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Abstract
The use of RNA sequencing from wastewater samples is a valuable way for estimating infection
dynamics and circulating lineages of SARS-CoV-2. This approach is independent from testing
individuals and can therefore become the key tool to monitor this and potentially other viruses.
However, it is equally important to develop easily accessible and scalable tools which can
highlight critical changes in infection rates and dynamics over time across different locations
given sequencing data from wastewater. Here, we provide an analysis of lineage dynamics in
Berlin and New York City using wastewater sequencing and present PiGx SARS-CoV-2, a highly
reproducible computational analysis pipeline with comprehensive reports. This end-to-end
pipeline includes all steps from raw data to shareable reports, additional taxonomic analysis,
deconvolution and geospatial time series analyses. Using simulated datasets (in silico
generated and spiked-in samples) we could demonstrate the accuracy of our pipeline
calculating proportions of Variants of Concern (VOC) from environmental as well as pre-mixed
samples (spiked-in). By applying our pipeline on a dataset of wastewater samples from Berlin
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between February 2021 and January 2022, we could reconstruct the emergence of
B.1.1.7(alpha) in February/March 2021 and the replacement dynamics from B.1.617.2 (delta) to
BA.1 and BA.2 (omicron) during the winter of 2021/2022. Using data from very-short-reads
generated in an industrial scale setting, we could see even higher accuracy in our
deconvolution. Lastly, using a targeted sequencing dataset from New York City
(receptor-binding-domain (RBD) only), we could reproduce the results recovering the
proportions of the so-called cryptic lineages shown in the original study. Overall our study
provides an in-depth analysis reconstructing virus lineage dynamics from wastewater, and that
our tool can be used to identify new mutations and to detect any emerging new lineages with
different amplification and sequencing methods. Our approach can support efforts to establish
continuous monitoring and early-warning projects for detecting SARS-CoV-2 or any other
pathogen.

Introduction

The ongoing COVID-19 pandemic highlighted the need for monitoring approaches to track
emerging pathogens and pathogenic lineages. Acknowledging the importance and potential
impact of wastewater-borne epidemiological analysis, the European Commission has
recently recommended to implement continuous monitoring on SARS-CoV-2 through
wastewater in all member states [1]. SARS-CoV-2 is a positive strand RNA virus from the
family Coronaviridae, genus Betacoronavirus [2, 3]. As an alternative to individual patient tests
that are tedious and expensive, Wastewater Based Epidemiology (WBE) has, before this
pandemic, been used for different enteric microorganisms such as vaccine and wildtype
polioviruses [4], rotaviruses, hepatitis A, astroviruses, adenoviruses, and noroviruses [5]. In the
past two years, wastewater monitoring has been shown to be an effective tool for monitoring
incidence rates. Multiple studies showed that it is possible to detect viral RNA even before
widespread clinical reports [6–9], suggesting a potential as an early alert system.
Several WBE initiatives for SARS-CoV-2 monitoring were established worldwide, and currently,
the COVIDpoops19 initiative [10] lists 128 dashboards from 276 universities monitoring 3364
sites. However, many of those studies are based on RT-qPCR analyses, limited to quantifying
the viral titer and/or tracking a few known lineages, correlating the results with the reported
number of cases in the area. A few studies have been using amplicon sequencing or
metagenomics covering the whole viral genome, allowing to track virus lineages through
signature mutations [11–13]. However, quantifying Variants of Concern (VOC) by next
generation sequencing (NGS) reads remains challenging due to fragmented sequences.
Moreover, sequencing and quantifying lineages are just the first steps in understanding the
dynamics of the outbreaks. The sequencing results should be easily analyzed and combined
with geospatial time series analysis. Tracking of VOCs over time and space can inform
policy-making decisions in order to control new outbreaks. In this study, we present a
reproducible, open-source pipeline for analyzing continuous sampling of wastewater treatment
plants to track signature mutations of SARS-CoV-2 lineages of interest and emerging
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mutations via wastewater amplicon sequencing. We first benchmarked the pipeline using
simulated (in silico) data and spiked-in samples [14]. We also sequenced and analyzed samples
from Berlin wastewater using the ARTIC protocol [15] with 2 different sequencing protocols of
~250bp length (in the following called “dataset-Berlin250”) and under industry conditions of
~35bp length (in the following called dataset-Berlin35) during the 3ed and 4th pandemic wave in
Germany. Additionally, we analyzed previously published dataset from New York City, where the
sequencing was restricted to the receptor binding domain (RBD) region [16] (in the following
called “dataset-NYC(RBD)”), showing the accuracy and usefulness of our methods for
SARS-CoV-2 monitoring with data generated from multiple sites and approaches (iSeq and
MiSeq).

Results

A reproducible computational pipeline for tracking SARS-CoV-2 in
wastewater
We developed a new pipeline - PiGx SARS-CoV-2 - in the framework of our previously
published set of pipelines called PiGx [17]. They are designed with a special focus on usability
and reproducibility. The new pipeline was added to the PiGx collection of pipelines and it is
distributed together, using GNU Guix (See Figure 1 for a diagram of the workflow). The pipeline
comes with all the needed tools and their dependencies and can thus be reproduced on
different systems independent of any other installed software.

General description of the PiGx SARS-CoV-2 pipeline
The PiGx SARS-CoV-2 pipeline provides end-to-end data processing and analysis for
wastewater RNA sequencing. The pipeline starts with a set of raw fastq read files, metadata
such as locations and information about the lineages that should be tracked. After quality check
and alignment, the variants are called and annotated. The samples from different timepoints are
used to produce time-series reports that track trending mutations over time. We use a particular
deconvolution step to also track the proportions of lineages representing Variants of Concern
over time. Overall, the pipeline returns reports that provide overviews over lineage and
single-mutation abundance in each sample, a taxonomic classification analysis of unaligned
reads, and detailed quality control information. Furthermore, all per-sample results are
summarized as tables and also combined to visualize time-series and geo-location plots,
making the pipeline suitable for continuous sampling.

The pipeline needs local databases (downloaded by the user) for some of the annotation and
alignment tools, such as Ensembl VEP, Kraken2, and Krona tools, while the tools themselves
are automatically installed. Furthermore, the user needs to provide: (i) a sample sheet (CSV
format) containing information about sampling date and location; (ii) a settings file (YAML
format) for specifying the experimental setup and optional custom parameter adjustments, (iii) a
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mutation sheet containing the lineages of interest and their signature mutations in nucleotide
notation and and BED file containing their genomic coordinates; (iv) the reference genome of
the target species (see Methods for a detailed description); (v) BED file containing the PCR
primer locations (provided with the pipeline for ARTIC protocol).

To ensure reliable variant calling and robust lineage abundance prediction, the sample has to
match stringent quality control measures. For this, information about the sequencing primers,
adapters, and also a BED file containing the sites of the signature mutations is necessary.
Specifically the latter is important to ensure comparability of the called variants across all
processed samples.

Given these input files, the pipeline executes a series of quality check, alignment, variant
calling, deconvolution and mutation trend analysis steps. In the end, it provides interactive
reports with quality check, geospatial and time-series information for mutations and lineages, as
well as downloadable files for the downstream analysis.

Figure 1: Flowchart of PiGx SARS-CoV-2 pipeline describing required input files, the
analysis workflow and used tools and output files.

Benchmarking the pipeline using spiked-in and simulated samples
In order to check the accuracy of our pipeline, we analyzed two simulated datasets.
First we analyzed a spike-in mixture dataset from Karthikeyan et al. [14]. We obtained 384 BAM
files with reads pre-aligned to SARS-CoV-2 reference genome, with samples ranging from 1160
to 1,955,791 reads. Four samples did not pass the 90% reference genome coverage threshold
and were discarded. On average, 99% of the signature mutation sites were covered with at least
100 reads. The mean number of signature mutations found per sample was 37 out of 99 tracked
and the mean number of overall mutations was 225 (SD 54).

Analyzing the predictions for each lineage with our deconvolution method, we found that the
prediction robustness varies between lineages (Figure 2A), but overall, we were able to recall
the expected proportions of lineages with R2 ~0.74 (Figure 2B), excluding lineage A. In the
samples with lineage A, only a maximum of 3 unique signature mutations for this lineage were
found across all samples. Therefore, we got the weakest prediction for lineage A with an R2 of
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only 0.48. Because of this inconclusive result for lineage A, we decided to exclude its values
from the general analysis mentioned above and shown in Figure 2B. The predictions for the
other lineages show more accurate results (R2 between 0.71 - 0.86).

Additionally, we tested the pipeline on a second simulation data set (see Methods), generated
in silico with known proportions of lineages. A total of 100,000 reads were generated, and
98.4% of the reads were successfully aligned to the reference genome. All signature mutation
genomic sites were covered with at least 10 reads and 74 of 179 signature mutations were
found. Overall, our methods were able to get the proportions of lineages with an average error
of 3% showing a maximum error of 10%. (Figure 2C).

Figure 2: A) Prediction verification results for the spike-in data simulation per lineage; B)
Prediction verification results for the spike-in data simulation across all lineages
excluding lineage A; C) Prediction verification results in-silico simulation, single-end
simulated 40bp reads from GISAID, 100k reads
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Wastewater SARS-CoV-2 sequencing and analysis with PiGx
SARS-CoV-2
For this study, we sequenced a total of 988,025,456 reads from 171 samples from Berlin, using
two different sequencing protocols. Firstly, for dataset-Berlin250 we obtained 74,633,648 reads,
from 62 samples collected at four different wastewater treatment plants in Berlin operated by the
municipal water authority (“Berliner Wasserbetriebe'') from 09th of February to 10th of June 2021
(Phase I) and from 16th of September 2021 to 19th of January 2022 (Phase II), using paired-end
Miseq/Novaseq protocol with 2x250 bp reads. Between the two phases, due to low incidence
rates, sequencing quality was insufficient. The average number of read-covered signature
mutation sites per sample was 105 (SD 33, from a total of 154 tracked signature mutations, see
mutation tables in the Supplementary Table S1). Of those 62 samples, 16 samples did not pass
the defined quality control threshold (samples for which less than 90% of the signature mutation
sites were covered).

We were able to align from 11 to 99 percent of sequencing reads (1 outlier with only 5% aligned
reads) to the Wuhan reference SARS-CoV-2 genome, and the resulting alignments were used
for variant calling. We were able to detect a total of 3,210 mutations, of which 133 are signature
mutations, across all the samples (See methods for details on alignment and variant calling).
The overall frequency of mutations per sample is shown on Supplementary Table S2.1-S2.4.
The results of the time-series analysis for mutations and deconvolution of lineages for this
dataset is presented in the sections below.

Secondly, industry scale dataset-Berlin35 contains 109 samples from one Berlin wastewater
plant and three pumpstations (also operated by “Berliner Wasserbetriebe''). We used a
paired-end very-short-read protocol (2 x 35 bp), for fast real time monitoring from 03.08.2021 to
20.01.2022. This data was analyzed in order to test our pipeline in a real time data monitoring
system. We obtained a total of 913,391,808 35 bp reads. The average reference genome
coverage was 97% (SD 5.7) with 9 samples not passing the quality control (QC) criteria of >90%
reference genome coverage. The average number of signature mutations found per sample was
27 from the 154 tracked (SD 14.5) mutations and the mean of overall mutations found was 288
per sample (SD 147.5). The results of time-series mutation analysis and deconvolution of
lineages for this dataset can be found  in Supplementary Table S3.

The third dataset - dataset-NYC(RBD) - originated from published deep sequencing data of the
receptor binding domain (RBD) of SARS-CoV-2 on samples from January 31th to June 14th 2021
collected in New York City (NYC) wastewater and published by Smyth et. al [16]. In the 94
samples reanalyzed here, we found, on average, 8 of the 12 mutation sites within the RBD
(mean number of signature mutations found was 3.5). We did not apply a reference genome
coverage cutoff because the sequencing was restricted to a small genomic region.
Smyth et. al described 3 cryptic lineages that where found in New York City wastewater: WWTF
#10 (7 mutations), WWTF #11 (8 mutations), WWTF #3 (23 mutations) (see Supplementary
Table S4). We tested our pipeline's ability to highlight those “cryptic lineages” early on as well
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from the purely computational analysis in contrast to the extensive wet lab experiments that it
took the authors to discover them. The results of this analysis are shown in the section below.

Emerging mutations can be teased out from time-series analysis
The time-series nature of the data can not only be used to track SARS-CoV-2 lineages, but also
to identify trends for individual mutations. We applied a linear regression model for each
mutation using the date of sampling as the independent variable to identify mutations with
strong increasing trends over time (see Methods). We considered mutations significant if the
t-test p-value is below 0.05 . The full lists can be found in Supplementary Table S5.
Overall, merging the two sample groups within dataset-Berlin250 from Berlin Phase I and II for a
single analysis, 105 mutations were significantly changing over time from February 2021 until
January 2022. The top 10 most significantly changed mutations are shown in Figure 3A.
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Figure 3: A) Top 10 sequence variants that significantly increase over time in Berlin. The
mutations were pooled over locations of four different wastewater treatment plants and
daytime and sorted by decreasing coefficients from linear models. Statistical
significance was evaluated by a t-test using p <= 0.05 as cutoff. Only samples passing
the sample quality scoring (> 90% reference genome coverage) were used. There was no
sampling between June 11 and September 19 2021. B) Top 10 sequence variants that
significantly increase over time in New York City (NYC) (2021). The mutations were
pooled over locations of 14 different wastewater treatment plants in NYC and daytime
and sorted by decreasing coefficients from linear models. Statistical significance was
evaluated by a t-test using p <= 0.05 as cutoff.

Here, six of the highlighted mutations M:I82T::T26767C, ORF3a:S26L::C25469T,
ORF1ab:V3689-::A11332G, ORF1ab:V2930L::G9053T, S:D950N::G24410A,
ORF1ab:P5401L::C16466T, are uniquely characteristic for the lineage B.1.617.2 (delta). They
show a similar pattern, emerging mostly during the summer of 2021 and decreasing in January
2022. Hereby, S:D950N::G24410A and M:I82T::T26767C already started to appear with
increasing frequency in late April 2021, but inconsistently. The mutation S:T478K::C22995A is a
shared mutation between the lineages B.1.617.2 (delta), BA.1 and BA.2 (omicron). It showed a
consistent increase from July 2021 and reached 100% of presence until the end of our
time-series. However, N:P13L::C28311T and S:T95I::C21846T are unique mutations for the
BA.1 lineage where the latter already started to continuously increase in frequency starting in
October 2021 which is a month earlier than the B.1.1.529 (omicron) lineage family was started
to track by the RKI (Figure 4C).
Within the dataset-NYC(RBD) [16], we found a total of 69 significantly changing genome
variants. The highlighted mutations with the 10 highest correlation values in Figure 3B point out
8 of the 28 reported mutations of cryptic lineages: S:Q498H::A23056C, S:T572N::C23277A,
S:H519N::C23117A, S:K417T::A22812C, S:E484A::A23013C, S:S494P::T23042C,
S:S477N::G22992A. Additionally S:N501Y::A23063T and S:A570D::C23271A were highlighted
which are characteristic mutations for B.1.1.7 (alpha). They show a constant increase already
up to 40% in March which is around 1 month earlier than the reported abundancy for B.1.1.7
(alpha) based on cases (Figure 4D)

Deconvolution of mutation frequencies infers SARS-CoV-2
lineage frequencies
In our pipeline, we have implemented methods to deconvolute the frequencies of VOCs from
pooled sequencing reads. Briefly, the deconvolution method uses signature mutations for each
VOC and tries to discern the proportions of these lineages making up the observed mutation
frequencies in the pooled (bulk) sequencing reads obtained from the wastewater. In this study,
we tracked 4 lineages which were classified at the time of data collection as VOCs: B.1.1.7
(alpha), B.1.351 (beta), P1 (gamma) and B.1.1617.2 (delta) in both datasets from Berlin and
New York City. For the latter we additionally tracked the lineage B.1.526 (Iota). For the samples
from Berlin from Phase II we additionally tracked the BA.1 and BA.2 lineages, which
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taxonomically are classified as sublineages of B.1.1.529 (omicron) and became VOCs in
November 2021. We decided to track them separately in order to get a higher resolution on their
dynamics. In the following, when comparing to official reported lineage abundances we are
adding up our separate abundances for BA.1 and BA.2 to compare to reported values for
B.1.1.529 (omicron). We characterized the lineages with a mutation table (Supplementary Table
S1) containing signature nucleotide mutations from covidCG [18]. We took a list of mutations
with a sequence consensus threshold of 70%. We included mutations that are unique for each
lineage, as well as mutations that are shared by two or more lineages. Of note, the pipeline is
flexible and can track any lineage if the signature mutations are provided in nucleotide format.
We applied this deconvolution method (based on the frequencies of the signature mutations) to
infer the proportions of each lineage on each sample (Supplementary Table S3). The lineage
frequencies are predicted using a regression model based on the observed frequencies of the
signature mutations for each lineage. Additionally, during the deconvolution process, we
weighted the tracked lineages differently based on how many signature mutations were found
for each of them for a given sample. This step is necessary in order to get more precise
predictions of lineages with low abundance and for which only few or only shared mutations
were found (see Methods).

Figure 4A shows VOC proportion changes over time across 4 wastewater treatment plants in
Berlin (merged results of Phase I and Phase II). Overall, we predict an increase in B.1.1.7
(alpha) that had 57% on February 19th (beginning of sampling of Phase I) and increased to 79%
on June 10th (end of sampling of Phase I) with a peak of 99% on May 25. Also B.1.351 (beta)
increased from zero detection in February to 8% in May with a predicted peak of 10% on May
25. The B.1.617.2 (delta) lineage was barely detected with 3% over the sampling time of Phase
I increasing to 11% on May 12. We predicted 16% of B.1.617.2 (delta) as early as in February
2021 but this result is likely to be inaccurate. For P1 we could predict in Phase I a decrease
from 17 % on February 19 to zero in June. However in sampling Phase II, P1 is predicted again
with an abundance peak of 18% on October 28. During winter 2021 the predicted P1
abundance decreases continuously down to 3% in January. The tracking of the lineages BA.1
and BA.2 started with sampling Phase II in September 2021 where they were initially predicted
with a total abundance of 6%. Their abundance rapidly increased to ~90% by January 19 with
BA.1 at ~70% and BA.2 with ~20%. In the timeframe we sampled, the diversity and abundance
of lineages that are not VOCs was already very reduced. We only predicted unspecified
lineages (labeled as “Others”) with 8% in February 2021 and it fell below 1% on March 11 and
never increased again.
In order to see if the predicted results can reflect the abundances of circulating lineages in
Berlin, we compared the deconvolution results with lineage analysis data published by the
Robert Koch-Institute (RKI) for Germany (Figure 4C). Hereby, lineage dynamics for Germany
are very comparable to the dynamics within the city of Berlin. We can see that our predicted
lineage frequencies are very similar to the reported lineage distribution based patient testing.
Only B.1.1.7 (alpha) shows mostly higher predicted values, but with very similar trends. Also the
predictions of the lineages BA.1 and BA.2, which are taken together comparable with the
reported B.1.1.529 (omicron) values are higher in the beginning (December 2021) than the RKI
values, but become very similar in January 2022. This is explainable with the continuous
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detection of the mutation ORF1ab:T3255I::C10029T, which is listed as unique signature
mutation for BA.1 and BA.2, but is also carried by the B.1.617.2 sublineage 21J [19] (but not by
the parent clade) that we did not actively track in this analysis.

The analysis of the dataset-Berlin35 showed similar results as for the dataset-Berlin250 as
shown in Supplementary Figure 1. Of note, the prediction results for the abundances of
B.1.617.2 (delta) and B.1.1.529/BA.1+BA.2 (omicron) are showing less divergence from the RKI
values than for the dataset-Berlin250.

The data from New York City (Figure 4B) shows a more diverse mixture throughout the
sampling phase according to the predicted high proportion of “Others”. This proportion was as
high as 82% in January 2021 decreasing to 15% on April the 5th but then had a predicted
increase again to 97% in June. The most dominant lineages were B.1.1.7 (alpha) which
increased from 0% in January up to 44% in April and B.1.526 (Iota) which increased from 4% in
January up to predicted 28% in April. However, the comparison with the data reported from NYC
Department of Health and Mental Hygiene (NYC health) (Figure 4D) suggests that both lineages
circulated with similar abundances within the given timeframe and that the differences in the
predicted values are due to the expected inaccuracy of the pipeline. The abundance of B.1.351
(beta) increased slightly from 4% in January to 5% in April but was not present anymore after.
For B.1.617.2 (delta), we predicted a continued increase up to 10% in April which is also in
contrast to the NYC health data where the abundance of delta only starts to increase at the end
of May. For P1 (gamma) we predicted an increase from 3% in January up to 17% in May. This
trend is also shown from the NYC health data. However, we also predicted 70% P1 in June. For
this prediction only 4 signature mutations across all lineages were found and 1 of them is
S:K417T::A22812C with a frequency of 1 which is a unique signature mutation of P1 (gamma).
Besides both above-mentioned differences, our prediction results are consistent with the NYC
health data as shown in Figure 4D. Unpooled results for single locations for both datasets are
attached as Supplemental material (Supplementary Table S3).
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Figure 4: A) Proportion of tracked lineages over time in Berlin wastewater. Only samples
passing the sample quality scoring (>=90% reference genome coverage) were
considered. Shaded area highlights the non-sampling Phase. B) Proportion of tracked
lineages over time in New York City wastewater. The proportions were calculated with a
deconvolution model based on the signature mutation frequencies. “Others” denotes a
set of reference mutations derived from the deconvolution matrix. Sample results were
pooled from four different wastewater treatment plants using weighted mean with read
number as weights. In case of undistinguishable lineages the proportion derived for the
group was distributed equally for the affected lineages. C,D) Comparison of
deconvolution results (dark color) with lineage frequency analysis data from
Robert-Koch-Institute (RKI) (C) or NYC Department of Health and Mental Hygiene (NYC)
(D) (light color). Deconvolution results were pooled by weeks using weighted mean using
sample read numbers as weights. For the data from Berlin only samples passing the
sample quality scoring (>=90% reference genome coverage) were used.
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In Figure 5, we combined the visualization of key mutation frequencies, cases of COVID-19 in
Berlin (from RKI), and deconvolution results for B.1.617.2 (delta) and BA.1/BA.2 (omicron)
lineages.
We can see that the mutations M:I82T and M:D63G showed a strong increase together with RKI
case numbers and with B.1.617.2 (delta) proportions from our deconvolution results. The same
pattern is shown for N:P13L, ORF1ab:P3395H and S:H655Y, raising together with omicron
lineages. However, the mutation ORF1ab:T3255I (tracked as BA.1 and BA.2 signature
mutations in our deconvolution) was detected with frequency of 100% already in September
2021, while Omicron was not present yet. This mutation was in high frequency when B.1.617.2
(delta) was predominant and stayed high while omicron raised. This could have hinted that this
mutation was already present in a sub-clade of B.1.617.2 (delta) [19] and in fact this mutation is
present in delta sub-clade 21J [20].

Figure 5: A) Combination of lineage prediction results (deconvolution) for B.1.617.2 and
BA.1/BA.2 (dataset-Berlin250), B,C,D) single key signature mutations M:I82T::T26767C,
N:D63G::A28461G, ORF1ab:T3255I::C10029T, ORF1ab:P3395H::C10449A,
N:P13L::C28311T, S:H655Y::C23525T and case numbers in Berlin (from RKI).
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RT-qPCR on wastewater samples can predict SARS-CoV-2  rise
1-2 weeks in advance

We checked if RT-qPCR results were correlated with case numbers in the region. For RT-qPCR,
we used 4 pairs of primers for SARS-CoV-2 detection (RT-qPCR) on the wastewater samples.
Due to the very low amount of viral particles present overall, we decided for a semi-quantitative
approach, instead of using the cycle threshold (Ct) values, calculating the number of positive
detections divided by the number of total reactions carried, grouping all the samples for each
day (See Methods for details). The daily percentage of positive qPCR reactions ranges from 0
to 83% (Supplementary Table S6). We also found positive, significant correlation with RT-qPCR
results and incidence rates (adjusted R2 = 0.32, t-test p-value = 0.0004, see Figure 6A-B). In
addition, we have also repeated the cross-correlation analysis between incidence rate and
RT-qPCR results with different time lags. In this case, lag= -1 week also had positive correlation
with the incidence rate (adjusted R2 = 0.47, coefficient = 0.5, t-test p-value = 9.8e-06) (Figure
6C-D). Additionally we checked the correlation between reference genome coverage and
incidence cases in Berlin. The results did not show significant correlations between those
variables (Supplementary Figure 3).
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Figure 6: A) 7 days average of COVID-19 cases in Berlin, data from Robert Koch-Institute
(RKI) (light green, left axis) and proportion of samples positively determined
SARS-CoV-2 RNA by RT-qPCR (dark violet, right axis) over Feb - Jan 2022. B)
Correlation of 7 days average of COVID-19 cases in Berlin and proportion of samples
with positively determined SARS-CoV-2 RNA by RT-qPCR. C) 7 days average of COVID-19
cases in Berlin, data from Robert Koch-Institute (RKI) (light green, left axis) and
proportion of samples positively determined SARS-CoV-2 RNA by RT-qPCR (dark violet,
right axis) over Feb - Jan 2022 with one time point lag. D) Correlation of 7 days average
of COVID-19 cases in Berlin and proportion of samples with positively determined
SARS-CoV-2 RNA by RT-qPCR with one time point lag.

Discussion
In many countries, epidemiological monitoring of SARS-CoV-2 is largely dependent on
PCR-based or antigen detection methods without sequencing which is applied on patient
samples. These techniques can be used for variant detection only after a concerning new
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lineage is detected and an appropriate assay was developed. In order to discover new
lineages, we need to be able to call mutations of the SARS-CoV-2 genome which can be done
using sequencing methods. However, sequencing-based techniques are deployed on only a
fraction of the patient population. Wastewater monitoring emerged as a viable option to track the
prevalence of COVID-19 and also for the emergence of different lineages [21] at the population
level not only because it is faster and cheaper than sequencing of samples derived from
patients, but it can also be more representative due to less bias through the choice of which
samples are going to be sequenced. Furthermore it can also be used to track early emerging
mutations or lineages of SARS-CoV-2. However, sequencing of SARS-CoV-2 material obtained
from wastewater presents data analysis challenges as the samples are potentially from
numerous patients, and have lower quality than material obtained directly from patients. In
addition, the analytical workflows should be able to deal with samples from multiple locations
and time points and combine the information in an easily accessible manner.

In order to address these challenges, we have built a reproducible analytics pipeline that takes
in raw sequencing reads and provides sharable interactive reports with geospatial information,
and mutation and lineage tracking features over time. In comparison to other commonly used
pipelines for variant analysis like V-pipe [22] or the recommended ARTIC bioinformatics pipeline
[23], PiGx SARS-CoV-2 additional features (discussed below) improved usability, reproducibility,
and application for environmental samples like wastewater. In addition, the geospatial tracking
allows to compare and monitor infection dynamics from different locations (See example reports
in Data access section). In terms of usability, the novelty with PiGx SARS-CoV-2 is that the
output reports include result visualization for each sample individually and also for the overview
and summary of all samples with a choice of visualization methods that are straightforward to
interpret. Furthermore, all outputs relevant for the assessment for lineages, quality control and
mutations are produced in human-readable format such as HTML reports from which CSV files
can be extracted. That makes further data analysis easier by providing formatted tables. Last
but not least, PiGx SARS-CoV-2 offers state-of-the-art software reproducibility thanks to GNU
Guix [17].

The pipeline comes with built-in flexible quality control metrics since samples from wastewater
can have more frequent quality issues. In our analysis, we applied a strict cutoff for reference
genome coverage (>=90%) for whole-genome sequencing data to reduce noise in our
predictions. Our pipeline also allows the user to input their own reference genome and their own
set of signature mutations and lineages. As an additional step for QC, we implemented a
taxonomic classification of reads that did not align to the SARS-CoV-2 reference genome. Since
we used a PCR based protocol, we expect some degree of nonspecific amplifications, so it is of
great help to have an additional control by means of the taxonomic classification to assess
potential biases. Also since Kraken2 is a k-mer classifier, this method can reveal reads that
match SARS-CoV-2 but are not aligned by stringent alignment tools. This is important to know
because it provides insights about potential loss of new mutations missed on the alignment.
This step allows the user to investigate potential issues and, if necessary, to adjust the
alignment stringency.
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Aiming to benchmark our pipeline, we tested it in two different simulated datasets, allowing us to
estimate the error rates from our methods. For the dataset generated in silico, the difference
between the expected and calculated frequency of lineages was only on average 3%. This
shows that our pipeline has potential to track accurately VOC from sequencing data. However,
we are aware that real sequencing data can offer further challenges, such as low quality
sequencing, presence of many other microorganisms and untracked lineages of SARS-CoV-2.
In order to better benchmark our tool, we also analyzed spiked-in samples generated by [14] .
Our results overall performed worse than the original publication (our R2 for prediction of the
mixture was ~0.7 when the R2 from the original publication was 0.9). Those results can be
explained by the differences in the mutations used for deconvolution in our analysis and the
original study, highlighting the importance of carefully selecting and more importantly reporting
the used mutation matrix.

One of the primary features of our approach is built-in tracking of emerging mutations. This
feature allowed, for example, early prediction of lineages such as B.1.617.2 (delta) from a single
signature mutation M:I82T::T26767C (Figure 5) in the dataset-Berlin250. We were able to detect
the lineage characterizing mutations before the lineage itself was detected in the population
(Figure 5). This specific mutation was described to be associated with critically increased viral
fitness [24]. The analysis and results are also visualized without the need for any additional
steps directly in the summarizing report. We showed that our pipeline and its reports can be a
valuable tool for early warning predictions and to guide additional targeted analysis.

Another key feature of our approach is the deconvolution method that helps us identify the
proportion of lineages present in environmental samples such as wastewater samples. By
making use of a weighted regression method, we were able to provide accurate estimates of
lineage proportions for our samples over time. For the VOCs that we tracked with signature
mutations, we show in Figure 4 that our model can accurately predict the composition of
lineages when comparing with abundances of circulating lineages reported during the same
time frame, even with very low frequencies. This method was able to predict the rapid increase
of the lineages BA.1 and BA.2 in the winter  (Figure 4).

It is important to note that the mutations commonly used for tracking B.1.1.7 in other studies,
S:N501Y::A23063T and del69/70 [25, 26] were rare or not found in our Berlin dataset, but they
were detected in NYC dataset (Figure 3B), and this might be explained by PCR bias differences
between the datasets, because the NYC dataset only sequenced the RBD genomic region,
having  a higher resolution on the mutations in this genomic region.

Additionally, with the dataset-Berlin35, we showed that our pipeline can be used in an industrial
production system for real-time monitoring. The results obtained were comparable with the
dataset-Berlin250 for the same time frame (Phase 2). Interestingly, for the dataset-Berlin35,
BA.1+BA.2 (omicron) predictions are followed by RKI incidence cases closer on time than for
the dataset-Berlin250, where we detect omicron and delta one week in advance. For B.1.617.2
(delta), the dataset-Berlin35 shows more similar proportions than for the dataset-Berlin250
(See Supplementary Figure 2). These results can suggest that the inaccuracies found in our
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dataset-Berlin250 can be explained by differences in the data generation (read length, internal
sequencing validations or differences on sampling sites) rather than in data processing with our
pipeline.
As reported in previous studies in other cities around the globe [27], we showed that also for
Berlin, the quantification from wastewater can reveal infection dynamics potentially earlier than it
is possible from clinical testing. Although RT-qPCR results are not fully quantitative, observing
this expected trend was important and paved the way for more robust lineage and mutation
trend analysis using sequencing.

Regardless of the methods used on wastewater, as previously published reports also indicate,
wastewater monitoring may provide early warning for future case numbers and emerging
mutations even post-pandemic when populations are not tested and monitored that thoroughly
as during the pandemic.

In conclusion, we present a reproducible and comprehensive workflow with a strong emphasis
on usability and reproducibility that has features for tracking mutations and VOC over time and
geographical locations. We stress-tested the tool with simulated data and real world data from
different locations and with different methods, showing the usefulness of our tool but also the
importance of keeping lineage nomenclature and mutations tracked consistent, for comparable
results.

Methods

Experimental methods

Enrichment of viral particles from raw wastewater and RNA extraction
For the dataset-Berlin250, raw wastewater samples were collected from four different
wastewater treatment plants across Berlin, serving a population of approximately 3.4 million
people in total. They were collected as composite two hour samples (8-10pm and 10-12pm) at
the primary influent collector at the indicated wastewater treatment plants. Typical
characteristics of Berlin wastewater treatment plant effluents are 500-1500 mg/L chemical
oxygen demand, 200-600 mg/L suspended solids, 40-80 mg/L ammonium-N, 2-8 mg/L
orthophosphate-P, 1500-2000 µS/cm electrical conductivity.

Samples were stored and transported at four degrees, and processed about 12 hours after
collection. The samples were enriched for viral RNA as previously described [28]. About 100ml
sample was filtered through 2 glass fiber and 0.2 µM PVDF filters (Millipore, cat# AP2007500
and S2GVU02RE). Of this filtrate, 60 ml was transferred to a 10 kDa cutoff centricon unit, that
was previously pre-conditioned with 50 ml ultrapure water and centrifuged with 3000 g for 15
minutes at 4 °C. After centrifugation of the samples for 30 minutes at 4 °C and again 3000 g, the
unit was inverted and about 400 µl concentrate was collected by centrifugation for 1000g at 4 °C
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for 3 minutes. The concentrate was mixed with 3 volumes of Trizol LS (ThermoFisher cat#
10296-010), and the RNA extracted using the Direct-zol RNA miniprep kit (Zymo cat# R2052)
including the DNase treatment and elution with 50 µl ultrapure water according to the
manufacturer’s instruction. Absence of PCR inhibitors was confirmed by mixing the sample 1:1
with total RNA from human cells followed by amplification of a human transcript. not detectable
in waste water alone by RT-qPCR.

Reverse transcription / quantitative polymerase chain reaction (RT-qPCR)
The extracted RNA was amplified using the LunaScript reverse transcription mix (NEB cat#
E3010L), with 16 µl RNA and 4 µl reaction master mix according to the manufacturer’s
instructions, except for a 20 minutes incubation at 55 °C instead of 10 minutes. Afterwards, the
cDNA was diluted 1:10 with ultrapure water, and 3.75 µl diluted cDNA used per qPCR reaction,
using a SYBR green master mix (ThermoFisher cat# 43-643-46), and final concentrations of
250 nM of the primers on Supplementary Table S12. The presence of the proper amplicon was
verified using a 2.5% TAE agarose gel.

ARTIC-seq of the SARS-CoV-2 genome
Amplicon sequencing libraries of the SARS-CoV-2 genome were generated using the ARTIC
protocol v3 (phase I) and modified version of ARTIC protocol v4 (Phase II) [15], using 6 µl of the
cDNA generated as described above as an input. The primer pools were obtained from IDT.
Amplicon libraries were sequenced on an Illumina Miseq or Novaseq device with 2x250
paired-end sequencing and 20% phiX spike-in. The modified ARTIC v4 primer can be found in
Supplementary Table S7.

Berlin wastewater samples processing for very-short-reads
In order to test if the pipeline would perform reliably under industry conditions we also used it
with so-called production data from the amedes analytical company. The sequencing was
performed as follows:

45 ml of raw wastewater was centrifuged for 10 min with 10,000 x g at 4 °C. Subsequently, the
supernatant was prefiltered using Filtropur S 0.45 µm filter units (Sarstedt, Darmstadt,
Germany), further transferred to 100 kDa cutoff Amicon Ultra-15 units (PLHK Ultracel-PL
Membran, 100 kDa Centrifugation units; Merck Sigma Aldrich Chemie GmbH, Taufkirchen,
Germany) and processed according to the manufacturer's manual.

Automated RNA isolation was accomplished using a Qia-Cube HT Extractor using the QIAamp
96 DNA QIAcube HT Kit according to the manufacturer’s protocol (Qiagen, Hildesheim,
Germany).

Library preparation for NGS sequencing was performed following the complete Illumina
SARS-CoV-2 sequencing workflow (Illumina COVIDSeq Test, Illumina, San Diego, USA)
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including RNA-to-cDNA conversion and SARS-CoV-2 targeted PCR using the ARTIC V3 primer
set. The generated libraries were analyzed using NextSeq 550 and 550Dx sequencers with
NextSeq 500/550 High Output Kits (v2.5; Illumina #20024906) generating 2x 37 bp paired-end
output.

Computational Methods

General Pipeline description
In the first step, the pipeline takes the raw reads and the additional information about used
primers and adapters to perform extensive quality control. Primer trimming is done with iVAR
[29], and fastp [30] is used for adapter trimming and filtering. In order to make the read quality
process comprehensible, fastQC reports are generated after each step and summarized with
additional MultiQC reports. The processed reads are aligned to the reference genome by BWA
Mem [31] and various coverage statistics are taken by SAMtools coverage/bedcov [32]. The
alignment is used further for single nucleotide variant (SNV) calling using LoFreq [33]. For
predicting the lineage abundances, a deconvolution matrix is generated by matching the set of
mutations called by LoFreq against the provided mutation table. The SNVs are translated to
protein mutations by Ensemble VEP [34]. Kraken2 [35] is used to get taxonomic classification of
the unaligned reads as an additional quality measure and further insight in the samples. The
mutations were filtered for a minimum read coverage, then a deconvolution method was used to
calculate the proportion of lineages (more details in the section Deconvolution analysis) for each
sample. For summarizing and visualizing the deconvolution results as a time series, by default,
samples with SARS-CoV-2 reference genome coverage below 90% are discarded. For each
mutation, linear regression models are used (more details in the section Regression analysis for
mutations) to detect if any mutation is significantly increasing over time. Here discarded samples
were also not included.
For each sample a set of four reports (multiQC, general QC report, taxonomic classification
report, lineage report) is generated using Rmarkdown and knitr. The R-package of plotly is
used for generating interactive visualizations. The relevant results across all provided samples
are summarized by an extra report that provides insightful visualizations and accessible
navigation linking to all the single reports. In this way the pipeline output provides an easily
accessible overview about lineage and mutation dynamics in a communicable format but also
enables extensive data exploration and access to sample-wise tables and summaries without
the need for running extra scripts. PiGx SARS-CoV-2 uses snakemake [36] to define and run
the workflow.

Deconvolution analysis

Model description: With m being a system of linear equations built by using B being a signature
matrix constructed from the signature mutations provided as input and f being the proportions
for the lineages the deconvolution approach can be represented as m = f x B. Similar to what
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has been shown before for deconvolution of cell types from gene expression profiles or
methylation profiles [37], we follow the assumption that the frequency of signature mutations
corresponds with the frequency of the actual lineage which is characterized by it. The difference
in our approach is that we use sequence mutations and apply weights to the signature matrix in
order to get more realistic prediction results.

Signature matrix construction: The signature matrix is obtained by matching the set of mutations
found in the sample against the set of signature mutations provided as input. In case the
mutation table contains mutations that are shared between lineages, it is possible that multiple
lineages cannot be distinguished from each other. In this case, the signature matrix will be
deduplicated leaving only one column of the duplicated lineages which will be renamed with the
grouped names of all lineages showing this duplicated signature mutation “pattern”.
To make the matrix more robust, additional “reference mutations” are added as well as a
reference column denoted as “Others”. Bulk frequencies for the “reference mutations” are the
difference between 1 and the value of the related signature mutation.
We propose the assumption that the more signature mutations can be found for a specific
lineage the higher the probability that this lineage is present with a higher proportion within the
sample. We therefore weigh the signature matrix (without the reference mutations) for each
lineage with the proportion of signature mutations that has been found for each specific lineage
from the total number of signature mutations that was given to characterize it. For “Others” the
weight was calculated proportionally to the number of mutations of the mutation table that were
found. Applying weights results in less variation and more accurate predictions.

Regression: To deconvolute the lineage abundance we performed robust regression analysis on
the signature matrix and the bulk frequency values of the signature mutations using the “Robust
Fitting of Linear Models” - rlm() function from the R library MASS [38] (default settings, maxit =
100). Similar to the deconvolution method CIBERSORT [37], we set negative coefficients to 0
and normalized all coefficients to add up to 1, which then form the output value providing the
predicted lineage frequency values for the provided lineages and an additional “Others”
estimation.
PCR bias as well as the number of detected signature mutations influence the robustness of the
results. We therefore added the additional constraint to only perform the deconvolution analysis
on samples matching a minimum quality score.

Dealing with indistinguishable variants: After deconvolution, grouped indistinguishable lineages
have to be split again. There are three possible outcomes for those groups:
Firstly, when no signature mutations for a lineage could be found, the group includes the
“Others” column and is in fact “Others” only. So the grouped lineages are getting the proportion
value 0, “Others” gets the deconvoluted value. Secondly, the grouped lineages are
deconvoluted to 0. In this case both lineages are assigned with the value 0. Thirdly, the grouped
lineages are not equal to “Others” and are getting a deconvolution value above 0. In this case
the assumption for normal distribution of the lineage abundances is applied and the

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2022. ; https://doi.org/10.1101/2021.11.30.21266952doi: medRxiv preprint 

https://www.zotero.org/google-docs/?lU9pPB
https://www.zotero.org/google-docs/?h4XHcD
https://www.zotero.org/google-docs/?dpvnzy
https://doi.org/10.1101/2021.11.30.21266952
http://creativecommons.org/licenses/by-nc-nd/4.0/


21

deconvolution value is divided by the number of grouped lineages. Each lineage is assigned this
adjusted value.

Regression analysis for mutations time-series
For the regression analysis on mutation frequencies we applied a linear regression model using
the “Fitting Linear Models” - lm - function of R base . The test was only performed on mutations
if N(x>0) > 5 being the number of frequency values x that are above 0 across all samples. To
get only increasing trends, the coefficient values were filtered for values x > 0 only. P-values
were calculated by the lm-function using t-test and were filtered for p < 0.05. We report the
mutation trend analysis together with and sorted by the regression coefficient as a comparable
value for unstandardized effect size.

Pooling of samples for time series analysis and plots
For summarizing across daytime and location, the lineage frequencies are pooled by calculating
the weighted average using the total number of reads of each sample as weights. The mutation
frequencies are pooled by using the simple mean (without removing missing values). Figures
and deconvolution plots are done with ggplot2 [39]. For the cross-correlation analysis samples
were pooled by week and the pooled unique set of non-signature mutations was counted.

Sample scoring for quality check
For reference genome coverage quality control, the pipeline uses the BEDtools coverage [40],
using a BED file with the tracked signature mutation sites as input. For the regression analysis
and time series plots only samples are taken in account that cover more than 90% SARS-CoV-2
genome (except for the NYC dataset).

In silico data simulation
In order to qualify and test the accuracy of the pipeline under industrial sequencing parameters,
an artificial dataset containing only short single-end sequencing was simulated. The simulated
dataset was generated in-silico using full genomes of 6 SARS-COV-2 lineages obtained from
GISAID [41]. The genomes were used to simulate Illumina sequencing using InSilicoSeq [42]
and Seqtk [43] was used to trim sequences down to 40bp of length and subsample reads. A
total of 100.000 reads was generated using the following proportions: 10% P1 (gamma), 10%
B.1.1.7 (alpha), 10% B.1.621 (mu), 50% C.37 (lambda), 15% Delta (B.1.617.2) and 5%
B.1.1.529 (omicron).
The data was processed without primer trimming and without an additional filter for read
coverage.

Accessions from the genomes used to simulate sequencing can be found on Table 1.
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Table 1: SARS-CoV-2 genomes used for in silico simulations.

WHO Lineage/Pango ID GISAID accession

Gamma / P1 >hCoV-19/Brazil/AM-FIOCRUZ-21890579EM
P/2021|EPI_ISL_4520422|2021-07-14

Alpha / B.1.7.7 >hCoV-19/Kenya/KEM-CVR-3EL/2021|EPI_I
SL_4506017|2021-04-21

Lambda / C37 >hCoV-19/Denmark/DCGC-151255/2021|EPI
_ISL_3450383|2021-08-11

Delta / B.1.617.2 >hCoV-19/Poland/CovSeq215/2021|EPI_ISL
_4551640|2021-09-08

Mu / B.1.621 >hCoV-19/Colombia/ATL-UNIANDES-G0296
86/2021|EPI_ISL_4566376|2021-08-20

Omicron / B.1.1.529 >hCoV-19/Belgium/rega-20174/2021|EPI_ISL
_6794907.2|2021-11-24

Spike-in samples data acquisition
Spike-in sequencing bam files were generated by Karthikeyan et. al. [14] Data was downloaded
from: https://console.cloud.google.com/storage/browser/search-reference_data. The data was
processed without primer trimming and but the filter for minimal read coverage was set to 100

Processing of wastewater data from New York City

The data was downloaded from the Sequence Read Archive SBI with the accession number #
PRJNA715712. The MiSeq data was processed with primer trimming, using the primer
sequences published by the authors. The iSeq data was processed without primer trimming.
For both datasets a minimal read coverage filter of 100 was applied. No genomic coverage
percent cutoff was used for those datasets.

Data/Code Availability
The pipeline can be installed with GNU Guix and is executed with the command [
pigx-sars-cov2-ww -s {sample_sheet} {settings_file} ]. A cloud version is also being developed.
Information about other alternatives like building from source or potentially a Docker image can
be found on the repository. We recommend installing the pipeline with GNU Guix for its
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reproducibility guarantees [44]. For installation advice, documentation and code please visit the
pipeline’s repository: https://github.com/BIMSBbioinfo/pigx_sars-cov-2.

Reproducible environment:
The presented results were produced using PiGx SARS-CoV-2 version 0.0.5.

● dataset-Berlin250, dataset-NYC(RBD) (MiSeq data and all samples merged) - commit
524ed4832a6972fd695c0eeec25264188710a143

● dataset-Berlin35, dataset-NYC(RBD) (iSeq data), insilico-simulation - commit
0a150c4bec58a5a8296c870586e225e49ee2b6f8

● UCSD-spike in - commit bd87e7f2d83317e9d83f6fd81abb631af95476f6

The repository also contains the Guix manifest for this analysis (commit
4ded8c5bdc755391360e5695003d6d4085110d08). The channels file to reproduce the
environment that was used for the analysis can be found in Supplementary Table S8.

Data access:
The raw sequencing read data from Berlin wastewater samples is deposited to the Sequence
Read Archive (SRA) available using the accession number #PRJNA827160.
The interactive reports that were used and produced for this pipeline can be found here:

● dataset-Berlin250 -
https://bimsbstatic.mdc-berlin.de/akalin/AAkalin_pathogenomics/sarscov2_ww_reports/2
20225_dataset_Berlin250/index.html

● dataset-Berlin35 -
https://bimsbstatic.mdc-berlin.de/akalin/AAkalin_pathogenomics/sarscov2_ww_reports/2
20310_dataset_Berlin35/index.html

● dataset-NYC(RBD) -
https://bimsbstatic.mdc-berlin.de/akalin/AAkalin_pathogenomics/sarscov2_ww_reports/2
20225_dataset_NYC_RBD/index.html

● UCSD-spike in -
https://bimsbstatic.mdc-berlin.de/akalin/AAkalin_pathogenomics/sarscov2_ww_reports/2
20309_ucsd_spikeIn/index.html

● Insilico-simulation-
https://bimsbstatic.mdc-berlin.de/akalin/AAkalin_pathogenomics/sarscov2_ww_reports/2
20310_insilico_simulation/insilico_simulation.html
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