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Summary 
 
Asthma is a complex disease that affects millions of people and varies in prevalence by an order 
of magnitude across geographic regions and populations. However, the extent to which genetic 
variation contributes to these disparities is unclear, as studies probing the genetics of asthma 
have been primarily limited to populations of European (EUR) descent. As part of the Global 
Biobank Meta-analysis Initiative (GBMI), we conducted the largest genome-wide association 
study of asthma to date (153,763 cases and 1,647,022 controls) via meta-analysis across 18 
biobanks spanning multiple countries and ancestries. Altogether, we discovered 179 genome-
wide significant loci (p < 5x10-8) associated with asthma, 49 of which are not previously reported. 
We replicate well-known associations such as IL1RL1 and STAT6, and find that overall the novel 
associations have smaller effects than previously-discovered loci, highlighting our substantial 
increase in statistical power. Despite the considerable range in prevalence of asthma among 
biobanks, from 3% to 24%, the genetic effects of associated loci are largely consistent across the 
biobanks and ancestries. To further investigate the polygenic architecture of asthma, we construct 
polygenic risk scores (PRS) using a multi-ancestry approach, which yields higher predictive power 
for asthma in non-EUR populations compared to PRS derived from previous asthma meta-
analyses. Additionally, we find considerable genetic overlap between asthma age-of-onset 
subtypes, as well as between asthma and chronic obstructive pulmonary disease (COPD) but 
minimal overlap in enriched biological pathways. Our work underscores the multifactorial nature 
of asthma development and offers insight into the shared genetic architecture of asthma that may 
be differentially perturbed by environmental factors and contribute to variation in prevalence.   
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Introduction 
Asthma is a complex and multifactorial disease that affects millions of people worldwide, yet much 
of its genetic architecture has eluded discovery. Genetic factors contribute substantially to asthma 
risk, with heritability estimates from twin studies ranging between 50%-90%1,2. Early genome-
wide association studies (GWAS) provided some evidence for the polygenic architecture of 
asthma3–5, but only in the past few years have genomic studies of asthma collated large enough 
sample sizes to more definitively articulate its polygenicity6. The most recent GWAS of asthma 
discovered 167 asthma-associated loci across the genome7. However, these risk loci only account 
for a small proportion of the total heritability of asthma.  Furthermore, the discovery GWAS, like 
the majority of previous asthma GWAS, were primarily conducted in populations of European 
ancestry. Some major exceptions are the EVE Consortium8, one of the first efforts to perform 
GWAS in populations of African-American, African-Caribbean and Latino ancestries, as well as 
the Trans-National Asthma Genetic Consortium (TAGC)9 which included modest sample sizes 
from populations of African, Japanese and Latino ancestries in their meta-analysis. As these 
studies noted, efforts to conduct asthma GWAS in diverse populations are particularly important 
because the prevalence of asthma varies widely around the world. Surveys of asthma worldwide 
have found that prevalence can vary by as much as 21-fold among countries10,11. Within countries, 
prevalence of asthma ranges considerably as well12, and this variation cannot be attributed to any 
single known risk factor such as air pollution. Rather, the contributing genetic and environmental 
factors are complex. Therefore, assessing the genetic architecture of asthma in diverse cohorts 
is critical to gaining a more comprehensive understanding of asthma risk. 
 
This heterogeneity in prevalence is mirrored by, and may be a consequence of, the heterogeneity 
of the disease itself. The wide variability in underlying mechanistic pathways and clinical 
presentations of asthma has led to a shift away from its characterization as a single disease 
entity13–15. Instead, asthma is now commonly viewed as a syndrome encompassing several 
distinct yet interrelated diseases, each driven by a unique set of genetic and non-genetic risk 
factors13,14. Different subgroups of asthma, for example, share genetic components with various 
comorbid diseases, including other respiratory diseases like chronic obstructive pulmonary 
disease (COPD), allergic diseases, obesity, and neuropsychiatric disorders16–22. This complexity 
in turn complicates standards for defining phenotypes to study; for example, one study found that 
nearly 60 different definitions of “childhood asthma” were used across more than 100 studies in 
the literature23. The heterogeneity of asthma thus presents many challenges in identifying genetic 
risk factors for asthma. 
 
A greater understanding of the genetics underlying asthma risk can facilitate the development of 
more accurate clinical models of asthma that may help inform clinical intervention, prevention, 
and management strategies24. In particular, leveraging GWAS associations for genetic risk 
prediction models, such as polygenic risk scores (PRS), has shown potential in informing 
preventative clinical decision-making for several polygenic diseases25–27. For asthma, PRS could 
ultimately play a role in predicting disease severity and development in the clinical setting and 
serve as a tool for investigating gene-environment interactions in the research setting. So far, 
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some GWAS have been applied to developing PRS for asthma28–32, but these models have had 
limited predictive ability, likely due to the insufficient sample sizes and diversity of existing 
datasets of asthma. This underscores the genetic complexity of asthma and highlights the need 
for more large-scale, genomic studies of asthma. 
 
To more deeply interrogate the genetic architecture of asthma across different populations 
through genetic discovery and prediction, we analyzed paired phenotypic and genetic data from 
the Global Biobank Meta-analysis Initiative (GBMI). Participating biobanks shared summary 
statistics for the meta-analyses of 14 disease endpoints: asthma, COPD, heart failure, stroke, 
gout, venous thromboembolism, primary open-angle glaucoma, abdominal aortic aneurysm, 
idiopathic pulmonary fibrosis, thyroid cancer, cardiomyopathy, uterine cancer, acute appendicitis, 
and appendectomy33. More details on the selection of these disease endpoints can be found in 
Zhou et al. (2021)33. Compared to previous asthma resources and studies, this collaborative effort 
increased both the sample size and diversity of asthma cases by many folds, covered more 
variants with high imputation quality, and harmonized phenotypes using consistent electronic 
health record definitions for asthma across datasets. Harnessing this resource, we identify 49 loci 
not previously associated with asthma. Despite prevalence differences of nearly an order of 
magnitude, we also demonstrate remarkable consistency of genetic effects across the biobanks 
and ancestries in GBMI. Further, we show that the increased sample size and diversity of data 
from GBMI improves genetic risk prediction accuracy in multiple populations. Finally, we show 
that this meta-analysis captures much of the genetic architecture underlying asthma age-of-onset 
subtypes, and we provide additional evidence for shared genetic architectures between asthma 
and comorbid diseases such as COPD. Our findings highlight the need for future investigations 
into how genetic effects shared across different asthma subtypes and with different diseases 
contribute to the heterogeneity of asthma.  

Results 

Multi-ancestry meta-analysis for asthma across 18 biobanks in GBMI 
 
To identify novel loci associated with asthma, we performed fixed-effects inverse-variance 
weighted meta-analysis using the harmonized GWAS summary statistics for asthma from 18 
biobanks participating in GBMI (Supplementary Table 1). The combined sample size from all 
discovery studies was 153,763 cases and 1,647,022 controls, spanning individuals of European 
(EUR), African (AFR), Admixed American (AMR), East Asian (EAS), Middle Eastern (MID), and 
Central and South Asian (CSA) ancestry (Fig. 1, Supplementary Fig. 1). The meta-analysis of 
GWAS from four additional biobanks (9,991 cases and 63,605 controls) was used as an 
independent replication study (Supplementary Table 1). Despite the standardized phenotype 
definitions used by each biobank, which included the asthma PheCode and/or self-reported data 
(Supplementary Table 3), the prevalence of asthma varies widely across these biobanks, 
ranging from 3% in the Taiwan Biobank (TWB) to 24% in the Mass General Brigham Biobank 
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(MGB). We applied pre- and post-GWAS quality control filters that resulted in 70.8 million single-
nucleotide polymorphisms (SNPs) for meta-analysis; for downstream analyses we analyzed 
SNPs present in at least 2 biobanks33. The meta-analysis identified 179 loci of genome-wide 
significance (p < 5x10-8), 49 of which have not been previously reported to be associated with 
asthma (Fig. 2A, Supplementary Fig. 2). These potentially novel loci were defined so that the 
index variants, or the most significant variants in each locus, were at least 1 Megabase in distance 
from a previously discovered genome-wide significant variant associated with asthma (Methods). 
Additionally, all but one index variant did not have a previously discovered SNP in linkage 
disequilibrium (LD) at r2 > 0.07, estimated using a reference panel from individuals in 1000 
Genomes34 (Supplementary Table 2). In the replication meta-analysis, 51 of the 179 loci had 
index variants with a p-value < 0.05, even though the case numbers in the replication data were 
less than 10% of the case numbers in the discovery data (Supplementary Table 2). 154 of the 
179 index variants had consistent directions of effect in the discovery and replication meta-
analyses. We also found that the potentially novel associations had smaller effect sizes on 
average compared to the previously reported loci, across the allele frequency spectrum (Fig. 2B). 
This illustrates that with the increased power and effective sample size of GBMI, we were able to 
uncover SNPs with more modest effects on asthma.  
 
Because the GBMI meta-analysis includes data from UKBB, we compared our results to the 
TAGC meta-analysis results that did not include the UKBB GWAS to facilitate analyses that 
require independent samples9. Of the index variants within the top 179 loci in GBMI, 122 were in 
the TAGC meta-analysis or had a tagging variant in high LD (r2 > 0.8) in the TAGC study; 76 of 
these had p < 0.05 in the TAGC results. We compared the effect sizes of these 76 SNPs in the 
GBMI and the TAGC meta-analyses using a previously proposed Deming regression method that 
considers standard errors in both effect size estimates35. We found that all 76 SNPs were 
directionally consistent and aligned across the studies (Supplementary Table 4, Supplementary 
Fig. 3).      
 
Among the 49 novel loci, the index variants of six loci were missense or in high LD (r2 > 0.8) with 
a missense variant (Supplementary Table 2). One of these SNPs, chr10:94279840:G:C (pmeta-

analysis = 2.5x10-9), resides in PLCE1, an autosomal recessive nephrotic syndrome gene36; high 
prevalence of atopic disorders, like asthma, among children with nephrotic syndrome has long 
been observed in the clinic, suggesting potential shared pathways underlying asthma and 
nephrotic syndrome37. The asthma risk allele has also been previously linked to lower blood 
pressure38. The index SNPs chr14:100883117:G:T (pmeta-analysis = 2.6x10-8) and 
chr19:56222056:C:A (pmeta-analysis = 2.4x10-8) also implicate novel genes, RTL1 and ZSCAN5A 
respectively. RTL1 has been found to play a role in muscle regeneration39, and ZSCAN5A has 
been linked to monocyte count40. Additionally, three of the novel index SNPs co-localized with a 
fine-mapped cis-eQTL (Supplementary Table 2). One of these, chr19:49513502:C:T (pmeta-analysis 
= 7.98x10-9), implicates FCGRT, which regulates IgG recycling and is a potential drug target for 
autoimmune neurological disease therapies41. The other previously-reported missense variants 
replicated previous findings; among these, chr4:102267552:C:T (p.Ala391Thr, p = 2.5x10-12) is a 
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highly pleiotropic variant in SLC39A8 that has been associated with many psychiatric, neurologic, 
inflammatory and metabolic diseases42–48 and has been demonstrated to disrupt manganese 
homeostasis49. Variants implicating well-known asthma-associated genes with large effects, like 
IL1RL1, IL2RA, STAT6, IL33, GSDMB, and TSLP, were replicated in the meta-analysis as well.  

GWAS from diverse ancestries reveal shared genetic architecture of 
asthma and improves power for genetic discovery 
 
Given that sample size, disease prevalence, ancestry, and sampling approaches differed across 
the 18 biobanks, we investigated the consistency of the asthma-associated loci across the 
biobanks and their attributes. We first implemented an approach that estimates the correlation 
(r b) between the effects of the index variants of the 179 top loci in each biobank GWAS and the 
corresponding meta-analysis excluding that biobank50. We observed that most biobanks have 
highly correlated genetic effects with other biobanks (r b  estimates close to 1) (Supplementary 
Table 5). To further interrogate the consistency of the index variants in all biobanks, we computed 
the ratio of the effect size of these SNPs in the biobank-specific GWAS over that in the 
corresponding leave-that-biobank-out meta-analysis. We found that the average per-biobank 
ratios were almost evenly split between those greater than and less than 1 (Supplementary Fig. 
4). This indicates that any significant difference in effects likely does not reflect technical artifacts 
in the meta-analysis or GWAS procedures. We also applied Deming regression35 to assess the 
alignment of the SNP effects in each biobank-specific GWAS with the effects in the corresponding 
leave-that-biobank-out meta-analysis and observed that the effect sizes were comparable across 
the biobanks (Fig. 3, Supplementary Fig. 5). Furthermore, the genome-wide genetic correlations 
between the biobanks with non-zero heritability estimates and the respective leave-that-biobank-
out meta-analyses were all close to 133.  
 
To test for potential heterogeneity in effect estimates due to ascertainment, we conducted an 
additional sensitivity analysis comparing SNP effects in the meta-analyses of the hospital- vs. 
population-based biobanks. We conducted meta-analyses of the 9 population-based biobanks 
(CKB, DECODE, ESTBB, GNH, GS, HUNT, Lifelines, TWB, and UKBB) and 6 hospital-based 
biobanks (BBJ, BioMe, BioVU, MGB, MGI, and UCLA). We then fitted the Deming regression35 
on the effect size estimates of the loci identified by the all-biobank meta-analysis, using the SNPs 
with p-value < 1x10-6 in both meta-analyses, and observed high consistency in the effects across 
the two groups (Supplementary Fig. 6). 
 
Taken together, these analyses indicate that the genetic architecture of asthma is largely shared 
across cohorts, despite differences in characteristics like disease prevalence and ascertainment 
strategy. Furthermore, the consistency of genetic effects across the biobanks suggests that the 
fixed effects meta-analysis approach is appropriate for the integration of GWAS from the different 
datasets. We additionally conducted meta-analysis using the meta-regression approach 
implemented in MR-MEGA51, which accounts for potential effect size heterogeneity across 
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datasets. MR-MEGA identified only 2 additional loci associated with asthma, 1 of which is novel 
(Supplementary Table 6). 
 
We also found little evidence of heterogeneity in the ancestry-specific effect sizes for the index 
variants. One SNP, chr10:9010779:G:A, was significantly heterogeneous (p-value for Cochran’s 
Q test < 0.0003, the Bonferroni-corrected p-value threshold) across the ancestry-specific meta-
analyses of AFR, AMR, CSA, EAS, and EUR individuals (Fig. 4A, Supplementary Table 7). One 
known SNP that nearly reached the Bonferroni-corrected p-value threshold for heterogeneity, 
chr16:27344041:G:A, displayed different effects in the EUR and EAS cohorts. This SNP lies within 
an intron of IL4R (Fig. 4B), which has known associations with asthma6,52. Previous studies have 
investigated the association of IL4R with asthma in different populations, with inconsistent results, 
so future studies on the population-specific effects of this gene will be needed53–55. Our findings 
demonstrate that despite broad consistency of effect sizes across ancestries among the top loci, 
the increased power and diversity of GBMI enabled the detection of SNPs with significantly 
different effects across ancestries.  
 
Additionally, the greater diversity of GBMI facilitated the discovery of loci that would not have been 
identified in association analyses using data from only EUR ancestry cohorts. We found that of 
the 179 loci identified in the all-biobank meta-analysis, 49 did not reach genome-wide significance 
in the EUR-only meta-analysis (Supplementary Table 8). This additional yield of loci may be 
partially due to the increase in sample size, but the inclusion of GWAS from diverse ancestries 
also enabled the identification of loci that are more frequent in some non-EUR populations. 19 of 
these 49 loci were potentially novel, and 13 of these novel loci had an index variant higher in 
frequency in a non-EUR ancestry group compared to the EUR ancestry group. The consistent 
effect estimates of the 49 additional variants across populations (45/49 had p-value for Cochran’s 
Q test across ancestries >0.02) indicate that the additional variants discovered with the 
incorporation of GWAS from diverse ancestries do not tend to be population-specific loci that only 
have effects in certain populations. However, due to differences in frequency across populations, 
it is essential to conduct asthma GWAS in different populations to uncover the full spectrum of 
asthma-associated loci. 

Meta-analysis across diverse ancestries improves asthma PRS accuracy 
 
We next explored the impact of the increased sample sizes and diversity in GBMI on genome-
wide risk prediction of asthma. To establish a baseline understanding of PRS performance for 
asthma as well as other disease endpoints in GBMI, Wang et al. (2021)56 evaluated and compared 
the prediction accuracy of PRS derived from the pruning and thresholding (P+T) method and 
PRS-CS57 in target cohorts of EUR, CSA, EAS, and AFR ancestries, using the leave-one-biobank-
out meta-analyses as discovery data. This study observed improvements in prediction accuracy 
for asthma using PRS-CS across all target cohorts (Supplementary Fig. 7), and additionally, the 
PRS derived from the GBMI leave-one-biobank-out meta-analyses of asthma had higher 
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predictive accuracy, as measured by R2 on the liability scale (𝑅!"#$"!"%&2 ), compared to the PRS 
constructed from the TAGC meta-analysis9 (Fig. 5).  
 
To expand on these analyses, we tested a recently-developed extension of PRS-CS, PRS-CSx58, 
for asthma risk prediction. This method jointly models multiple summary statistics from different 
ancestries to enable more accurate effect size estimation for prediction. For input to PRS-CSx, 
we used the AFR, AMR, EAS, CSA, and EUR ancestry-specific meta-analyses from GBMI; the 
discovery meta-analysis that matched the ancestry of the target cohort excluded the target cohort 
(Supplementary Fig. 8). With the posterior SNP effect size estimates from PRS-CSx, we tested 
the multi-ancestry PRS in the following target populations: AFR ancestry individuals in UKBB, 
CSA ancestry individuals in UKBB, a holdout set of EAS ancestry individuals in BBJ, and a holdout 
set of EUR ancestry individuals in UKBB. The final prediction models tested in these target 
populations were the optimal linear combinations of the population-specific PRS. The average 
𝑅!"#$"!"%&2  in the EAS (0.053) and EUR (0.054) target cohorts approached the SNP-based 
heritability (ℎ'()2 ), estimated to be 0.085 for asthma using the all-biobank meta-analysis56, while 
the prediction accuracies in the CSA (0.038) and AFR (0.014) target cohorts were lower (Fig. 5, 
Supplementary Table 9). When we downsampled the EUR target cohort to 1,000 individuals, to 
match the sample size of the EAS target cohort, we found a higher average 𝑅!"#$"!"%&2  (0.063) but, 
as expected, much larger confidence intervals (Supplementary Fig. 9). ℎ'()2  estimates may differ 
across biobanks and ancestries given differences in disease prevalence, environmental 
exposures, phenotype definitions, and other factors, and these differences may in turn contribute 
to the PRS in EAS individuals performing similarly to PRS in EUR individuals in our analyses, 
despite the smaller sample size of the EAS discovery cohort. The 𝑅!"#$"!"%&2  across the target 
populations for the PRS-CSx scores were roughly the same as the 𝑅!"#$"!"%&2  of the PRS derived 
from the PRS-CS analyses. It is important to note that the discovery data used in the PRS-CS 
analyses differed slightly in sample size and composition, since the leave-one-biobank-out 
approach was used for PRS-CS, but the target cohorts in which the PRS were evaluated were 
the same (Supplementary Table 10).   
 
To investigate why improvement in performance using PRS-CSx was only incremental in most of 
the target cohorts, we examined the performances of each population-specific PRS. We found 
that across all target cohorts, PRS derived from either the EUR or EAS set of posterior effect size 
estimates outperformed the linear combination, and the 𝑅!"#$"!"%&2  of these PRS were also higher 
compared to that of the PRS-CS scores (Supplementary Fig. 10, Supplementary Table 9). This 
suggests that the addition of more discovery GWAS to PRS-CSx can improve the accuracy of 
PRS based on a single set of posterior effect size estimates, but the linear combination of PRS 
from multiple GWAS does not necessarily yield higher accuracy. This may be due to the 
considerably smaller sample sizes of some of the input discovery meta-analyses in our analyses 
and thus varying signal to noise ratios. Collectively, these analyses show that the increase in 
scale and diversity of discovery GWAS for PRS is the primary driver of increased PRS accuracy 
in non-EUR populations for asthma, with marginal gains using PRS-CSx over PRS-CS. For EUR 
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target cohorts, a multi-ancestry PRS construction method like PRS-CSx does not seem to 
contribute much improvement in prediction accuracy, likely due to the predominating sample size 
of EUR discovery GWAS, as well as the inclusion of GWAS from smaller, non-EUR discovery 
cohorts which may introduce more noise than signal. 

Childhood-onset (COA) and adult-onset (AOA) asthma are highly 
genetically correlated 
 
To increase power for genetic discovery, we used a broad phenotype definition for asthma 
(Methods), but given the heterogeneity of the disease, we sought to address the extent to which 
this meta-analysis captured the genetic architectures of two common subtypes of asthma, 
childhood-onset (COA) and adult-onset (AOA) asthma. We conducted asthma age-of-onset 
subtype analyses in two of the participating GBMI biobanks for which age at asthma diagnosis 
information were accessible, UKBB and FinnGen. Using a cut-off age of 19 years at asthma 
diagnosis to define the subtypes (Methods), we performed GWAS of COA and AOA in FinnGen 
and the EUR ancestry cohort in UKBB, as well as fixed-effects, inverse-variance weighted meta-
analyses of the COA (20,964 cases, 674,014 controls) and AOA (56,744 cases, 674,014 controls) 
GWAS, respectively. Applying linkage-disequilibrium score correlation (LDSC), we observed 
strong genetic correlations between each COA GWAS and the respective leave-that-biobank-out 
meta-analysis of all other biobanks utilizing the broad phenotype definition (rg (se) = 0.73 (0.03), 
p = 4.70x10-132 for UKBB and rg (se) = 0.80 (0.4), p = 3.19x10-73 for FinnGen), and even larger 
genetic correlations between each AOA GWAS and leave-that-biobank-out meta-analysis (rg (se) 
= 0.90 (0.04), p = 1.71x10-127 for UKBB and rg (se) = 0.90 (0.30), p = 1.39x10-237 for FinnGen). 
The genetic correlation between the COA and AOA meta-analyses was similarly high (rg (se) = 
0.78 (0.30), p = 1.32x10-116), and similar to the genetic correlation (rg (se) = 0.67 (0.02)) reported 
by a previous study of asthma age-of-onset subtypes59. We also observed substantial overlap 
between the top loci identified in each subtype meta-analysis and the all-asthma meta-analysis. 
75 of the 90 loci (83%) of genome-wide significance (p < 5x10-8) and 55 of the 69 loci (80%) 
identified by the COA and AOA meta-analysis, respectively, overlapped with a locus discovered 
in the all-asthma meta-analysis (Supplementary Table 11). Overall, these results suggest that 
much of the genetic architecture between COA and AOA is shared, as is consistent with previous 
findings59,60. Despite the GBMI meta-analysis drawing from primarily adult cohorts, many of the 
genetic variants identified contribute to both subtypes.     
 
To investigate whether the genetic effects of the index variants of the asthma-associated loci differ 
across the subtypes, we compared the estimated effect sizes of the 179 index variants discovered 
in the all-asthma meta-analysis in the COA and AOA meta-analyses using the Deming regression 
method. We found that these variants had systematically stronger effects in the COA meta-
analysis compared to in the AOA meta-analysis (Supplementary Fig. 11), supporting previous 
findings that the etiology of COA is likely partially characterized by genes that have smaller (or 
no) effects on AOA59,60.  
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Asthma and COPD have shared and distinct biological processes  
 
The shared genetic factors between asthma and different diseases that often coexist with asthma, 
such as COPD, a late-onset respiratory disease, have also been used to investigate and 
characterize asthma heterogeneity. It has been well-documented in the literature that asthma and 
COPD are frequent comorbidities of each other61, but only a few studies thus far have investigated 
the extent to which this is driven by a shared genetic basis62–64. Utilizing the GBMI meta-analyses 
of asthma and COPD, we observed a strong genetic correlation between asthma and COPD (rg 
(se) = 0.67 (0.021), p = 1.55x10-226). This genetic correlation estimate is higher than estimates 
from previous studies, which ranged from 0.38-0.4263,64. This may be a result of the discovery 
datasets used by these studies, which were enriched for pediatric asthma cohorts, while GBMI 
biobanks are primarily composed of adult participants. To more formally test for potential 
differences in the shared genetic architecture of age-of-onset subtypes and COPD, we computed 
genetic correlations between the COA and AOA meta-analyses and the GBMI COPD meta-
analysis. We found that the AOA meta-analysis had a strong genetic correlation with the COPD 
meta-analysis (rg (se) = 0.60 (0.3), p = 2.65x10-94), while the COA meta-analysis had a more 
moderate genetic correlation with the COPD meta-analysis (rg (se) = 0.33 (0.3), p = 7.60x10-31).  
 
To further evaluate the extent of genetic overlap between asthma and COPD, we applied a gene 
prioritization method, Multi-marker Analysis of GenoMic Annotation (MAGMA)65, to the GBMI 
EUR, AFR, EAS, and CSA meta-analyses of asthma as well as the GBMI EUR, AFR, and EAS 
meta-analyses of COPD. After Bonferroni correction, we found that 442, 149, and 6 genes were 
significantly associated with asthma in the EUR (p < 2.50x10-6), EAS (p < 2.50x10-6), and CSA (p 
< 2.52x10-6) populations, respectively, with no significantly associated genes in the AFR cohort 
(all p > 2.51x10-6) (Supplementary Table 14). The majority of the genes associated with asthma 
identified in the EAS meta-analysis overlapped with the genes from the EUR meta-analysis (126 
out of 149 genes), and all 6 genes associated with asthma as identified in the CSA meta-analysis 
were also significantly associated in the EUR and EAS meta-analyses. We identified 46 and 33 
genes significantly associated with COPD in the EUR (p < 2.50x10-6) and EAS (p < 2.50x10-6) 
cohorts, respectively, and similarly to asthma, no significantly associated genes from the AFR 
meta-analysis (all p > 2.51x10-6) (Supplementary Table 15). Of the 75 genes associated with 
COPD across the EUR and EAS meta-analyses, 24 overlapped with the asthma-associated 
genes. We also conducted gene prioritization using Data-driven Expression-Prioritized Integration 
for Complex Traits (DEPICT)66 and gene-level Polygenic Priority Score (PoPS)67. However, only 
3 of the 52 genes (6%) prioritized for COPD by DEPICT overlapped with a gene prioritized for 
asthma using the same method (Supplementary Table 16), and 17 of the 184 genes (9%) 
prioritized for COPD by PoPS overlapped with a prioritized gene for asthma (Supplementary 
Table 17). Across the shared COPD and asthma genes prioritized by each method, only 1 gene, 
MED24, was prioritized by more than one method, highlighting that existing gene prioritization 
methods have poor agreement, an observation that has been previously discussed67 and is 
explored in more detail in Zhou et al. (2021)33.    
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We also adopted MAGMA for gene-set enrichment based on the curated and ontology gene sets 
from the Molecular Signatures Database (MSigDB)68. We found hundreds of gene sets that were 
significantly enriched (FDR < 0.05) by the asthma-associated genes discovered in the EUR and 
EAS meta-analyses (Supplementary Table 18). In contrast, only a handful of gene sets were 
significantly enriched among COPD-associated genes discovered in the AFR meta-analysis, 
likely reflecting the smaller overall sample size of the COPD meta-analysis (Supplementary 
Table 19). The top-ranked asthma pathways from the EUR meta-analysis included cytokine and 
interleukin signaling and T-cell activation. Consistently biologically, the EAS meta-analysis 
identified autoimmune thyroid disease and graft vs. host disease pathways. The top-ranked 
COPD pathways from the EUR meta-analysis, although not significant, included several pathways 
related to nicotine receptor activity. These results reinforce that despite the substantial genetic 
overlap, asthma and COPD are governed by distinct biological processes as well. Future 
investigations will be required to fully parse out the etiology and comorbidities of asthma, like 
COPD, that develop later on in adulthood. 

Genetic overlap between asthma and other diseases  
 
Non-genetic epidemiological studies have also identified correlations between asthma and many 
other disease categories beyond COPD69–71. More recently, some genome-wide cross-trait 
studies have found evidence for shared genetic architectures between asthma and other allergic 
diseases21,72, neuropsychiatric disorders22, and obesity20, suggesting that a comprehensive 
characterization of the shared genetics among asthma and other complex diseases and traits 
could provide insights into the variable pathology of asthma19. Together, these findings motivated 
us to assess whether correlations across a broad spectrum of disease endpoints are potentially 
driven by a shared genetic basis, or are purely observational and not driven by a shared biology. 
Since the GBMI project was limited to 14 disease endpoints, we utilized the wide range of 
phenotypic data available in UKBB to measure correlations between asthma and additional 
diseases and traits. Applying LDSC to the UKBB EUR GWAS of 1,008 significantly heritable 
(heritability Z score > 4) phenotypes and the GBMI leave-UKBB-out meta-analysis of asthma, we 
obtained pairwise genetic correlation estimates between these phenotypes and asthma. We 
observed strong correlations (|rg| > 0.4) with 95 of these phenotypes, which spanned 
prescriptions, PheCodes, and other categories (Supplementary Table 12). Digestive system 
disorders, including gastritis and gastroesophageal reflux disease (GERD), emerged as a disease 
category with significant and strong genetic correlations with asthma. Although the association 
between asthma and digestive disorders has not been as well studied, this does reinforce a 
previous finding of shared genetics between asthma and diseases of the digestive system9, 
indicating that the commonly-observed co-presentation of asthma and gastroesophageal disease 
in the clinic may be partially due to pleiotropic genetic effects. Our results also showed moderate 
and significant correlations (rg ranging from 0.2-0.3) between asthma and neuropsychiatric 
diseases, like anxiety and depression, and obesity-related traits, like body mass index, which is 
similarly consistent with previous findings20,22.  
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Leveraging data from another biobank, BBJ, we computed genetic correlation estimates between 
the GBMI leave-BBJ-out meta-analysis of asthma and 19 significantly heritable disease endpoints 
in BBJ (Supplementary Table 13). COPD showed the strongest and most significant correlation 
with asthma (rg = 0.29, p = 6.41x10-6), but the notably lower estimate compared to the estimate 
from the UKBB correlation analyses may be due to differences in phenotype definition and 
curation. Pollinosis, also known as allergic rhinitis or hay fever, showed moderate correlation with 
asthma (rg = 0.28, p = 0.0004), consistent with the correlation results from UKBB (rg = 0.39, p = 
4.60x10-3). Comparing the phenotypes with significant SNP heritability estimates in both BBJ and 
UKBB (Supplementary Fig. 12), we found that only COPD has significant genetic correlations 
with asthma across the biobanks. The rheumatoid arthritis (RA) and type 2 diabetes (T2D) GWAS 
from UKBB have moderate and significant correlations with asthma, which are partially 
recapitulated in the BBJ results that showed a moderate but not significant correlation between 
the BBJ GWAS of RA and of asthma, and a small but significant correlation between the BBJ 
GWAS of T2D and the GBMI leave-BBJ-out meta-analysis of asthma. Several studies in the 
literature have reported a relationship between risk for RA and asthma73–78, as well as T2D and 
asthma79–81, but more genetic studies in different populations and biobanks are needed to 
investigate the potential shared genetic architecture of these diseases. Importantly, causal 
relationships between asthma and genetically correlated phenotypes are not yet well-understood, 
and other methods such as Mendelian randomization could be applied to identify potential causal 
associations82.  

Discussion 
Assembling the largest and most diverse collection of asthma cohorts to date, we conducted a 
GWAS meta-analysis of 18 biobanks around the world and identified 49 novel associations among 
a total of 179. Despite the substantial sample sizes of previous meta-analyses of asthma9, our 
results indicated that the heterogeneity and complexity of asthma, like other common, polygenic 
diseases, will benefit from even larger sample sizes for genomic discovery. We interrogated the 
overall consistency of genetic effects across the cohorts and found that despite variability in 
recruitment, continent, sampling strategy, health system design, and disease prevalence, the 
effects of the loci discovered in the meta-analysis were by and large concordant across the 
biobanks. Additionally, genetic correlation estimates across ancestries, which ranged from 0.65 
to 0.99 for the well-powered ancestry groups, strongly supported the finding that the genetic 
architecture of asthma is largely shared across the ancestry groups studied.  
 
Importantly, however, the addition of GWAS from more diverse populations aided the discovery 
of genetic loci with higher frequencies in non-EUR populations that did not reach genome-wide 
significance in the meta-analysis with only EUR cohorts, highlighting the importance of 
diversifying genomic studies of asthma. Given the current disproportionate representation of 
European ancestries, we expect that as the availability of non-EUR GWAS of asthma and other 
asthma-related diseases and traits continues to increase, it is likely that greater numbers of such 
variants associated with asthma will be discovered. Previous studies of asthma-related diseases, 
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such as atopic dermatitis, in non-EUR populations have similarly identified additional risk variants 
that are higher in frequency in other populations but also found highly shared polygenic 
architecture between populations, mirroring our findings for asthma83,84. This study also provides 
further evidence for substantial genetic overlap between childhood and adult-onset asthma, as 
well as between asthma and well-known, immune-related comorbidities like COPD and allergic 
diseases. Additionally, we identified genetic correlations between asthma and less well-studied 
comorbidities like digestive system disorders, while highlighting additional complexity in the 
etiology and comorbidities of asthma. For example, gene set enrichment analyses using MAGMA 
did not yield many shared pathways for asthma and COPD despite the strong genetic correlation. 
 
We also demonstrated that the greater diversity of GBMI improved polygenic prediction in asthma, 
particularly for populations of non-European ancestry. Previous studies on asthma PRS in the 
literature have primarily focused on using PRS to predict asthma in pediatric cohorts, and overall 
found limited performance of PRS28–30,85. Most of these studies used the P+T approach, while a 
recently published paper, Namjou et al. (2022)32, applied PRS-CS to the TAGC multi-ancestry 
GWAS and found improved discriminatory power of their PRS (receiver-operating characteristic 
area under the curve, or AUC, of 0.66-0.70 across two pediatric cohorts) compared to the prior 
studies that used P+T. Sordillo et al. (2021)31 applied another genome-wide approach, lassosum, 
to the TAGC data, but their PRS evaluated in adult cohorts showed moderate performance (AUC 
of 0.51-0.57 across cohorts of different ancestries). While we did not assess the lassosum 
method, we have shown that the greater sample size and diversity of GBMI compared to TAGC 
contribute to better performing PRS (Fig. 5). However, we also found that differences in prediction 
power between Bayesian PRS construction methods PRS-CSx and PRS-CS were minimal. This 
may be due to imbalances in the sample sizes of the discovery cohorts, which may need to be 
taken into careful consideration when using these methods. Previous studies have found that 
imbalanced sample sizes across ancestries contribute somewhat unpredictably to varying 
prediction performances, with a low signal-to-noise ratio in ancestry-matched target populations 
reducing prediction performance86. Therefore, further investigation is needed to fully understand 
the interplay between sample size and ancestry in the context of polygenic prediction. Ultimately, 
these analyses highlight the pressing need for more well-powered and ancestrally-diverse 
resources that will help reduce these imbalances. 
 
We have highlighted the harmonization of the phenotype definitions across biobanks, but it is 
important to acknowledge that the criteria used, which allowed for both self-reported and 
PheCode information, are vulnerable to imprecision and variability in the data collected. Self-
reported data for asthma is particularly susceptible to imprecision, since it relies on personal 
recollection of asthma diagnoses that are often given in childhood. On the other hand, PheCodes, 
which are based on ICD codes, may fail to capture diagnoses made earlier in the lifetime of 
individuals in hospital-based cohorts. Therefore, including both self-reported and PheCode data 
-- an approach adopted by some but not all biobanks -- may be optimal for association analyses 
for asthma. We were limited in our ability to evaluate the effects of phenotype definition on effect 
size estimation, since only three biobanks used self-reported data, and 2 of the 3 biobanks (TWB 
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and BBJ) only have participants of EAS ancestry. However, we compared the asthma GWAS 
derived from self-reported vs. PheCode data in UKBB and found high genetic correlation (rg (se) 
= 0.95 (0.01)) between the GWAS. This provides some evidence that variation in phenotype 
definition may not significantly influence genetic discovery, but we cannot confirm the same 
pattern for all biobanks in GBMI and especially for other diseases. However, given the relative 
alignment of genetic effects across the biobanks, we would expect that minor differences in 
phenotype definition would not substantially change the association results for asthma.  
 
Additionally, we acknowledge that since the definitions used here for asthma and COPD do not 
exclude individuals with concurrent diagnoses, we are not able to fully distinguish the distinct 
biological pathways affecting asthma and COPD. Comorbidity rates of asthma and COPD 
reported in the literature range across studies but population-based estimates generally are low, 
around 2-3%87,88, while hospital-based prevalence estimates tend to be higher, around 13%89. 
Among biobanks participating in GBMI, for example, 15.5% of all individuals with asthma in UKBB 
have a concurrent COPD diagnosis, 21% in BioVU, and 7.4% in BBJ. A previous study found that 
using stricter definitions of asthma, such as excluding subjects with COPD, resulted in stronger 
association signals for some of the asthma-associated loci7. However, it is important to note that 
if we excluded participants with a COPD diagnosis, we would not have a fully representative 
sample of the participants in GBMI with asthma. As has been documented in other studies90,91, 
this could induce selection bias, or collider bias, which could lead to biased genetic associations. 
Most of the previous genetic studies of asthma in the literature did not exclude individuals with 
COPD from analyses. However, in the COA and AOA analyses, we do exclude participants with 
a COPD diagnosis to avoid confounding from potential misclassifications of adult-onset asthma 
and COPD. We also note that estimates of genetic correlation by LDSC are not biased by sample 
overlap92. In fact, this has been explored in the context of asthma and allergic diseases, where rg 
estimates from LDSC were shown to be robust to overlapping cases and/or controls21.  
 
We also recognize the importance of analyzing environmental factors in conjunction with genetic 
factors for a disease that is heavily influenced by the environment. Our genetic analyses offer 
insight into the potential shared biological pathways that may be differentially affected by non-
genetic factors, but we were not able to explicitly investigate environmental effects given the lack 
of available environmental exposure data among the biobanks. The high degree of alignment 
among genetic associations, coupled with the large variability in asthma prevalence, points to a 
particularly important role of the environment for asthma risk across populations. Gaining a 
greater understanding of the specific non-genetic factors that contribute to asthma development 
in different environments may help guide more accurate disease prediction across populations.  
 
This study, and importantly the data sharing across biobanks facilitated by this initiative, have laid 
the groundwork for deeper dives into the shared and distinct genetic signatures of asthma 
subtypes. We were able to stratify two participating biobanks, UKBB and FinnGen, into COA and 
AOA based on the participants’ ages at first diagnosis. While we found that the GBMI asthma 
meta-analysis of all biobanks containing both subtypes identified many of the loci contributing to 
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these subtypes, the age-of-onset-stratified meta-analyses uncovered additional subtype-specific 
loci. Of the top loci associated with COA and AOA, 11 and 12 loci, respectively, (1) did not overlap 
with a top locus in the other subgroup meta-analysis; and (2) were evaluated in the all-asthma 
GBMI meta-analysis (i.e. in more than 3 GBMI biobanks) but did not reach genome-wide 
significance in the meta-analysis (Supplementary Table 11). Due to the limited availability of age 
at first diagnosis information across the biobanks, we were not able to explore age-dependent 
associations further, but with sufficient scale, it is likely that more of the distinct genetic 
architectures of COA and AOA will be uncovered. 
 
As the examples from this study demonstrate, with broader sharing of more extensive phenotype 
data, biobanks are well-positioned to facilitate not only general locus discovery, but also advance 
the study of disease subtypes and comorbidities.  The inclusion at a continuously increasing scale 
of individuals of diverse ancestries will accelerate  novel variant and gene discovery.  This will 
more quickly expand the set of genetic findings from which biological inference can be drawn, as 
well as ensure that predictive models derived from genetic and environmental risk factors will be 
as accurate and informative for individuals of all ancestries and geographical locations as 
possible. 
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Figures 

 

Figure 1. 18 biobanks in GBMI contributing GWAS of asthma. Distribution of prevalence of 
asthma on left and number of cases of asthma on right across biobanks in GBMI. Biobanks span 
different sampling approaches and ancestries (AFR = African; AMR = Admixed American; EAS = 
East Asian; MID = Middle Eastern; EUR = European; CSA = Central and South Asian). 
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Figure 2. Top loci associated with asthma. a, Index variants of 49 asthma-associated loci that 
are potentially novel. Missense variants and cis-eQTLs fine-mapped with PIP > 0.9 that 
overlapped with an index or tagging variant (r2 > 0.8) are annotated here. Frequency of risk allele 
and effect size estimate in GBMI meta-analysis are shown on the right. b, Frequency and effect 
size of risk alleles of all 179 index variants. Previously reported genes with large effect sizes are 
highlighted. 
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Figure 3. Consistency of loci across biobanks. Regression slopes computed using the Deming 
regression method, which compared effects of index variants in each biobank GWAS against their 
effects in the corresponding leave-that-biobank-out meta-analysis23. The x-axis shows the 
effective sample size of each biobank, computed as 4/(1/cases + 1/controls). 
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Figure 4. Loci showing heterogeneity in ancestry-specific effect sizes. a, The index variants 
with the most significant pCochran’s Q. Effect sizes of these variants in each ancestry-specific meta-
analysis are shown here. b, LocusZoom plots showing the association of chr16:27344041:G:A 
(purple symbol) and variants within 150kb upstream and downstream of this variant with asthma. 
Color coding of other SNPs indicates LD with this SNP. EUR, EAS, and AFR indicate the 
population from which LD information was estimated. 
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Figure 5. PRS performance across ancestries. Each panel represents a target cohort in which 
PRS constructed using PRS-CSx and PRS-CS were evaluated. PRS-CS analyses used the GBMI 
leave-BBJ-out meta-analysis and GBMI leave-UKBB-out meta-analysis as discovery data for the 
BBJ and all UKBB target cohorts, respectively (Supplementary Table 10)45. The reference dataset 
was the TAGC meta-analysis5. Sample sizes for the target cohorts are: cases=849 and 
controls=5190 for AFR; cases=500 and controls=500 for EAS; cases=1164 and controls=7577 
for EUR; cases=1232 and controls=6744 for CSA. Error bars represent standard deviation of R2 

on the liability scale across 100 replicates. 

STAR Methods 
 
Asthma phenotype definitions for association analyses 
 
The phenotype definition guidelines that were developed by GBMI and shared with all 
participating biobanks can be found in Zhou et al. (2021)33. Disease endpoints, including asthma, 
were defined following the PheCode maps, which maps ICD-9 or ICD-10 codes to PheCodes93. 
Asthma cases were all study participants with the asthma PheCode, and controls were all study 
participants without the asthma PheCode (or asthma-related PheCodes). Biobanks that did not 
have ICD codes primarily used self-reported data (Supplementary Table 3).  
 
Principal components (PC) projection for genetic ancestry comparison  
 
To compare the genetic ancestries represented in different biobanks, we used pre-computed 
loadings of genetic markers shared across all biobanks and the reference data containing 1000 
Genomes (1000G) and the Human Genome Diversity Project (HGDP) to project biobank 
participants to the same principal components space. 179,195 genetic variants were 
genotyped/imputed in all biobanks, among which 168,899 are also in the 1000 Genomes34 and 
HGDP94. The weights corresponding to principal components for those markers were estimated 
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based on the PCA analysis for the reference samples with known ancestry in 1000G and HGDP 
and shared among biobanks. Biobanks then generated PC loadings based on the pre-estimated 
weights of those markers. More details are described in Zhou et al. (2021)33. 
 
Meta-analysis for asthma in GBMI 
 
We performed fixed-effects meta-analysis with inverse variance weighting for 18 biobanks in 
GBMI: China Kadoorie Biobank (CKB), Generation Scotland (GS), Lifelines, QSKIN, East London 
Genes & Health (GNH), HUNT, UCLA Precision Health Biobank (UCLA), Colorado Center for 
Personalized Medicine (CCPM), Mass General Brigham (MGB), BioVU, BioMe, Michigan 
Genomics Initiative (MGI), BioBank Japan (BBJ), Estonian Biobank (ESTBB), deCODE Genetics 
(DECODE), FinnGen, Taiwan Biobank (TWB), and UK Biobank (UKBB). Basic information on the 
biobanks are described in Zhou et al. (2021)33, as well as details on the genotyping, imputation, 
GWAS, post-GWAS quality control, and meta-analysis procedures33. In brief, genetic variants with 
minor allele count (MAC) < 20 and imputation score < 0.3 were excluded from the analyses. 
Genetic variants with different allele frequencies (AF) compared to gnomAD95 (Mahalanobis 
distance between AF-GWAS and AF-gnomAD > 3 standard deviations away from the mean) were 
also excluded. Altogether, these cohorts had a total sample size of 153,763 cases and 1,647,022 
controls (Supplementary Table 1). GWAS meta-analyses were first conducted within continental 
ancestry groups to control for population stratification. 5,051 cases and 27,607 controls were of 
African (AFR) ancestry; 4,069 cases and 14,104 controls were of Admixed American (AMR) 
ancestry; 18,549 cases and 322,655 controls were of East Asian (EAS) ancestry; 121,940 cases 
and 1,254,131 were of European (EUR) ancestry; 139 cases and 1,434 controls were of Middle 
Eastern (MID) ancestry; and 4,015 cases and 27,091 controls were of Central and South Asian 
(CSA) ancestry.  
 
We also performed fixed-effects meta-analysis with inverse variance weighting for 4 additional 
biobanks that served as independent replication studies: Canadian Partnership for Tomorrow’s 
Health (CanPath), Qatar Biobank (QBB), Biobank of the Americas (BBofA), and Penn Medicine 
Biobank (PMBB). Collectively, these cohorts had a total sample size of 9,991 cases and 63,605 
controls (Supplementary Table 1). More information on these biobanks are also described in 
Zhou et al. (2021)33. 

Index variant and locus definitions 
 
We used a threshold of p < 5x10-8 to identify SNPs with a genome-wide significant effect. To 
identify loci, we used a window size of 500 kb upstream and downstream of the SNPs with the 
strongest evidence of association in the meta-analysis, and merged overlapping regions until no 
genome-wide significant variants were detected within the  ± 500 kb region. To designate loci as 
previously discovered or potentially novel, we compiled a list of known asthma-associated SNPs 
(p < 5x10-8) from the associations collected by El-Husseini et al. (2020)6 and listed in the GWAS 
catalog (as of 11/14/2021)96. We extended 500 kb upstream and downstream of each of these 
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variants to define a locus, and intersected these regions with the loci defined by the index variants 
in our meta-analysis to identify any overlaps. We annotated genetic variants with the nearest 
genes using ANNOVAR97 and putative loss-of-function using VEP98 with the LOFTEE plug95 as 
implemented in Hail33. We also annotated whether the index or tagging variants (r2 > 0.8) of 
asthma were fine-mapped in any of the cis-eQTL fine-mapping resources. We retrieved cis-eQTL 
fine-mapped variants with posterior inclusion probability (PIP) > 0.9 in any tissues and cell types 
from the GTEx v899 and eQTL catalogue release 4100. Fine-mapping was conducted using 
SuSiE101 with summary statistics and covariate-adjusted in-sample LD matrix as described 
previously102,103.  
 
Index SNP effects across biobanks 
 
To estimate the correlation of SNP effects for the 179 top loci between one specific biobank and 
the leave-that-biobank-out meta-analysis, we used the method proposed by Qi et al. (2018) using 
GWAS summary statistics50 (Supplementary Table 5). Specifically, the method directly 
calculates SNP effect correlation as: 

 𝑟̂$ =	
*+,- ($/!"#!$%&,$/'($)(*!"#!$%&)

23,#4- 5$/!"#!$%&67,#4- (8!"#!$%&)93,#4- 5$/'($)(*!"#!$%&67,#4- (8'($)(*!"#!$%&)9
, 

where 𝑏($"+$#:; and 𝑏(!8#,87$"+$#:; denote the estimated SNP effects from GWAS conducted in 
one specific biobank and from GWAS performed in the leave-that-biobank-out meta-analysis, 
respectively. The 𝑐𝑜𝑣, (𝑏($"+$#:; , 𝑏(!8#,87$"+$#:;) is calculated as the sampling covariance between 
𝑏($"+$#:; and 𝑏(!8#,87$"+$#:;. The 𝑣𝑎𝑟, 1𝑏($"+$#:;2	and 𝑣𝑎𝑟, 1𝑏(!8#,87$"+$#:;2	are the estimated 
variances of 𝑏($"+$#:; and 𝑏(!8#,87$"+$#:;, separately. The 𝑣𝑎𝑟, (𝑒$"+$#:;) and 𝑣𝑎𝑟, (𝑒!8#,87$"+$#:;) 
are the estimated variance of the estimation errors of 𝑏($"+$#:; and 𝑏(!8#,87$"+$#:;, which are 
approximated as the mean of the squared standard errors of estimated SNP effect (𝑏($"+$#:; and 
𝑏(!8#,87$"+$#:;) across all the top-associated SNPs, respectively. The standard error of 𝑟̂$ is 
obtained through the jackknife approach by leaving one SNP out each time. SNPs with large 
standard errors in CKB and HUNT (chr12:123241280:T:C and chr17:7878812:T:C, respectively) 
were excluded from these analyses.  
 
Then, for the index variants present in each biobank, we computed: 

𝑏𝑖𝑜𝑏𝑎𝑛𝑘	𝑚𝑒𝑡𝑎 − 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠	𝑒𝑓𝑓𝑒𝑐𝑡	𝑠𝑖𝑧𝑒
𝑙𝑒𝑎𝑣𝑒 − 𝑡ℎ𝑎𝑡 − 𝑏𝑖𝑜𝑏𝑎𝑛𝑘 − 𝑜𝑢𝑡	𝑚𝑒𝑡𝑎 − 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠	𝑒𝑓𝑓𝑒𝑐𝑡	𝑠𝑖𝑧𝑒 

for the biobank and leave-that-biobank-out pair. We took the average ratio across the index 
variants for each biobank and leave-that-biobank-out pair. We then used the regression method 
introduced in Deming et al. (1943), which considers the errors in both the X- and Y-variables, to 
compare the effect sizes of these SNPs in each biobank GWAS with their effects in the leave-
that-biobank-out meta-analysis35. We set the intercept equal to 0 for these analyses. 
 
Ancestry-specific heterogeneity 
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To assess heterogeneity of per-SNP effect sizes for the 179 top loci across ancestries in GBMI, 
we conducted ancestry-specific meta-analyses of the five most well-powered ancestry groups in 
GBMI (EUR, AFR, AMR, EAS, and CSA). We applied the Cochran’s Q test104 to the SNP effects 
in the ancestry-specific meta-analyses and identified SNPs with significant heterogeneity based 
on a Bonferroni-corrected p-value cut-off of 0.05/169 = 0.0003, accounting for the number of 
SNPs present in all studies (Supplementary Table 7). Regions displaying heterogeneity in 
effects across ancestry groups were visualized using the LocalZoom tool105.  
 
Polygenic risk scores 
 
A description of the PRS analyses conducted using PRS-CS57, as well as the leave-one-biobank-
out meta-analysis strategy applied, is provided in Wang et al. (2021)56. 
 
We used PRS-CSx, which jointly models GWAS summary statistics from populations of different 
ancestries and returns posterior SNP effect size estimates for each input population58. We applied 
this method to the AMR, AFR, CSA, EAS, and EUR ancestry-specific meta-analyses, which 
served as the discovery data for PRS construction. For the ancestry-specific meta-analysis that 
matched the ancestry of the target cohort, we excluded the target cohort. We evaluated the 
predictive performance of the PRS in 4 target cohorts: 1) AFR ancestry individuals in UKBB (849 
cases, 5190 controls), 2) CSA ancestry individuals in UKBB (1232 cases, 6744 controls), 3) EAS 
ancestry individuals in BBJ that were part of a randomly-selected 1k holdout set (500 cases, 500 
controls), and 4) EUR ancestry individuals in UKBB that were part of a randomly-selected 10k 
holdout set (1164 cases, 7577 controls). We also evaluated the PRS in an additional randomly-
selected 1k holdout set (131 cases, 869 controls) of EUR ancestry individuals in UKBB. As an 
example, for the AFR ancestry individuals, the full set of discovery data for PRS construction 
consisted of the AMR, CSA, EAS, and EUR ancestry-specific meta-analyses, as well as the AFR 
ancestry-specific meta-analysis excluding the AFR ancestry individuals in UKBB. The same 
strategy was applied to the other 3 target cohorts (Supplementary Table 9). We used ancestry-
matched LD reference panels from UKBB data and the default PRS-CSx settings for all input 
parameters. We evenly and randomly split cases and controls in the target cohorts into validation 
and testing subsets. Using the posterior SNP effect size estimates from PRS-CSx, we computed 
one PRS per discovery population for the validation subsets to learn the optimal linear 
combination of the ancestry-specific PRS using PLINK v1.9106,107. Then, with these weights, we 
evaluated the prediction accuracy of this linear combination of PRS in the testing subset. We 
reported the average prediction accuracy, measured by variance explained on the liability scale 
(𝑅!"#$"!"%&2 ), estimated using the prevalence of asthma in the BBJ biobank for the EAS target cohort 
and in the UKBB biobank for the other target cohorts, across 100 random splits.  

Asthma age-of-onset subtype GWAS and meta-analyses 
 
UKBB 
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We first identified EUR individuals in UKBB with an asthma diagnosis based on information from 
the asthma PheCode or field 20002, which has self-reported diagnoses from verbal interviews. 
We then excluded individuals with either (1) a COPD diagnosis based on the COPD PheCode or 
field 20002, (2) missing information for field 3786, which has age at first asthma diagnosis 
information, (3) an asthma diagnosis after age 60 based on field 3786, or (4) greater than 10 
years between the age reported in field 3786 and the age reported in field 22147, another age at 
first asthma diagnosis field that only a subset of participants filled out as part of a follow-up 
questionnaire. Then, using the age at first diagnosis reported in field 3786, we divided these 
individuals into asthma age of onset groups: those with diagnoses at or before age 19 were 
childhood-onset (n = 12,577) and after age 19 were adult-onset (n = 23,533). We then conducted 
separate COA and AOA GWAS using Scalable and Accurate Implementation of GEneralized 
mixed model (SAIGE)108. The same set of controls was used (n = 359,116) for both GWAS, 
derived based on the PheCode guidelines provided by GBMI33.   
 
FinnGen 
We identified individuals with an asthma diagnosis based on the PheCode guidelines provided by 
GBMI33 (Supplementary Table 3). We excluded individuals with either (1) a COPD diagnosis 
based on the COPD PheCode definition, or (2) an asthma diagnosis after age 60. Those with 
diagnoses at or before age 19 were childhood-onset (n = 8,387) and after age 19 were adult-
onset (n = 33,191). We conducted separate COA and AOA GWAS using SAIGE108. The same set 
of controls was used (n = 314,898) for both GWAS, derived based on the PheCode guidelines 
provided by GBMI33.  
 
Meta-analyses 
We performed fixed-effects meta-analysis with inverse variance weighting for the COA GWAS 
from UKBB and FinnGen and the AOA GWAS from both biobanks. We used linkage-
disequilibrium score correlation (LDSC)92 to compute pairwise genetic correlations (rg) between 
(1) the subtype meta-analyses, (2) each subtype meta-analysis and the GBMI COPD meta-
analysis, (3) each subtype GWAS from UKBB and the GBMI all-asthma leave-UKBB-out meta-
analysis, and (4) each subtype GWAS from FinnGen and the GBMI all-asthma leave-FinnGen-
out meta-analysis. Finally, using the regression method introduced in Deming et al. (1943)35, we 
compared the effect sizes of the 179 index variants discovered in the GBMI all-asthma meta-
analysis in each subtype meta-analysis. We set the intercept equal to 0 for this analysis. 

Genetic correlation in UKBB and BBJ 
 
Using LDSC, we estimated rg between all EUR-ancestry UKBB phenotypes with heritability Z-
score > 4 and (1) the GBMI leave-UKBB-out meta-analysis for asthma and (2) the UKBB EUR-
ancestry GWAS of asthma (PheCode ID 495 in UKBB). The heritability Z-scores were obtained 
from the stratified-LDSC (S-LDSC) computations of heritability reported by the Pan-UK Biobank 
team109–111. Summary statistics from the UKBB EUR GWAS were obtained from the Pan-UK 
Biobank team as well111. 
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We also used LDSC92 to compute rg between 48 phenotypes in BioBank Japan (BBJ) and (1) the 
GBMI leave-BBJ-out meta-analysis for asthma and (2) the BBJ GWAS of asthma. We used 
publicly available GWAS summary statistics for all traits112–114. Genetic correlation results were 
visualized using the R corrplot package115. 

Gene- and pathway-based enrichment for asthma and COPD 
 
Fixed-effects meta-analysis with inverse variance weighting was also performed for 16 biobanks 
in GBMI with COPD data: BBJ, BioMe, BioVU, CCPM, CKB, ESTBB, FinnGen, GNH, GS, HUNT, 
Lifelines, MGB, MGI, TWB, UCLA, and UKBB. The same processing and methods were applied 
here as for the asthma meta-analysis. These cohorts had a total sample size of 81,568 cases and 
1,310,798 controls. COPD cases were defined based on the COPD PheCode, and controls were 
all study participants without the COPD or COPD-related PheCodes. Biobanks that did not have 
ICD codes available used spirometry data (Lifelines) or self-reported data (TWB). Details can be 
found in Zhou et al. (2021)33. Meta-analyses were also conducted within continental ancestry 
groups: 19,044 cases and 310,689 controls of EAS ancestry, 1,978 cases and 27,704 controls of 
AFR ancestry, and 58,559 cases and 937,358 controls of EUR ancestry. 
 
MAGMA 
We used Multi-marker Analysis of GenoMic Annotation (MAGMA)65 v1.09b for gene prioritization 
and gene-set enrichment analyses, applying this method to the GBMI asthma EUR, AFR, EAS, 
and CSA ancestry-specific meta-analyses and the GBMI COPD EUR, AFR, and EAS ancestry-
specific meta-analyses.  For the gene-level analyses in MAGMA, we first mapped the SNPs to 
the provided list of genes using a window size of 20kb, and then performed gene analysis using 
the ancestry-matched 1000G LD reference panels to account for LD structure. Gene-set 
enrichment was performed using the default settings to correct for gene length, gene density, and 
the inverse mean minor allele count. The gene sets used were the c2, “curated gene sets,” and 
c5, “ontology gene sets,” obtained from the Molecular Signatures Database v7.468. 
 
DEPICT 
We also used Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT)66, 
which performs gene prioritization based on correlation of genes across gene sets. We used a 
1000G LD reference panel from individuals of EUR ancestry to calculate LD and identify tag SNPs 
from GWAS results. We report results from the gene prioritization using a p-value threshold of 
5x10-8 and a minimum of 10 index variants. We defined significant enrichment results by FDR < 
0.05. Full details can be found in Zhou et al. (2021)33. 
 
PoPS 
We used another gene prioritization method, Polygenic Priority Score (PoPS), to identify potential 
causal genes67. PoPS performs gene prioritization based on the integration of GWAS data with 
gene expression, biological pathway, and predicted protein-protein interaction data. We similarly 
used a 1000G LD reference panel from individuals of EUR ancestry to obtain gene-level 
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associations. Next, MAGMA was applied to integrate the gene-level associations and gene-gene 
correlations to perform enrichment analysis for gene features selection. Finally, we computed a 
PoPS score by fitting a joint model with all the selected features simultaneously. We considered 
genes with a PoPS score in the top one percentile as the prioritized genes. Full details can be 
found in Zhou et al. (2021)33. 
 

Resource Availability 

Data and Code Availability 

The all-biobank GWAS summary statistics are publicly available for downloading at 
https://www.globalbiobankmeta.org/resources and can be browsed at the PheWeb Browser 
(http://results.globalbiobankmeta.org). Custom scripts used for quality control, meta-analysis, and 
loci definition are available at https://github.com/globalbiobankmeta. Other analyses utilized 
publicly available tools: the R deming package for Deming regression116, PRS-CSx for polygenic 
prediction (https://github.com/getian107/PRScsx), LDSC for genetic correlation 
(https://github.com/bulik/ldsc), and MAGMA v1.09b for gene-set enrichment 
(https://ctg.cncr.nl/software/magma). 

Supplementary Information 

Supplementary Figures 
 

 
Supplementary Figure 1. Asthma cases in discovery biobanks stratified by ancestry 
group. GBMI biobank participants were projected to the same principal components space 
using pre-computed loadings of genetic markers to compare the genetic ancestries represented 
in each biobank, indicated on the x-axis. N indicates the total number of cases per ancestry 
group. 
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Supplementary Figure 2. GBMI meta-analysis association results. Nearest genes to the novel 
loci are highlighted.  
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Supplementary Figure 3. GBMI index variants in TAGC. 76 of the 179 index variants 
associated with asthma discovered in the GBMI meta-analysis were found in the TAGC meta-
analysis of asthma, or had a tagging variant (r2 > 0.8) in the TAGC study, with a p-value < 0.059. 
The effect sizes of these 76 variants as estimated in the TAGC vs. GBMI meta-analyses were 
compared using the Deming regression method35. The intercept was set to be 0; the slope 
estimated from the regression analysis is reported here. 
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Supplementary Figure 4. Consistency of asthma index variants across biobanks. For each 
biobank shown on the x-axis, we computed the average ratio of effect sizes of the index variants 
in the biobank vs. in the corresponding leave-that-biobank-out meta-analysis. 
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Supplementary Figure 5. Consistency of asthma index variants across biobanks using 
Deming regression. The effect sizes of the asthma index variants as estimated in each biobank 
GWAS vs. in the corresponding leave-that-biobank-out meta-analysis were compared using the 
Deming regression method35. Intercepts were set to be 0; slopes from the regression analyses 
are reported here. 

 

Supplementary Figure 6. Consistency of asthma index variants across biobanks with 
different ascertainment. The effect sizes of the asthma index variants as estimated in the meta-
analyses of the hospital- vs. population-based biobanks, using the SNPs with p-value < 1x10-6 in 
both meta-analyses, were compared using the Deming regression method35. The intercept was 
set to be 0, and the slope and corresponding 95% confidence interval are reported here. 
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Supplementary Figure 7. PRS performance of P+T vs. PRS-CS across target cohorts of 
different ancestries.  Each panel represents a target cohort, with the ancestry of the target cohort 
on the top and the biobank which the target cohort is from on the bottom x-axis. This figure was 
adapted from Wang et al. (2021)56. 

 

Supplementary Figure 8. Workflow for PRS-CSx analyses. The discovery data consisted of 
ancestry-specific meta-analyses, indicated by the squares on the left, that were inputs for PRS-
CSx58. PRS-CSx returned separate sets of posterior effect size estimates for each input dataset, 
which were then used to construct PRS. The target cohorts were randomly evenly split; optimal 
weights for the linear combination of the PRS were selected in one subset and the linear 
combination of the PRS was evaluated in the other subset. 
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Supplementary Figure 9. PRS performance in downsampled EUR target cohort. Fig. 5 is 
extended here to include results from PRS evaluated in a target cohort of 1,000 randomly selected 
individuals from the EUR UKBB 10k holdout. Discovery datasets and methods used were the 
same as described in Fig. 5.    

 

Supplementary Figure 10. PRS performance of individual PRS vs. linear combination of 
PRS using PRS-CSx across ancestries. Each panel represents a target cohort. The 
performance of the individual PRS, computed from a single set of posterior effect size estimates 
corresponding to each input ancestry population from PRS-CSx, is plotted here. The prediction 
accuracy of the linear combination of the PRS from PRS-CSx, as well as the PRS from the PRS-
CS analyses (shown in Fig. 5), are also plotted for comparison. PRS-CS results used the GBMI 
leave-BBJ-out meta-analysis and GBMI leave-UKBB-out meta-analysis as discovery data for the 
BBJ and all UKBB target cohorts, respectively56. The reference dataset was the TAGC meta-
analysis9. Error bars represent standard deviation of R2 on the liability scale across 100 replicates. 
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Supplementary Figure 11. Effect size estimates of asthma index variants in COA vs. AOA 
meta-analyses. The effect sizes of the 179 index variants discovered in the all-asthma meta-
analysis as estimated in the COA vs. AOA meta-analyses were compared using the Deming 
regression method35. The intercept was set to be 0; the slope estimated from the regression 
analysis is reported here. 
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Supplementary Figure 12. Genetic correlations between asthma and heritable diseases 
across UKBB and BBJ. Genetic correlations between asthma and disease endpoints that were 
significantly heritable in BBJ, UKBB EUR, or both. On x-axis: BBJ_BBJ = BBJ GWAS of asthma 
vs. BBJ GWAS of diseases on y-axis; GBMI_BBJ = GBMI-excluding-BBJ meta-analysis of asthma 
vs. BBJ GWAS of diseases on y-axis; GBMI_UKB = GBMI-excluding-UKB meta-analysis of 
asthma vs. UKB GWAS of diseases (EUR only) on y-axis; UKB_UKB = UKB GWAS of asthma 
vs. UKB GWAS of diseases (EUR only) on y-axis 

Supplementary Table Legends 

STable 1: Description of 22 biobanks in GBMI that contributed summary statistics for asthma 
meta-analysis with sample size, age, ancestry, and recruitment strategy information. 

STable 2: 179 index variants of top loci discovered by GBMI asthma meta-analysis with 
annotations for nearby genes, missense variants, and fine-mapped cis-eQTLs. 

STable 3: Description of asthma phenotype definition used by each biobank. 
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STable 4: 122 of the 179 index variants present or with tagging variant in the TAGC study with 
effect sizes and p-values from GBMI and TAGC meta-analyses. 

STable 5: Correlations of SNP effects of the 179 index variants between each biobank and the 
corresponding leave-that-biobank-out meta-analysis.  

STable 6: Additional genome-wide significant loci identified by MR-MEGA not identified by fixed-
effects inverse-variance weighted meta-analysis. 

STable 7: Heterogeneity p-values, computed from Cochran’s Q statistic, for index variants using 
effect sizes from the AFR, AMR, EAS, EUR, and CSA meta-analyses. 

STable 8: Loci not significant in the biobank meta-analysis with only EUR ancestry participants 
in GBMI. 

STable 9: PRS accuracy results (R2 on liability scale) across target cohorts, including the 
downsampled EUR target cohort with 1k individuals.  

STable 10: Description of discovery data used in PRS-CSx and PRS-CS analyses. 

STable 11: Genome-wide significant loci from COA and AOA meta-analyses. 

STable 12: Genetic correlations estimated by LDSC between GBMI leave-UKBB-out meta-
analysis and UKBB EUR GWAS of significantly heritable phenotypes. 

STable 13: Genetic correlations estimated by LDSC between GBMI asthma meta-analyses and 
UKBB and BBJ GWAS of several diseases. 

STable 14: Genes prioritized by MAGMA using GBMI EAS, CSA, and EUR asthma meta-
analyses. Genes with p-values < Bonferroni-corrected p-value thresholds are reported. 

STable 15: Genes prioritized by MAGMA using GBMI EAS and EUR COPD meta-analyses. 
Genes with p-value < Bonferroni-corrected p-value thresholds are reported. 

STable 16: Genes prioritized by DEPICT for asthma and COPD. 

STable 17: Genes prioritized by PoPS for asthma and COPD. Genes with the highest 1% of PoPS 
scores are reported. 

STable 18: Gene sets enriched by MAGMA for asthma. Gene sets with FDR < 0.05 are reported. 

STable 19: Gene sets enriched by MAGMA for COPD. Gene sets with FDR < 0.05 are reported. 
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