structured and unstructured data to ensure 

accuracy of the HF diagnosis, and natural language processing to ascertain all measurements of 

left ventricular function from imaging studies (i.e. echocardiograms) and from clinical notes, 

with the latter permitting capture of left ventricular ejection fractions (LVEF) measured outside 

the VA system. (12-14) Capture of all LVEFs ensured that we truly obtained the LVEF measured 

at the time of diagnosis of HF to allow proper identification of HFpEF and exclude any veteran 

with recovered LVEF from the HFpEF cohort. For this study, to increase the number of HFpEF 

patients included in the study, we utilized a less restrictive definition recently utilized in a study 

(15) that did not require that  all LVEFs recorded after the baseline measurement also be ≥50%,  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21266829doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21266829


 6 

or the use of diuretics and/or measurement of B-type natriuretic peptide at baseline (Figure 1). 

To ensure adequacy of this definition, we compared the genetic associations obtained in the 

cohort to genetic associations obtained in a cohort curated with the more restrictive definition 

used for our previous epidemiological studies. (12,13,16,17)   Comorbid conditions were curated 

using International Classification of Diseases (ICD)-10 or ICD-9 codes as in our previous studies 

and described in the Supplementary Materials. (13) 

In the UK Biobank, we defined HF as the presence of self-reported HF/pulmonary edema 

or cardiomyopathy at any visit; or an ICD-10 or ICD-9 billing code indicative of 

heart/ventricular failure or a cardiomyopathy of any cause, as described and validated previously, 

and consistent with that used in a recent, international collaborative effort (8,18) Assessments of 

LVEF were not available in the majority of UK Biobank participants to permit classification into 

HFpEF and HFrEF. 

Genetic Data Production, Quality Control and Imputation DNA extracted from 

participants’ blood was genotyped using a customized Affymetrix Axiom® biobank array, the 

MVP 1.0 Genotyping Array. The array was enriched for both common and rare genetic variants 

of clinical significance in different ethnic backgrounds. Quality-control procedures used to 

assign ancestry, remove low-quality samples and variants, and perform genotype imputation 

were previously described. (19)  We excluded: duplicate samples, samples with more 

heterozygosity than expected, an excess (>2.5%) of missing genotype calls, or discordance 

between genetically inferred sex and phenotypic gender.(19)  In addition, one individual from 

each pair of related individuals (more than second degree relatedness as measured by the KING 

software)(20) were removed. Prior to imputation, variants that were poorly called (genotype 

missingness > 5%) or that deviated from their expected allele frequency observed in the 1000 
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Genomes reference data were excluded. After pre-phasing using EAGLE v2.4(21), we then 

imputed to the 1000 Genomes phase 3 version 5 reference panel (1000G) using Minimac4.(22) 

Genotyped SNPs after quality control were interpolated into the imputation file. Imputed variants 

with poor imputation quality (r2<0.3) were excluded from further analyses.  

Assignment of Racial/Ethnic Groups in the MVP 

The MVP participants were assigned to mutually exclusive racial/ethnic groups using 

HARE (Harmonized Ancestry and Race/Ethnicity), a machine learning algorithm that integrates 

genetically inferred ancestry (GIA) with self-identified race/ethnicity (SIRE) as previously 

described. (23) 

Genome-wide Association Analysis 

Figure 2 demonstrates our study schema. Imputed and directly measured single 

nucleotide polymorphisms (SNPs) with minor allele frequency >1% were tested for association 

with HF, HFrEF, and HFpEF assuming an additive genetic model using PLINK2 (24) and 

adjusting for age, sex, and the top ten genotype-derived principal components. In UK Biobank 

analyses, genotyping array was included as an additional covariate.  We meta-analyzed GWAS 

results of HF from MVP and UK Biobank using inverse-variance weighted fixed-effects model 

implemented in METAL.(25) Joint meta-analysis results were reported for unclassified HF to 

improve the power for GWAS discovery.(26)  GWAS results were summarized using FUMA, a 

platform that annotates, prioritizes, visualizes and interprets GWAS results.(27) Genome-wide 

significant SNPs (P<5×10-8) were grouped into a genomic locus based on either r2 > 0.1 or 

distance between loci of < 500kb using the 1000 Genomes European reference panel. Lead SNPs 

were defined within each locus if they were independent (r2 < 0.1). We considered loci as novel 
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if the sentinel SNP was of genome-wide significance (P<5×10-8) and located > 1 Mb from 

previously reported GWS SNPs associated with HF. (8,18)  For novel loci, we used the genomic 

base-pair position of each sentinel SNP to map to the closest gene within a 500 kb region as the 

candidate gene. The physical base-pair location (GRCh37/hg19) and alleles were used to 

uniquely identify a genetic variant to replicate previous reported genetic associations with HF, 

and with HF risk factors.  

For replication of unclassified HF, we conducted genome-wide association testing among 

UK Biobank participants passing sample quality control, comparing unclassified HF cases with 

non-HF controls. Procedures for genotyping and genotype imputation in the UK Biobank have 

been described previously.(11) For genetic association testing, we included SNPs with minor 

allele frequency (MAF) > 1% available in the Haplotype Reference Consortium (HRC), and 

imputation quality (INFO) > 0.3.  We restricted analyses to samples of European genetic 

ancestry, defined by a combination of self-reported race and genetic principal components of 

ancestry.  Specifically, we selected samples with genetic data who self-reported as white (British, 

Irish, or Other) and applied an outlier detection protocol (R package aberrant) to three pairs of 

principal components (PC1/PC2, PC3/PC4, and PC5/PC6), as generated centrally by the UK 

Biobank. Outliers in any of the three pairs of PCs were excluded from analysis to ensure that the 

study population was relatively homogenous in terms of genetic ancestry.  Additional sample 

exclusions were implemented for 2nd-degree or closer relatedness (Kinship coefficient > 

0.0884), sex chromosome aneuploidy, and excess missingness or heterozygosity, as defined by 

the UK Biobank.  Association analyses were performed using PLINK2 (https://www.cog-

genomics.org/plink/2.0/)25 on imputed genotype dosages, and a logistic regression model was 

used adjusting for age at enrollment, sex, genotyping array, and the first 10 principal components 
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of ancestry. After merging with the phenotypic data, a total of 8,227 unclassified HF cases were 

comparted to 379,788 non-HF controls. Test statistic inflation was investigated by genomic 

control and inspection of quantile-quantile plots. 

Genetic Correlation 

We estimated genetic correlations between these complex traits using cross-trait LD 

Score Regression and European ancestry-based GWAS results of HFpEF and HFrEF. (28,29) A 

reference panel consisting of 1.2 million HapMap3 variants was used to merge with GWAS 

summary statistics filtered to variants with MAF > 0.01, Hardy-Weinberg equilibrium P>10-20 

and imputation R2 > 0.5. Using LD Score Regression and GWAS summary statistics, we also 

estimated the inflation factor of unclassified HF, HFpEF and HFrEF.  

Mendelian Randomization Analysis of HF Risk Factors 

To assess differential causal associations of risk factors with HFrEF and HFpEF, we 

conducted two-sample Mendelian Randomization (MR). For MR, we utilized genetic 

instrumental variables reported in previous GWAS of the following traditional HF risk factors: 

coronary artery disease (CAD),(30) atrial fibrillation (AF),(31) type 2 diabetes (T2D),(32) body 

mass index (BMI),(33) lipids,(34) blood pressure(35) and estimated glomerular filtration rate 

(eGFR).(36) The GWS sentinel SNPs from each GWAS were selected as the genetic 

instrumental variables (GIVs) for each HF risk factor. We estimated the MR association of each 

risk factor using three complementary methods: inverse-variance-weighted, median weighted, 

and MR-Egger regression, as implemented in the R package TwoSampleMR.(37) MR-Egger 

regression was used to identify the horizontal pleiotropy measured by the intercept of the 

regression. Random-effects model was used to estimate the MR association between HF risk 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21266829doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21266829


 10 

factors and HF outcomes for IVW and MR-Egger regression. To avoid sample overlap in the 

two-sample MR design, we used summary statistics of unclassified HF, HFrEF and HFpEF from 

the MVP study, and summary statistics of risk factors in previous GWAS without the MVP, all 

from studies of European ancestry. We considered nominal p-value of 0.05 as suggestive 

evidence for MR association for each HF risk factor. We applied a stringent Bonferroni 

correction for 12 tested factors (p-value<0.05/12=0.0042) acknowledging that some factors are 

not independent. 

 

RESULTS 

The primary study population for the GWAS consisted of 258,943 controls, and cases of 

unclassified HF (n=43,344), HFpEF (n=19,589), and HFrEF (n=19,495) from the MVP cohort, 

and 8,227 HF cases and 379,788 controls from the UK Biobank cohort, all of European genetic 

ancestry. The GWS associations of unclassified HF, HFrEF and HFpEF were then examined in 

the MVP non-Hispanic African Americans and a recent HF GWAS in Europeans from the 

HERMES consortium (Figure 2). The MVP control and HF cohorts were predominantly male.  

In both MVP and UK Biobank, the HF cohorts tended to be older with a higher prevalence of 

cardiometabolic risk factors and comorbidities than the control populations (Table 1 and 

Supplementary Table 1, and Supplementary Table 2).  

GWAS of Unclassified HF 

In unclassified HF, the meta-analysis of MVP and UKB GWAS results (Supplementary 

Figures 1 and 2) identified 20 genome-wide significant (GWS) loci including 10 novel loci 

(Table 2 and Supplementary Tables 3 and 4). The regional association plots of each GWS 

locus are shown in Supplementary Figure 3A-3T. We replicated all 12 GWS independent SNPs 
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associated with HF from a recent HF GWAS publication,(8) (Bonferroni-corrected p-value < 

0.05; Supplementary Table 5).  

GWAS of HFrEF and HFpEF 

 We conducted GWAS of our established definitions of HFrEF and HFpEF.  First, we 

compared the output of GWAS for the more and less restrictive HFpEF definitions and observed 

high, overall genetic correlation (r=0.981, p<2×10-16) between these phenotypes, including 

among the top 110 HFpEF-associated SNPs (r=0.995, p<2x10-16; Supplementary Figure 4).  

We therefore used the less restrictive (and better-powered) HFpEF definition as the primary 

HFpEF phenotype for all subsequent analyses.  

In the GWAS among the MVP participants of European ancestry, we identified 13 GWS 

loci associated with HFrEF and one GWS locus (FTO) associated with HFpEF (Figure 3; Table 

3; Supplementary Figure 5A and 5B). The regional association plots of each GWS locus are 

shown in Supplementary Figure 6A-6N. Two lead SNPs in the FTO locus for HFrEF 

(rs7188250) and HFpEF (rs11642015) were in linkage disequilibrium (r2=0.873). Among these 

thirteen loci associated with HF subtypes, seven loci (NFIA, E2F6, MITF, PHACTR1, 

METTL7A, PNMT and BPTF) have not been reported in previous HF-related GWAS, of which 

four loci (NFIA, MITF, PHACTR1 and METTL7A) were GWS only in GWAS of HFrEF cases.  

Among 13 HFrEF-associated loci, nine loci had different associations with HFrEF and 

HFpEF (p-value<0.0038, corrected for 13 tests, Table 3). For example, the risk allele of the 

BAG3 missense variant (rs2234962) was associated with higher risk for HFrEF (OR 1.12, 95% 

CI 1.09-1.15, p-value 9.02×10-18), but was associated with lower risk for HFpEF (OR 0.97, 95% 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21266829doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21266829


 12 

CI 0.94-0.99, p-value 6.42×10-3). Only four loci, including LPA, FTO, PNMT and BPTF, were 

not differentially associated with HF subtypes.  

We observed moderate genomic inflation (l) for unclassified HF (l= 1.263), HFrEF (l= 

1.152) and HFpEF (l= 1.118), on par in with GWAS of phenotypes with similarly large sample 

sizes.  The LDSC intercepts were 1.044 (SE 0.010), 1.013 (SE 0.008) and 1.028 (SE 0.008) for 

unclassified HF, HFrEF and HFpEF, respectively, indicating that most of the inflation was due to 

polygenicity of HF and subtypes.  

Replication in MVP African Americans and other HF GWAS 

Among MVP African Americans, all but two of the SNPs identified in the GWAS of 

unclassified HF in the European ancestry had genetic associations with unclassified HF in the 

same direction, and two (rs3176326-CDKN1A and rs12150603-PNMT) were significant after 

Bonferroni correction (Supplementary Table 4); four (rs4717903-GTF2I, rs12933292-NFAT5, 

rs1002135-SMG6, and  rs1999323-MAP3K7CL) were replicated in the recent HF GWAS (8) 

after Bonferroni correction.   

Among 13 GWS loci associated with HFrEF, 11 had genetic effects in the same direction 

in the MVP African American cohort (Supplementary Table 6), including three (rs1763610-

HSPB7, rs4151702-CDKN1A, and rs2234962-BAG3) which were test-wise significant after 

Bonferroni correction. Interestingly, the sentinel SNP of the FTO locus was significantly 

associated with HFpEF (rs11642015, OR 1.10, 95% CI 1.03-1.17, p-value 6.30×10-3), but not 

associated with HFrEF (rs7188250, OR 1.06, 95% CI 0.99-1.12, p-value 0.11). 

Genetic Associations with HFrEF and HFpEF in Candidate Genes and Loci 
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Out of 12 GWS loci reported in the recent HERMES study of unclassified HF, all were 

associated with HFrEF, but only four were significantly associated with HFpEF including the 

FTO locus (Supplementary Table 5). Other loci replicated in HFrEF were ZBTB17/HSPB7 

locus (closest gene of SRARP discovered in our study) and HCG22 locus (38) (OR 1.05, CI 1.03-

1.08, P=7.83×10-5). We did not replicate previously reported associations of FRMD4B or USP3 

region with HF.(6,39) Among 15 autosomal genes related to cardiomyopathy,(40) we found 

significant associations in HFrEF with only TMEM43 (Supplementary Table 7, 

Supplementary Figure 7). 

Associations of HFrEF- and HFpEF Loci with Cardiovascular Risk Factors 

As shown in Figure 4 and Supplementary Table 8, several of the 13 loci associated 

with HFrEF and HFpEF also demonstrated genetic associations with risk factors as previously 

reported (PHACTR1, LPA, and CDKN2B-AS with CAD; CDKN1A with AF); and FTO with 

BMI, T2D, and HDL cholesterol. Although most loci were associated with multiple risk factors, 

the BAG3 locus was only associated with blood pressure traits, and the MITF and METTL7A loci 

were associated with eGFR. Three novel loci, SRARP, NFIA and E2F6, were not significantly 

associated with any tested HF risk factors.  

Genetic Correlation Between HFrEF and HFpEF and Heritability  

 Using LDSC and the MVP GWAS summary statistics, we estimated the heritability (h2) 

of unclassified HF, HFpEF and HFrEF as 3.7% (SE 0.3%), 1.9% (SE 0.2%) and 3.1% (0.3%), 

respectively. Heritability of HFpEF was substantially lower than that of unclassified HF and 

HFrEF. We also identified a modest positive genetic correlation between HFrEF and HFpEF 

(0.57±0.07). 
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Mendelian Randomization Association Analysis of HF Risk Factors 

 We present the MR association results from the inverse-variance-weighted method 

(Figure 5) since the assumption of zero-intercept was not violated in the Egger regression 

(Supplementary Table 9 shows results of all 3 MR methods).  In primary MR analyses 

(inverse-variance-weighted estimates), CAD had a stronger causal association with HFrEF, and 

all lipid parameters as well as T2D and DBP had a significant causal association only with 

HFrEF. While AF, BMI, and SBP demonstrated similar causal associations with both HF 

subtypes, PP was significantly associated with HFpEF only.  Similar results were observed from 

the median weighted method (Supplementary Table 9). Sensitivity analysis using Egger 

regression showed consistent effect estimates but larger confidence intervals (Supplementary 

Table 9).    

 

DISCUSSION  

In our large-scale genetic association analysis of clinical HF subtypes, we found 

pronounced differences in the genetic architectures of HFrEF and HFpEF. The very limited 

genetic discovery in HFpEF in spite of a large cohort size similar to HFrEF, suggests that  

HFpEF as currently clinically defined is a heterogenous phenotype with varying underlying 

pathobiology across the phenotype (Central Illustration).  

Our study of HFpEF as universally defined based on current guidelines(9) suggests 

underlying pathophysiological heterogeneity as a plausible explanation for the neutral results of  

clinical trials using therapies targeting specific pathophysiologic mechanisms.(5) Clinical trials 

have used the universal definition but have frequently changed the LVEF cutoff to below 50%; 

yet the overall success of these trials is low in terms of demonstrating reductions in mortality and 
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morbidity.(4)  Even the recently reported benefits of sodium-glucose co-transporter-2 inhibitors 

were not specific to HFpEF, but rather were seen across the spectrum of HF (both HFrEF and 

HFpEF).(41)  The paucity of genetic discovery in HFpEF is like that observed in stroke, another 

condition with heterogenous pathogenesis. For example, in a GWAS of 72,147 stroke patients 

from two large biobanks, only 3 novel loci were discovered. (42)  While previous small studies 

have examined both a priori grouping into sub-phenotypes(43), and unbiased clustering using 

machine learning approaches(44), our findings suggest an urgent need to develop consensus sub-

phenotyping strategies to resolve the heterogeneity of HFpEF as currently defined, as will be the 

focus of the recently initiated National Institutes of Health  HeartShare Program 

(https://grants.nih.gov/grants/guide/rfa-files/RFA-HL-21-015.html).  

Our genetic analyses of the associations between HF risk factors and HF subtypes, and 

causal relations of HF risk factors to HFrEF and HFpEF confirmed current epidemiologic data 

and the validity of our cohorts. For example, we found strong genetic associations of CAD and 

lipid with HFrEF. Conversely, genetically-determined pulse pressure was more associated with 

HFpEF.  Atrial fibrillation and BMI were causally related to both HFrEF and HFpEF. At the 

level for individual variants, for e.g., in case of the myocardial variant BAG3, different 

associations were seen with HFpEF and HFrEF.  Our finding that the direct genetic correlation 

between HFrEF and HFpEF was modest (r2 approximately 32%) reinforces our findings at the 

genomic level that HFrEF and HFpEF have different genetic architecture.  

Study Limitations  

Our findings should be interpreted in the context of the strengths and limitations of the 

study. This study is the first large-scale genomic analyses of HFpEF and HFrEF. Our HFpEF 

cohort had less women compared to epidemiologic studies and recent clinical trials; however, the 
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genetic and causal associations of risk factors with HFpEF as compared to HFrEF mirrored 

associations seen in epidemiologic studies. Since we utilized natural language processing to 

capture all recorded LVEFs including measurements performed outside the VA, our cohort of 

HFpEF excluded any participants with previously reduced and currently normal LVEF. We 

ensured adequate power by increasing the size of our HFpEF cohort with a less restrictive 

algorithm for curation, which demonstrated very high genetic correlation with a smaller cohort 

curated utilizing the more restrictive algorithm. Hence our findings indicate that the issue with 

reduced genetic discovery in our cohort was not secondary to impurity of the phenotype due to 

EMR-based curation, but rather that HFpEF as currently defined may be a collection of sub-

phenotypes with multiple independent disease mechanisms. Our case and control cohorts, since 

they were recruited from a hospital setting, had a higher prevalence of comorbidities compared 

to a population-based cohort. We could not externally replicate our findings since currently there 

are no other large adequately phenotyped cohorts of HFpEF and HFrEF.   

Conclusions: 

 The genetic architectures of HFpEF and HFrEF differ significantly. HFpEF as currently 

clinically defined is a pathophysiologically heterogenous disease that requires further 

characterization into consensus sub-phenotypes to enhance genetic discovery. Better genetic 

understanding of HF subtypes will lead to precise diagnosis, accurate risk assessment, and 

effective treatment and management of the global pandemic of heart failure.    

 

Perspectives:  

Competency in Medical Knowledge: Large-scale genetic studies help in understanding 

pathobiology of complex diseases. While heart failure with reduced and preserved ejection 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21266829doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21266829


 17 

fraction qualitatively share similar risk factors, their genetic underpinnings are different.  Heart 

failure with preserved ejection fraction is a heterogenous condition with likely different disease 

mechanisms underlying its genesis. 

Translational Outlook 1: Consensus sub-phenotyping strategies are urgently needed for 

therapeutic advances in heart failure with preserved ejection fraction.  

Translational Outlook 2: Multi-omics studies may be useful in sub-phenotyping heart failure 

with preserved ejection fraction to enable discovery of novel therapeutic targets. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21266829doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21266829


 18 

 

References: 

1. Virani SS, Alonso A, Benjamin EJ et al. Heart Disease and Stroke Statistics-2020 

Update: A Report From the American Heart Association. Circulation 2020;141:e139-

e596. 

2. Bragazzi NL, Zhong W, Shu J et al. Burden of heart failure and underlying causes in 195 

countries and territories from 1990 to 2017. Eur J Prev Cardiol 2021. 

3. Teerlink JR, Diaz R, Felker GM et al. Cardiac Myosin Activation with Omecamtiv 

Mecarbil in Systolic Heart Failure. N Engl J Med 2021;384:105-116. 

4. Solomon SD, McMurray JJV, Anand IS et al. Angiotensin-Neprilysin Inhibition in Heart 

Failure with Preserved Ejection Fraction. N Engl J Med 2019;381:1609-1620. 

5. Shah SJ, Borlaug BA, Kitzman DW et al. Research Priorities for Heart Failure With 

Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group 

Summary. Circulation 2020;141:1001-1026. 

6. Smith NL, Felix JF, Morrison AC et al. Association of genome-wide variation with the 

risk of incident heart failure in adults of European and African ancestry: a prospective 

meta-analysis from the cohorts for heart and aging research in genomic epidemiology 

(CHARGE) consortium. Circ Cardiovasc Genet 2010;3:256-66. 

7. Arvanitis M, Tampakakis E, Zhang Y et al. Genome-wide association and multi-omic 

analyses reveal ACTN2 as a gene linked to heart failure. Nat Commun 2020;11:1122. 

8. Shah S, Henry A, Roselli C et al. Genome-wide association and Mendelian 

randomisation analysis provide insights into the pathogenesis of heart failure. Nat 

Commun 2020;11:163. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21266829doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21266829


 19 

9. Bozkurt B, Coats AJ, Tsutsui H et al. Universal Definition and Classification of Heart 

Failure: A Report of the Heart Failure Society of America, Heart Failure Association of 

the European Society of Cardiology, Japanese Heart Failure Society and Writing 

Committee of the Universal Definition of Heart Failure. J Card Fail 2021. 

10. Gaziano JM, Concato J, Brophy M et al. Million Veteran Program: A mega-biobank to 

study genetic influences on health and disease. J Clin Epidemiol 2016;70:214-23. 

11. Bycroft C, Freeman C, Petkova D et al. The UK Biobank resource with deep phenotyping 

and genomic data. Nature 2018;562:203-209. 

12. Patel YR, Robbins JM, Kurgansky KE et al. Development and validation of a heart 

failure with preserved ejection fraction cohort using electronic medical records. BMC 

Cardiovasc Disord 2018;18:128. 

13. Patel YR, Kurgansky KE, Imran TF et al. Prognostic Significance of Baseline Serum 

Sodium in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2018;7. 

14. Kurgansky KE, Schubert P, Parker R et al. Association of pulse rate with outcomes in 

heart failure with reduced ejection fraction: a retrospective cohort study. BMC 

Cardiovasc Disord 2020;20:92. 

15. Gaziano L, Cho K, Djousse L et al. Risk factors and prediction models for incident heart 

failure with reduced and preserved ejection fraction. ESC Heart Fail 2021. 

16. Patterson OV, Freiberg MS, Skanderson M, S JF, Brandt CA, DuVall SL. Unlocking 

echocardiogram measurements for heart disease research through natural language 

processing. BMC Cardiovasc Disord 2017;17:151. 

17. Freiberg MS, Chang CH, Skanderson M et al. Association Between HIV Infection and 

the Risk of Heart Failure With Reduced Ejection Fraction and Preserved Ejection 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21266829doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21266829


 20 

Fraction in the Antiretroviral Therapy Era: Results From the Veterans Aging Cohort 

Study. JAMA Cardiol 2017;2:536-546. 

18. Aragam KG, Chaffin M, Levinson RT et al. Phenotypic Refinement of Heart Failure in a 

National Biobank Facilitates Genetic Discovery. Circulation 2018. 

19. Hunter-Zinck H, Shi Y, Li M et al. Genotyping Array Design and Data Quality Control in 

the Million Veteran Program. Am J Hum Genet 2020;106:535-548. 

20. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust 

relationship inference in genome-wide association studies. Bioinformatics 2010;26:2867-

73. 

21. Loh PR, Palamara PF, Price AL. Fast and accurate long-range phasing in a UK Biobank 

cohort. Nat Genet 2016;48:811-6. 

22. Das S, Forer L, Schonherr S et al. Next-generation genotype imputation service and 

methods. Nat Genet 2016;48:1284-1287. 

23. Fang H, Hui Q, Lynch J et al. Harmonizing Genetic Ancestry and Self-identified 

Race/Ethnicity in Genome-wide Association Studies. Am J Hum Genet 2019;105:763-

772. 

24. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation 

PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015;4:7. 

25. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide 

association scans. Bioinformatics 2010;26:2190-1. 

26. Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than 

replication-based analysis for two-stage genome-wide association studies. Nat Genet 

2006;38:209-13. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21266829doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21266829


 21 

27. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and 

annotation of genetic associations with FUMA. Nat Commun 2017;8:1826. 

28. Bulik-Sullivan BK, Loh PR, Finucane HK et al. LD Score regression distinguishes 

confounding from polygenicity in genome-wide association studies. Nat Genet 

2015;47:291-5. 

29. Ni G, Moser G, Schizophrenia Working Group of the Psychiatric Genomics C, Wray NR, 

Lee SH. Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression 

and Genomic Restricted Maximum Likelihood. Am J Hum Genet 2018;102:1185-1194. 

30. Nikpay M, Goel A, Won HH et al. A comprehensive 1,000 Genomes-based genome-wide 

association meta-analysis of coronary artery disease. Nat Genet 2015;47:1121-1130. 

31. Roselli C, Chaffin MD, Weng LC et al. Multi-ethnic genome-wide association study for 

atrial fibrillation. Nat Genet 2018;50:1225-1233. 

32. Scott RA, Scott LJ, Magi R et al. An Expanded Genome-Wide Association Study of 

Type 2 Diabetes in Europeans. Diabetes 2017;66:2888-2902. 

33. Locke AE, Kahali B, Berndt SI et al. Genetic studies of body mass index yield new 

insights for obesity biology. Nature 2015;518:197-206. 

34. Willer CJ, Schmidt EM, Sengupta S et al. Discovery and refinement of loci associated 

with lipid levels. Nat Genet 2013;45:1274-1283. 

35. Warren HR, Evangelou E, Cabrera CP et al. Genome-wide association analysis identifies 

novel blood pressure loci and offers biological insights into cardiovascular risk. Nat 

Genet 2017;49:403-415. 

36. Pattaro C, Teumer A, Gorski M et al. Genetic associations at 53 loci highlight cell types 

and biological pathways relevant for kidney function. Nat Commun 2016;7:10023. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.01.21266829doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.01.21266829


 22 

37. Hemani G, Zheng J, Elsworth B et al. The MR-Base platform supports systematic causal 

inference across the human phenome. Elife 2018;7. 

38. Meder B, Ruhle F, Weis T et al. A genome-wide association study identifies 6p21 as 

novel risk locus for dilated cardiomyopathy. Eur Heart J 2014;35:1069-77. 

39. Cappola TP, Li M, He J et al. Common variants in HSPB7 and FRMD4B associated with 

advanced heart failure. Circ Cardiovasc Genet 2010;3:147-54. 

40. Kalia SS, Adelman K, Bale SJ et al. Recommendations for reporting of secondary 

findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a 

policy statement of the American College of Medical Genetics and Genomics. Genet 

Med 2017;19:249-255. 

41. Anker SD, Butler J, Filippatos G et al. Empagliflozin in Heart Failure with a Preserved 

Ejection Fraction. N Engl J Med 2021. 

42. Malik R, Rannikmae K, Traylor M et al. Genome-wide meta-analysis identifies 3 novel 

loci associated with stroke. Ann Neurol 2018;84:934-939. 

43. Shah SJ, Kitzman DW, Borlaug BA et al. Phenotype-Specific Treatment of Heart Failure 

With Preserved Ejection Fraction: A Multiorgan Roadmap. Circulation 2016;134:73-90. 

44. Uijl A, Savarese G, Vaartjes I et al. Identification of distinct phenotypic clusters in heart 

failure with preserved ejection fraction. Eur J Heart Fail 2021. 

 

Figure Titles and Captions 

Figure 1. Algorithm for phenotyping of cohorts for genetic analyses. Consort diagram 

detailing the phenotyping of cases (unclassified HF, HFrEF, HFpEF, restrictive case definition of 

HFpEF) and controls.  
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Figure 2. Study Schema.  

Figure 3. Genome-wide associations of HFrEF and HFpEF. Genome-wide significant loci 

association studies of HFpEF and HFrEF among non-Hispanic White veterans. Sentinel SNPs 

and the nearest mapped genes are shown. Y-axis shows chromosomal position. Sentinel SNPs 

and their nearest genes are shown. *: novel HF locus; #: unique locus in the HFrEF GWAS but 

not in the HF meta-analysis; dashed vertical line indicates genome-wide significance threshold 

(P=5´10-8). 

Figure 4. Genetic associations between HFrEF/HFpEF risk variants and HF risk factors. 

The genetic associations were identified from published GWAS of HF risk factors. Beta: beta 

coefficients for continuous risk factors, log(odds ratio) for binary risk factors, percent change in 

eGFR.   CAD: coronary artery disease; AFib: atrial fibrillation; T2D: type 2 diabetes; BMI: body 

mass index; HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein 

cholesterol; TC: total cholesterol; TG: triglycerides; SBP: systolic blood pressure; DBP: diastolic 

blood pressure; PP: pulse pressure; eGFR: estimated glomerular filtration rate. 

Figure 5. Mendelian randomization analysis of HF risk factors in relation to HFpEF and 

HFrEF. CAD: coronary artery disease; AFib: atrial fibrillation; T2D: type 2 diabetes; BMI: 

body mass index; HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein 

cholesterol; TC: total cholesterol; TG: triglycerides; SBP: systolic blood pressure; DBP: diastolic 

blood pressure; PP: pulse pressure; eGFR: estimated glomerular filtration rate. 

Central Illustration. Limited genetic discovery in HFpEF due to pathophysiological 

heterogeneity 
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Figure 1. 
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Figure 2.  
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Figure 3. 
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Figure 4. 
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Figure 5.  
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Tables 

Table 1. Characteristics of HF Patients and non-HF Controls in the MVP Participants of European Ancestry.  

 Group  
Control 

(N=258,943) 
HFpEF 

(N=19,589) 
HFrEF 

(N=19,495) 
Unclassified HF 

(N=43,344) 
Age (years), mean±SD 62.74±13.76 69.88±9.77 69.29±9.74 69.61±9.74 

Male (%) 92.14 95.74 97.85 96.92 

Body mass index (kg/m2), mean±SD  29.20±5.53 31.95±6.98 30.20±6.38 31.08±6.73 

                         Underweight (< 18.5) % 0.56 0.47 0.59 0.52 

                         Normal (18.5-24.9) % 20.25 13.43 18.79 16.05 

                         Overweight (25.0-29.9) % 40.66 29.71 35.09 32.44 

                         Obese (30.0-34.9) % 24.70 27.08 25.62 26.37 

                         Morbidly obese (≥ 35.0) % 13.84 29.31 19.91 24.62 

LVEF, mean±SD NA 56.97±5.65 29.33±9.36 43.36±15.05 

Atrial fibrillation (%) 6.33 30.80 37.83 34.44 

Coronary artery disease (%) 22.47 63.87 74.63 69.72 

Chronic kidney disease (%) 9.54 37.21 35.75 36.43 

Diabetes (%) 20.61 48.54 45.06 46.76 

Hyperlipidemia (%) 66.9 87.75 88.20 88.04 

Hypertension (%) 62.97 93.22 91.69 92.51 

Peripheral vascular disease (%) 15.18 42.47 42.27 42.47 

Stroke/TIA (%) 8.26 25.29 24.33 24.93 
 

Note: HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction; HF: heart failure; SD: 

standard deviation; LVEF: left ventricular ejection fraction; TIA: transient ischemic attack. 
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Table 2. Sentinel SNPs significantly associated with heart failure. 
 

Note: chromosomal position is based on GRCh37/hg19 reference. The sentinel SNPs were mapped to the closed refseq genes based on 

chromosomal base-pair position. All genetic associations were aligned to effects of the risk alleles (i.e., increased risk for unclassified 

rsID Position 
Closest Gene 

(* denotes novel 
association) 

Genomic Region 
Risk 

allele/Ref. 
allele 

Risk 
allele 

frequency 

META HF GWAS MVP HF GWAS 

OR (95% CI) p-value OR (95% CI) p-value 

 
rs371236917 

1:16310737 SRARP/HSPB7/ZBTB17 flanking C/CT 0.70 1.06 (1.05, 1.08) 4.97´10-15 1.06 (1.04, 1.08) 1.50´10-12 

 rs1277930  1:109822143 CELSR2 flanking A/G 0.77 1.05 (1.04, 1.07) 1.10´10-10 1.05 (1.03, 1.07) 7.20´10-8 
 rs7595697  2:11568158 E2F6* flanking T/C 0.37 1.04 (1.02, 1.05) 4.98´10-8 1.04 (1.02, 1.05) 1.05´10-6 
 rs6795366  3:44005735 ABHD5* intergenic C/T 0.74 1.05 (1.03, 1.06) 1.95´10-8 1.04 (1.02, 1.06) 5.36´10-6 

rs2634073 4:111665783 PITX2 intergenic T/C 0.20 1.08 (1.06, 1.10) 7.42´10-19 1.07 (1.05, 1.09) 1.63´10-11 

rs3176326 6:36647289 CDKN1A intron G/A 0.80 1.08 (1.06, 1.10) 1.08´10-18 1.08 (1.06, 1.10) 1.00´10-15 

rs10455872 6:161010118 LPA intron G/A 0.07 1.11 (1.08, 1.14) 9.34´10-17 1.11 (1.08, 1.14) 7.73´10-13 

rs4717903 7:74068167 GTF2I* flanking C/T 0.25 1.04 (1.03, 1.06) 3.55´10-8 1.04 (1.02, 1.06) 1.33´10-5 

 rs4977575  9:22124744 CDKN2B-AS intergenic G/C 0.49 1.07 (1.06, 1.09) 6.92´10-23 1.06 (1.05, 1.08) 3.87´10-16 
rs579459  9:136154168 ABO flanking C/T 0.22 1.05 (1.03, 1.06) 1.26´10-8 1.04 (1.02, 1.06) 3.43´10-6 

rs59693993 10:75583034 CAMK2G intron C/T 0.86 1.06 (1.04, 1.08) 3.08´10-8 1.05 (1.03, 1.08) 1.79´10-6 
rs61869036 10:121422836 BAG3 intron G/C 0.79 1.06 (1.04, 1.08) 1.76´10-11 1.04 (1.03, 1.06) 3.13´10-6 
rs12149832 16:53842908 FTO intron A/G 0.41 1.07 (1.05, 1.08) 3.40´10-21 1.07 (1.06, 1.09) 9.05´10-20 
rs12933292 16:69566309 NFAT5* intergenic C/G 0.59 1.04 (1.03, 1.06) 5.25´10-9 1.04 (1.03, 1.06) 2.75´10-7 
rs1002135 17:2097583 SMG6* intron G/T 0.38 1.04 (1.03, 1.06) 6.33´10-9 1.04 (1.02, 1.06) 5.89´10-7 
rs12150603 17:37834715 PNMT/PGAP3* intron G/A 0.35 1.04 (1.03, 1.06) 5.21´10-9 1.05 (1.03, 1.06) 5.78´10-8 

rs150947345 17:57486425 YPEL2* flanking A/T 0.02 1.16 (1.10, 1.22) 1.67´10-8 1.16 (1.09, 1.23) 1.62´10-6 

rs34432450 17:65880259 BPTF* intron C/T 0.21 1.06 (1.04, 1.08) 1.93´10-12 1.06 (1.04, 1.08) 3.30´10-10 

rs79329549 18:36560942 18q12.2* intergenic T/G 0.91 1.07 (1.05, 1.10) 4.60´10-9 1.08 (1.05, 1.11) 5.24´10-8 

rs1999323 21:30534128 MAP3K7CL* intron T/C 0.15 1.07 (1.05, 1.09) 5.26´10-11 1.05 (1.03, 1.07) 4.04´10-6 
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HF). Ref: reference; OR: odds ratio; CI: confidence interval; GWAS: genome-wide association study. MVP - Million Veteran 

Program cohort (ncases=43,344)   META – meta-analysis of MVP and UK Biobank cohorts). 
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Table 3. Sentinel SNPs significantly associated with HFrEF (19,495 cases) and HFpEF (19,589 cases).  

rsID Position 
Closest 
Gene 

Genomic 
Region 

Risk 
allele/Ref. 

allele 

Risk 
allele 

frequency 

MVP HFrEF GWAS MVP HFpEF GWAS HFrEF vs. 
HFpEF  
p-value OR (95% CI) p-value OR (95% CI) p-value 

HFrEF           

rs1763610 1:16335527 HSPB7 flanking C/G 0.64 1.11 (1.08, 1.13) 1.06´10-18 1.00 (0.98, 1.02) 0.910 5.41´10-11 
rs2261792 1:61881191 NFIA intron G/A 0.36 1.06 (1.04, 1.09) 4.11´10-8 1.00 (0.98, 1.03) 0.769 1.69´10-4 

rs12612948 2:11568740 E2F6 flanking G/A 0.35 1.07 (1.04, 1.09) 1.27´10-8 1.01 (0.99, 1.03) 0.407 5.99´10-4 

rs56286049 3:69824230 MITF intron C/G 0.77 1.08 (1.05, 1.11) 7.86´10-9 1.01 (0.98, 1.03) 0.629 6.08´10-5 

rs9349379 6:12903957 PHACTR1 intron G/A 0.40 1.06 (1.04, 1.09) 5.53´10-9 1.00 (0.98, 1.02) 0.797 5.58´10-5 

rs4151702 6:36645988 CDKN1A intron G/C 0.79 1.15 (1.12, 1.18) 7.29´10-25 1.01 (0.98, 1.03) 0.567 3.63´10-13 

rs10455872 6:161010118 LPA intron G/A 0.07 1.14 (1.10, 1.19) 2.17´10-11 1.06 (1.02, 1.11) 3.87´10-3 9.43´10-3 

rs4977575 9:22124744 CDKN2B-AS intergenic G/C 0.49 1.08 (1.06, 1.11) 1.80´10-13 1.04 (1.02, 1.06) 6.62´10-4 3.74´10-3 

rs2234962 10:121429633 BAG3 missense T/C 0.79 1.12 (1.09, 1.15) 9.02´10-18 0.97 (0.94, 0.99) 6.42´10-3 1.74´10-16 
rs7306330 12:51320290 METTL7A intron A/T 0.42 1.07 (1.05, 1.09) 5.58´10-10 1.00 (0.98, 1.02) 0.996 3.98´10-6 
rs7188250 16:53834607 FTO intron C/T 0.41 1.07 (1.04, 1.09) 2.85´10-9 1.07 (1.05, 1.09) 9.19´10-10 0.842 
rs3764351 17:37824339 PNMT intron G/A 0.36 1.07 (1.05, 1.09) 4.34´10-9 1.02 (1.00, 1.04) 6.81´10-2 4.49´10-3 
rs4790908 17:65852907 BPTF intron G/T 0.20 1.08 (1.05, 1.11) 3.04´10-9 1.04 (1.01, 1.06) 7.76´10-3 0.017 

HFpEF    
 

      

rs11642015 16:53802494 FTO intron T/C 0.40 1.06 (1.04, 1.08) 7.01´10-8 1.07 (1.05, 1.10) 6.45´10-11 0.364 

Note: chromosomal position is based on GRCh37/hg19 reference. The sentinel SNPs were mapped to the closed refseq 

genes based on chromosomal base-pair position. All genetic associations were aligned to effects of the risk alleles (i.e., 

increased risk for HF subtypes). Ref: reference; OR: odds ratio; CI: confidence interval; GWAS: genome-wide 

association study.  
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