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Abstract

Clinicians prescribing antibiotics in a hospital context follow one of
several possible “treatment protocols” - heuristic rules designed to bal-
ance the immediate needs of patients against the long term threat posed
by the evolution of antibiotic resistance and multi-resistant bacteria. Sev-
eral criteria have been proposed for assessing these protocols, unfortu-
nately these criteria frequently conflict with one another, each providing
a different recommendation as to which treatment protocol is best. Here
we review and compare these optimization criteria. We are able to demon-
strate that criteria focused primarily on slowing evolution of resistance are
directly antagonistic to patient health both in the short and long term. We
provide a new optimization criteria of our own, intended to more mean-
ingfully balance the needs of the future and present. Asymptotic methods
allow us to evaluate this criteria and provide insights not readily available
through the numerical methods used previously in the literature. When
cycling antibiotics, we find an antibiotic switching time which proves close
to optimal across a wide range of modelling assumptions.

1 Introduction

Throughout the 20th century, a small number of discoveries have funda-
mentally reshaped our world. Transistors have created a world of compu-
tation and communication[47, 40, 37], the Haber-Bosch process for nitro-
gen fixation has massively increased our ability to produce crops [19, 39],
and the development of antibiotics [17, 25] has not only redefined our bat-
tle against disease, but also acted as a key enabling technology in surgery
and intensive care[11, 38, 48]. Antibiotics have helped lift life expectancy
from 47 at the begining of the 20th century, to the 79 year average we see
today[1].

At the same time, evolution, that same process that gave birth to
penicillin, ensures that antibiotics are a limited resource; every time a
given antibiotic is used to save a life or prevent an infection we inevitably
select those bacteria most able to resist for survival. Over weeks and years
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this sustained selective pressure has given rise to a variety of multiresistant
‘superbugs’ [32]. Evolution of multiresistance is further accelerated by
horizontal gene transfer (HGT) [14, 21] a process by which one bacterial
lineage may share genetic material with another. Bacteria have, over time,
developed many forms of antibiotic resistance (ABR), first to penicillin,
and then to erythromycin, methicillin, vancomycin and carbapenems [9,
8].

While a large number of antibiotics have been developed over the
past century, the vast majority act through only a small number of es-
sential mechanisms; as an example amoxicillin, cephalexin, doripenem,
meropenem, aztreonam, ceftolozone and many others, all act through the
same β-lactam group as penicillin [35]. Bacteria that are resistant to one
of these compounds will quickly develop enhanced resistance to the others
[27]. In the past 30 years, only a few truly novel antibiotic compounds
have been developed (for example complestatin and corbomycin, discov-
ered 2020, [12]), and of those compounds discovered, even fewer have made
it to market (see table II of Coates et al. [10] for a list of antibiotics dis-
covered in the past decades, and where they are in the process of clinical
trials).

These practical difficulties are further exacerbated by the fact that
antibiotic research is unprofitable [36, 31]; development of new antiobiotics
is hugely costly, yet any new drug is liable to be kept on hospital shelves
as a ‘reserve’ antibiotic, and if it is used, will cure a patient with days
or weeks, as opposed to the years or lifetime for drugs designed to treat
chronic illnesses, such as cancer, depression or high blood pressure.

Given the substantial human and economic costs caused by resistant
and multiresistant bacteria in clinical settings [13], currently including
billions of dollars, and tens of thousands of lives, there is substantial
interest in understanding how best to slow the evolution and spread of
multiresistant genotypes. This question has been studied from both a
clinical point of view (see the review article by Dik et al. [15]) as well
as [16, 22]) and from a theoretical standpoint (see literature described
below).

The archetypical question asked in this context is ‘when and how
should clinicians prescribe antibiotics?’ Is a hospital better off prescrib-
ing a variety of different antibiotics or applying a monoculture, switching
the drug of choice every few weeks? Should all patients be prescribed
multiple antibiotics (combination therapy) so as to ensure recovery, or is
a lighter touch better in the long run? And how, precisely, do we define
‘better’ anyway? Is it more important to ensure optimal patient outcomes
in the present, or slow the development of multiresistant bacteria over an
evolutionary timescale?

A first inquiry into these conundrums was made in a simulation study
by Bonhoeffer et al. [6]. Subsequent models have built on Bonhoeffer’s
approach, exploring horizontal gene transfer [5], extensions to a larger
number of antibiotic variants [26] and the effects of stochasticity [24]. Con-
cerningly, among these (and many other) investigations, no consensus on
optimal treatment protocols has been reached. Uecker and Bonhoeffer[41]
explain these contradictions in their clear, concise and comprehensive re-
view article, in which they provide an overview of the subtle modeling
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decisions and mismatched optimization criteria that play into various con-
tradictory rankings of antibiotic deployment strategy.

The focus of this article will be following up on a number of questions
raised in Uecker & Bonhoeffer’s review. We compare the strengths and
weaknesses of the various proposed optimization criteria in the literature.
We propose a new, more physically justifiable optimization criteria, incor-
porating both patient health and evolutionary risk, a middle path between
the various criteria considered previously. In addition, we find a number
of analytic results that will hopefully reduce the need for time-consuming
numeric exploration of parameter space, and give somewhat clearer in-
sight into how parameter values combine to determine patient outcome.
Overall, we find that optimization criteria focused on delaying multiresis-
tance as long as possible tend to infinity precisely when the recommended
treatment provides a worse outcome than dealing with antibioitic multire-
sistance. For the important case of cyclic treatment protocols, we use our
asymptotic results to identify a ‘saturation time’ tsat which gives ‘almost
optimal’ cycle time across a wide range of assumptions.

In section 2 we introduce the basic model and current antibiotic pro-
tocols as described in the literature. Section 2.2 introduces four possible
optimization criteria, both novel and historic. In section 3 we examine
the mean number of uninfected patients for a variety of antibiotic proto-
cols and gather several novel analytic approximations for patient health.
In section 4 we explore the behavior of four different optimality criteria,
and how ‘optimal’ results change (or don’t) depending on which criteria
is used and how multiresistance arises. We demonstrate how a number of
optimization criteria are directly antagonistic to one another, and indeed,
to patient health. These results are summarized in section 5. We find
combination therapy to be appropriate over a wide range of contexts, and
also identify tsat, a cycle time that is ‘close to optimal’ over a wide range
of modelling assumptions. It is our hope that by identifying why different
papers have reached such contradictory conclusions, we can guide medical
practitioners and future modellers towards better criteria, or at the very
least, give them the tools to evaluate which criteria are most relevant.

2 Model

Let us begin by introducing a small amount of biology and defining the
two models of in-hospital ABR spread that we will be approximating and
building upon. Primarily, we make use of Bonhoeffer et al.’s original
model from 1997 [6]. This model has acted as the basis of many of the
papers that came after, and hence acts as an excellent testing space for
comparing various optimization criteria. The second model we considered
was proposed more recently by Uecker & Bonhoeffer [42] and is designed
to overcome a simplification in the original model. This simplifying as-
sumption, and when it is and is not appropriate, will be discussed later.

We will start by describing Bonhoeffer et al.’s ’97 model[6]. Imagine
a hospital or hospital ward containing a number of patients. There ex-
ists some bacterial infection (for example Streptococcus pneumoniae or
Staphylococcus aureus) that spreads through the patient population and
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can be treated using one of two frontline antibiotic drugs (such as linezolid
or telavancin). For the sake of generality, we refer to these drugs as A and
B. Bacterial infections will either be susceptible to treatment, resistant to
one or other of the available antibiotics, or doubly resistant. Denote the
population of patients infected with each of these classes of infection as S,
RA, RB and RAB , respectively. The hospital also includes a population of
uninfected patients, X, who are nonetheless ‘exposed’ to infection. These
patients represent patients recovering from surgery (or similar medical
condition unrelated to infection). While infection may provide an addi-
tional load, uninfected status does not correspond to a clean bill of health,
and conversely, an infected patient may still be healthy enough for dis-
charge if they have recovered from surgery, chemotherapy, or whatever
was their primary cause for entering the hospital. It is also important to
note that here ‘susceptible’ and ‘exposed’ are not used in the same manner
as standard epidemiological SEIR models. Here ‘susceptible’ refers to the
infecting bacteria’s susceptibility to antibiotic treatment, and ‘exposed’
refers to a patients proximity to possible infection, as opposed to the
presence of bacterial infection that has not progressed to the ‘infectious’
stage, as implied in SEIR models.

With these five classes of patients, we now construct a compartment
type model[7]. Patients switch from one infected status to another via a
variety of process (see figure 1). Patients arrive at the hospital at some rate
mX ,mS ,mA,mB and mAB ; immigration rate for each class will depend
on the prevalence of ABR in the community. Patients in all compartments
are discharged at some rate µ; this rate is assumed to be equal across all
compartments. In appendix A we relax this simplifying assumption and
consider a model that explicitly differentiates between discharge due to
death or recovery. The exact details of discharge have minimal impact on
all major results, and hence we assume discharge rate µ is independent of
infection status, as is traditional in the literature.

Exposed individuals become infected according to mass action kinet-
ics at rates βSSX, βARAX, βBRBX and βABRABX. Differences in
infection rate β represent the metabolic cost a bacteria must pay in or-
der to maintain resistance; more resistance comes at a higher cost, hence
βS ≥ βA, βB ≥ βAB . All β are assumed to be fairly similar, differing by
only 1 or 2%, as opposed to an order of magnitude. Infected individuals
recover naturally at some rate γ, and recover at some higher rate τ + γ
if administered suitable antibiotic treatment (hence, administering drug
A leads to recovery rate τ + γ in the S and RB population and recovery
rate γ in the RA and RAB population.) We model which antibiotics are
currently being administered via the indicator functions χA(t) and χB(t).
These functions take the value zero or one, depending on whether or not
the antibiotic in question is being administered at time t.

Single resistance strains are assumed to be prevalent enough in the
community that de novo evolution of single resistance can be treated as
negligible. The validity of this assumption will depend on the population
under study.

Finally, multiresistance can be introduced to a hospital either via de
novo mutations, horizontal gene transfer or importation from the wider
community. Each of these mechanisms leads to different predictions and

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.28.21266972doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.28.21266972
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

S

RA RB

RAB

X

βS ,βA ,βB ,βAB
infection

γ , τ+γ
recovery

ν
mutation

mX ,mS ,mA ,mB ,mAB ,μ
immigration emigration

Figure 1: Schematic diagram of the compartment model, as defined in equations
1a-1e. The diagram shows the 5 model compartments and the flow of individuals
between them. Mutation events are marked with dashed lines and are treated
as being rare stochastic events. More common infection, recovery, immigration
and emigration events are indicated by continuous lines; differing line thickness
is used to indicate that some events are more common than others (for example,
βS > βAB , τ+γ > γ). Line thickness is not to scale. Depending on the context,
the RAB compartment of the above model will, or will not, be included in the
analysis.

recommendations, these will be discussed in more detail on section 4. For
the time being we consider two separate cases: the behavior of the system
either before multiresistance (RAB(t) = 0 = mAB), and the behavior of the
system after multiresistance(RAB(t) > 0). The transition from RAB = 0
to RAB > 0 is discussed in section 4.

Taken together, these processes lead to the following 5 compartment
model:

Ṡ = mS − µS +βSSX − (γ + τ max(χA, χB))S, (1a)

ṘA = mA − µRA +βARAX − (γ + τχB)RA, (1b)

ṘB = mB − µRB +βBRBX − (γ + τχA)RB , (1c)

ṘAB = mAB − µRAB +βABRABX − γRAB , (1d)

Ẋ = mX − µX −βSSX + (γ + τ max(χA, χB))S (1e)

−βARAX + (γ + τχB)RA

−βBRBX + (γ + τχA)RB

−βABRABX + γRAB .

The above system of equations assumes that the same antibiotic regime
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is applied to all patients: χA(t),χB(t) take the values zero or one. These
assumptions are inappropriate however when administering different drugs
to different patients. The most obvious way to represent intermediate
prescription values in the above model would be to select χA(t) = 0.5 =
χB(t); unfortunately, this would correspond to assigning all infectious
patients both drugs half the time (for example drug A in the morning,
and drug B at night). In clinical practice, this does not happen, and
instead ‘mixed’ drug regimes refer to the practice of assigning half of
the patients drug A across the entire course of their treatment, and the
remaining patients drug B.

In order to properly model this we use the 7 compartment model of
Uecker et al. [42]). In this model, we track both the resistance status of
infections and the prescription status of the corresponding patients, split-
ting compartment RA into RAA, R

B
A and RB into RAB , R

B
B . Here subscripts

represent the resistance profile of the infection, while superscripts repre-
sent the drug currently prescribed. Hence, RBA and RAB represent effective
treatments, while RAA and RBB represent ineffective treatments. Treat-
ments are ‘corrected’ at a rate q, transferring patients from RAA → RBA and
RBB → RAB . Because all prescriptions are assumed to be equally effective
against susceptible bacteria, there is no need to split the S compartment,
similarly with doubly resistant infections. χA(t) and its complement χB(t)
no longer represent the probabilities of receiving a particular drug in the
present, but instead the probabilities of being referred to a particular
treatment group. The governing equations for RBA and RAA are

RA = RBA +RAA (2a)

ṘBA = χBmA − µRBA + χBβARAX − (γ + τ)RBA + qRAA, (2b)

ṘAA = χAmA − µRAA + χAβARAX − γRAA − qRAA, (2c)

with similar equations governing RAB and RBB . Ṡ and Ẋ are as defined
in equations 1a and 1e. We also consider an antibiotic switching rate q;
this corresponds to the rate at which ineffective antibiotics are replaced
by effective antibiotics in the case of single resistance. In the limit q = 0,
patients are kept on their initial prescription indefinitely no matter what.
In the limit q →∞, patients are shifted to optimal treatment immediately.
Parameter q can be thought of as a proxy for the intensity of testing for
ABR within a given hospital system. A schematic of this behavior is given
in figure 2.

In what follows, Uecker’s 7-box model is used when 0 < χ < 1 and
Bonhoeffer’s 5-box model is used when χ ∈ {0, 1}.

2.1 Common Antibiotic Management Protocols

Three main antibiotic management protocols have been proposed in the
literature: combination therapy, mixing and cycling (mixing and combi-
nation therapy are most common in clinical practice). These protocols
define which antibiotic is initially prescribed to a patient when they are
admitted to the hospital, or after surgery. This prescription may later be
changed based on either patient recovery (or lack thereof), or when ABR
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Figure 2: Schematic diagram of Uecker’s 7-box model. In this model we track
the drug being applied to individual patients: RA is split into RAA and RBA
(A resistant bacteria being treated with A or B respectively). Although S
bacteria are treated with either one drug or the other, there is no need to track
which (assuming similar recovery rates under treatment). Similarly with doubly
resistant infections. Ineffectual treatment combinations (RAA or RBB) are replaced
by effective treatment options (RBA or RAB) at some rate q (drug switching,
turquoise arrow). Differences in line thickness are indicative of differences in
the corresponding rate constants (recovery from RAB is faster than recovery from
RBB , for example).

infection is detected (see, for example the Dutch “search and destroy”
policy for ABR [43]).

The simplest of these protocols, combination therapy, prescribes both
A and B to all infected patients at all times. This approach is intended
both to improve patient outcomes and also prevent multiresistance from
arising by eradicating single resistant strains as quickly as possible. Unfor-
tunately, combination therapy leads to increased direct costs and poten-
tially heavier side effects, it also increases total drug prevalence, leading to
concerns that it may encourage broad spectrum antibiotic resistance[44].
This duel action of increasing total antibiotic prevalence, but rapidly
quashing single resistant strains, leads to some uncertainty with respect
to the net effect of combination therapy on ABR. In this study, com-
bination therapy is represented using Bonhoeffer’s 5-box model, with
χA(t) = χB(t) = 1.

Mixing protocols assume that each patient is assigned either drug A or
B with some probability, usually (but not always) χA = χB = 0.5. While
many papers [4, 34, 5] have studied mixing using Bonhoeffer’s 5-box model
(or similar), Uecker’s more detailed 7-box model is more faithful to clinical
reality and will be the model used here whenever mixing is discussed.

Cycling protocols treat all patients with the same drug at any point in
time, and switch back and forward between two (or more [26]) treatments
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every T days, preferentially treating with drug A for the first T days, and
with drug B for the next. These time periods are generically (though not
always [2]) assumed to be equal. Mathematically, cycling is represented
by

χA(t) =

{
1 mod (t, 2T ) < T

0 mod (t, 2T ) ≥ T

With χB(t) = 1 − χA(t). Both the 5-box and 7-box model can be used
to represent cycling; which is more realistic will depend on the exact im-
plementation of cycling used in clinical practice. For the sake of analytic
accessibility we study cycling in the context of the 5-box model. Basic
simulation experiments indicate that the difference between the two mod-
els is negligible, except in the case of short cycle times, where fast cycling
behaves like mixing.

Other, more detailed, management protocols have been studied. Beard-
more and Peña-Miller [3] make use of detailed control theory techniques in
order to determine optimal aperiodic antibiotic rotation protocols, cutting
through the more heuristic approaches used elsewhere in the literature.
In contrast, the excellent numeric exploration by Kouyos et al. [24] con-
siders ‘informed switching’ protocols adapted for the stochastic hospital
environment. Consideration of these more complex protocols is beyond
the scope of this paper, but we do recommend these past works to the
interested reader.

2.2 Optimization Criteria

Broadly speaking, antibiotic protocols seek to achieve two conflicting
goals: to maximize patient health and minimize the rate at which resis-
tant bacteria (especially multiresistant bacteria) arise and develop. While
these goals are easy enough to understand in an intuitive sense, there have
nonetheless been a number of different formulations mathematically; each
with their own strengths and weaknesses.

The most straightforward evaluation criteria is simply to maximize
the number of ‘healthy’ patients over a given time frame (most often, one
year):

X365 =

∫ 365

0

X(t)dt.

This evaluation criteria is illustrated in figure 3A. It was used in Bonhoef-
fer’s initial exploration of antibiotic protocols [6] (all be it with a constant
offset). Under reasonable assumptions, it can be shown that maximiz-
ing X is equivalent to minimizing patient fatalities and minimizing total
hospitalization time (Appendix A).

As an evaluation criteria, X365 runs into two difficulties: firstly, the
criteria is explicitly ‘blind’ to the time of multiresistance introduction.
Secondly, selection of different time windows or initial conditions may
lead to different results; long time horizons emphasize the eventual steady
state, while shorter time horizons are informed by initial transient behav-
ior. It is not always clear which time window is most appropriate.

If our interest is primarily in the arrival dynamics of multi-resistant
bacteria, then we may instead attempt to maximize T1/2, the time at
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which half of all infections are doubly resistant (RAB). While interesting
and meaningful from an evolutionary standpoint, T1/2 makes a poor op-
timization criteria; maximization of T1/2 generically leads to withholding
all antibiotic use, thus delaying the takeover of doubly resistant mutants
indefinitely. This optimization criteria is illustrated in figure 3B.

One possible balance between these two conflicting goals is to instead
maximize

XT =

∫ T1/2

0

X(t)dt. (3)

This criteria is illustrated in figure 3C. While providing some balance
between maximizing health and time, it is doubtful that XT provides the
correct balance between X365 and T1/2. In effect, XT assumes that we
will have no healthy patients from T1/2 onwards. It seems unlikely this
was the intent of authors using this criteria, but it is the implicit result.

Much like T1/2, XT is liable to recommend non-treatment, as inte-
grating even small numbers over an infinite time window gives ‘optimal’
results. Also, as mentioned by Uecker and Bonhoeffer [41], the criteria
completely ignores the effects of a particular epidemic protocol on the
time after the emergence of RAB . Because XT depends on the exact time
course of X(t), there is also the risk that it will give conflicting answers
for systems with different initial conditions. Because the exact initial con-
ditions for a particular hospital are not knowable in advance, it would be
preferable to avoid such sensitivity.

All three of these difficulties can be avoided by instead considering the
novel optimization criteria (as illustrated in 3D)

XT∗ =

∫ Tε

0

X̄ − X̄ABdt =
(
X̄ − X̄AB

)
Tε. (4)

Here X̄ indicates the long term average of X prior to multiresistance,
X̄AB is the long term average after multiresistance occurs and Tε denotes
the first time that the multiresistant population reaches some low level ε,
potentially set so that ε represents a single multiresistant infection. The
use of long term averages removes the effects of initial conditions and
makes X terms more analytically accessible. In the case of cycling, these
averages are taken over the course of one entire cycle; in the case of ‘static’
protocols, these averages are the equilibrium values of X.

XT∗ can be thought of as being ‘formally equivalent’ to optimization
over the integral

∫∞
0
Xdt, all be it with the ‘constant’

∫∞
0
X̄ABdt sub-

tracted off so as to render the optimization criteria finite. In some sense,
our goal is not to maximize the total number of healthy patients over some
time window (which can be manipulated via manipulation of the time win-
dow), but instead the increase in health due to the use of antibiotics, over
all time.

Subtracting off X̄AB also serves to forbid certain degenerate strategies
where X̄ < X̄AB . These strategies represent protocols which give worse
patient outcomes than the threat of multiresistance itself (for example,
never using antibiotics), but delay multiresistance indefinitely (Tε, T1/2 →
∞). Protocols of this kind tend to give ‘infinite value’ according to time
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focused criteria such as XT and T1/2. In contrast XT∗ assigns a negative
score to such protocols (X̄ − X̄AB < 0). We will discuss this detail more
thoroughly in section 4. See figure 7, 8.

It is important to note that no assumption is made that X̄ and X̄AB
are achieved using the same management protocols, hence (for example)
it is possible that a cycling protocol may be used prior to multiresistance,
and a mixing approach afterward. XT∗ optimizes on the assumption that
we pick the best possible protocol post multiresistance introduction.

Tε is chosen over T1/2 as our stopping criteria for technical reasons.
See appendix B.4 for details, as well as a comparison between XT∗ and
the G1/2 optimization criteria put forward by Bonhoeffer [6].

See figure 3 for a schematic illustration of all optimization criteria.

3 Mean X values

In order to make sense of XT∗ (and other optimization criteria), it will
prove helpful to calculate both X̄ and X̄AB . Rather than calculate nu-
meric integrals of X for a variety of initial conditions and parameter values
(as has been done in previous papers [34, 26, 5]), our goal in what follows
is to find asymptotic approximations for a variety of parameter regimes,
making use of different simplifying assumptions in each case. See figure 4
for sample trajectories in each of these regimes.

Let us start by considering the case of combination therapy prior to the
introduction of multi-resistant bacteria. In this case, assuming antibiotics
are effective at keeping down infection (τ + µ) � βiX for each βi, all
infected compartments can be well approximated by the balance between
immigration and recovery:

S ≈mS/(τ + µ+ γ), (5)

RA ≈mA/(τ + µ+ γ), (6)

RB ≈mB/(τ + µ+ γ) (7)

The total population of the ward is given by σ =
∑
mi/µ, and hence the

long term equilibrium of X is well approximated by

X̄ ≈ X̄combo =
∑

mi/µ− (ms +mA +mB)/(τ + µ+ γ). (8)

In the case of mixing (prior to multi-resistance), we use the 7-box
Uecker model (figure 2). In order to calculate the long term equilibrium
behavior, we first calculate what fraction of cases are receiving effective
treatment for each strain. Effective treatment ratios can be shown to be
equal to:

RAB
RBB +RAB

= ρB =
(µ+ γ)χA + q

τχB + µ+ γ + q
(9)

RBA
RAA +RBA

= ρA =
(µ+ γ)χB + q

τχB + µ+ γ + q
(10)
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Figure 3: Comparison of different optimization criteria. Here we consider some
hypothetical hospital for which the number of uninfected patients X(t) bounces
around at high levels before the introduction of a small number of multiresistant
infections at time Tε. At this stage, multi-resistance increases to high prevalence
(T1/2), while the number of uninfected patients drops, oscillating around a low
equilibrium value, X̄AB , for the rest of time. (A) the X365 optimization criteria
attempts to maximize the total number of uninfected patients (area under the
curve) up until a given time (usually t = 365.) (B) The T1/2 optimization
criteria seeks to maximize the time taken until multiresistance takes over half
the population, RAB = 0.5. (C), XT aims to maximize the number of uninfected
patients up until T1/2. (D) XT∗ maximizes the gain in uninfected patients
relative to the multiresistance equilibrium, prior to multiresistance. Rather
than integrating over X(t) we instead calculate the X equilibrium both before
(X̄) and after (X̄AB) the introduction of multiresistance. While this criteria
may seem unusually, one step removed from a direct integration of X, unlike
the other criteria it does not depend on initial conditions.

This in turn leads to three different approximations of X at equilib-
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Figure 4: General behavior of the system when using mixing(A), combination
therapy(B), or cycling (C & D). For the two ‘static’ strategies, (A & B), random
initial conditions rapidly approach equilibrium for S and X. In the mixing case
(A), RA and RB approach equilibrium slowly; for the parameters considered
here, they become equal in limit as t→∞; differences are purely based on initial
conditions. For cycling (C & D) background colour indicates the antibiotic
currently in use. We consider two distinct regimes: ‘fast cycling’ (C), in which
equilibrium is never reached, and ‘slow cycling’ (D), in which RA, RB approach
equilibrium values and are stabilized by importation from the community before
drug switching occurs.

rium, depending on which resistant strain is dominant:

X̄A
mix = (µ+ γ + τρA)/βA, (11a)

X̄B
mix = (µ+ γ + τρB)/βB , (11b)

X̄S
mix =

∑ mi

µ
−
∑

(ms +mA +mB)/(τ + µ+ γ). (11c)

The true equilibrium value for X̄ is well approximated by the smallest
of these three values. If X̄A

mix is smallest, this indicates that RA is the
dominant infection strain, the current limiting factor on improved health.
If X̄S

mix gives the smallest value (usually for high treatment correction
values, q), this indicates that infection is dominated by disease importa-
tion; treatment within the hospital is close to optimal and ABR within the
hospital is dominated by importation from the community. This situation
might arise for example in situations where we have high levels of testing
for antibiotics (such as the Dutch ‘search and destroy’ ABR policy [43]),
or in situations where community levels of ABR are very high.
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Illustrations of these results are given in figure 5. Derivation of these
results can be found in appendix B.2.
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Figure 5: Equilibrium values of uninfected individuals when using a mixing
protocol. (Left) as q (the drug correction rate) is increased, X̄ increases ap-
proximately linearly (following the X̄A

mix equilibrium), before approaching a
maximal value at the X̄S

mix equilibrium. (Right) As drug selection probability
χA is varied, the equilibrium population X̄ increases to a maximum and then
decreases, passing from a X̄A

mix limited regime to a X̄B
mix limited regime. Here

we select drastically different βA, βB , so as to illustrate the effects of asymmetric
infection rates. In practice, these rates can be expected to be approximately
equal, and χA = 0.5 gives close to optimal results. For both figures, the solid
blue line represents numeric estimation of X at equilibrium, calculated using
Newton’s method. The black dashed lines are the upper bounds, as given by
X̄A
mix, X̄

B
mix, X̄

S
mix above. The black dotted line (just below the dashed line,

left panel) indicates a somewhat tighter upper bound for X̄S
mix; this improved

approximation gives only modest improvements, and requires significantly more
algebra, see appendix B.2 for details.

The next case to consider is the cycling case. We are interested in
the long term mean value of X averaged over precisely one cycle length:
X̄cycle = limt0→∞

∫ T+t0
t0

X(t)/Tdt, where T is the length of a single cycle.
For the time being we consider the symmetric case, in which A and B have
identical migration and treatment parameters (mA = mB ,βA = βB) and
equal cycle time. Detailed calculations applicable to both the symmetric
and asymmetric case are provided in appendix B.3.

For cycling there exist two major parameter regimes: a ‘fast cycling’
regime in which the equilibrium is never reached and a ‘slow cycling’
regime in which the system approaches its long term equilibrium with
each cycle (see figure 4, C& D). For sufficiently fast cycling, it can be
shown that:

X̄cycle ≈X̄fast
cycle =

µ+ γ + τ/2

βA
(12a)

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.28.21266972doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.28.21266972
http://creativecommons.org/licenses/by-nc-nd/4.0/


each antibiotic is used half the time, and hence, each applies at 50%
effectiveness. For slow cycling, the long term average approaches:

X̄cycle ≈X̄slow
cycle = X̌ + C/T (12b)

Here C represents the transient ‘spike’ in X immediately following the
change in treatment, while resistance to the new drug is rare (see figure
4). The effects of the spike are diluted across the length of a cycle. X̌
represents the equilibrium value of X approached over the course of an
arbitrarily long cycle, once resistance to the new drug has taken hold.
Each drug has less than 50% effectiveness, because slow cycling results
in resistance becoming ubiquitous in the population with each cycle; each
drug spends most of its time treating the bacterial strain it is least effective
against. So long as resistance importation is rare (mA,mB � RA, RB)
both X̌ and C can be calculated:

X̌ =
µ+ γ

βA
, (13a)

C =
[
log(σ − X̌ − Š − Ř)− log(Ř)− 1

]
/βA, (13b)

σ =
∑

m/µ, Ř = m/τ, (13c)

Š =
mS

τ + (1− βS/β)(µ+ γ).
(13d)

As previously, σ is the total population. Ř and Š are the equilibrium
population size for susceptible and resistant strains, assuming appropriate
treatment (so, RA being treated with B, or RB being treated with A).

For all T , X̄ is best approximated by the minimum of X̄slow
cycle, X̄

fast
cycle-

see figure 6. This approximation is generally fairly tight, except in the
boundary region where X̄slow

cycle ≈ X̄fast
cycle. We refer to the boundary be-

tween fast and slow cycling as the ‘saturation time’, denoted tsat. Satu-
ration time can be calculated by setting X̄slow

cycle = X̄fast
cycle, and solving:

tsat = 2
[
log(σ − X̌ − Š − Ř)− log(Ř)− 1

]
/τ. (14)

The final parameter regime to consider is the equilibrium in the pres-
ence of multiresistant bacteria, that is to say RAB > 0. In this case it is
easy to show that RAB must increase until

X̄ = X̄AB =
µ+ γ

βAB
. (15)

This result applies regardless of which treatment protocol is employed.
Strategies that would receive higher X̄ in the absence of multiresistant in-
fections will instead approach an equilibrium or cycle with mean value
close to X̄AB . Protocols with worst health outcomes than the best possi-
ble response to multiresistance (X̄ < X̄AB), such as withholding antibi-
otics entirely, will retain their low X value, and will result in the RAB
population decaying at a rate proportional to X̄AB − X (see Appendix
B.4 for details).
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min(µ+γ+τ/2β , X̌+C/T ). Analytic results provide an accurate approximation of

X̄ for most T values, except in a small window on either side of the ‘saturation’
time tsat.

4 Introduction of multiresistance

Analytic calculations of X̄ before and after the introduction of the doubly
resistant strain provide some measure of the relative ranking of different
ABR protocols. In order to evaluate

∫ Tε
0
X̄ − X̄ABdt however, we must

also consider when double resistant bacteria are introduced, that is to
say, we must estimate Tε. Because XT∗ is linear in Tε, it is sufficient to
estimate the expected value of Tε.

Doubly resistant strains are introduced to a hospital via a number of
different channels, each with its own unique rate constant. For exam-
ple, if a doubly resistant strain is imported from outside the hospital at
some constant rate Mimport = mAB , then the expected introduction time
of doubly resistant infection is constant, and independent of the antibi-
otic management protocol currently in use in the focal hospital (though
potentially dependent on other hospital or inter-hospital policies [23]).

Multiresistant strains can also arise via de novo mutations. Such muta-
tions can be modeled as either dependent on selective pressure (Mselect =
νselectB (χAB+χB)RA+νselectA (χAB+χA)RB) [33] or entirely independent of
selective pressure (Mbase = νbaseB RA+νbaseA RB) (one of multiple possibili-
ties originally considered by Bonhoeffer et al. [6]). Finally, multiresistance
may also occur via horizontal gene transfer between existing strains; the
case was considered by Bergstrom et al. [5], where the assumed multire-
sistance is produced at a rate proportional to MHGT = νHGT (RA ×RB).
The relative importance on each of these four channels can vary from
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pathogen to pathogen, and will also depend critically on antibiotic stew-
ardship policy across the surrounding region; careful stewardship may
mean that Mimport is minimized and we are mainly interested in de novo
mutations or gene transfer. In a region with high ABR prevalence Mimport

may dominate.
While each of the above are reasonable assumptions they are all, in

some sense, ‘cartoon’ approximations of exceptionally complex processes.
Future investigation into the various sources of multiresistant infection
may well suggest improvements upon the above terms, or even introduce
new terms representing previously ignored channels such as horizontal
gene transfer from a patient’s commensule bacteria [28]. At the very
least, it would be useful to determine the relative contribution of each
channel in clinical practice. Such questions, however, are far beyond the
remit of this simple mathematical analysis. For the time being we treat
each of the above Mi as given and assume that in any given circumstance
one channel of multiresistance dominates all others.

Our goal in what follows is not to make any specific or universally
applicable policy recommendations, but instead to examine the types of
recommendation made by various optimization criteria under the influence
of different Mi. We are in some sense evaluating the optimization criteria
themselves, rather than the management protocols on which they act.
Rather than attempt a full of exploration of the entire parameter space,
we focus on two straight-forward test cases in order to illustrate the types
of behavior generally observed.

4.1 Comparison of optimization criteria: mixing

In what follows, we make use of Uecker’s 7-box model, with parameter val-
ues βS = 1, βA = βB = 0.99, βAB = 0.98, q = 0. We are interested in the
recommendations made by the four optimization criteria X365, T1/2, XT
and XT∗ with respect to the mixing rate parameter χA. For the sake of
breaking symmetry slightly we set mB = 2mA. Results in the q > 0 case
are explored in appendix D. A full description of all parameter values and
simulation methods is made avaliable via github [20], and is saved in the
file ‘EvaluatingAllOptimalMetricsMixing.m’.

In all cases, we assume that RAB(0) = 0 and that multiresistant mu-
tants appear according to a Poisson process with rates proportional to
Mimport,Mbase,Mselect or MHGT . Results for each optimization criteria
are presented in figure 7. Both X365 and XT∗ have local maxima near
χA = 1/2 for Mimport,Mbase,Mselect. For MHGT these two optimization
criteria have sharp local minima near χA = 1/2, with their maxima off
centered (to differing degrees). This makes sense: if resistance is primarily
formed via horizontal gene transfer, than the primary goal of any man-
agement protocol is to avoid regions of treatment space where RA and RB
co-exist. X365 and XT∗ differ in how far from χA = 1/2 one must move
in order to reach optimal results.

In contrast XT and T1/2 both recommend extreme values of χA, tend-
ing to infinity precisely in those areas where XT∗ < 0. Once again, this
matches expectation: if X̄ < X̄AB then RAB can not increase in preva-
lence, and hence T1/2 =∞.
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When dealing with the optimality criteria XT∗, XT and T1/2, ν acts
primarily as a scaling constant (with a constant offset in the case of XT
and T1/2, caused by the delay between T1/2 and Tε). In the case of X365,
by contrast, the value of ν acts to determine the competition between
multiresistance arriving and the year ending, leading to qualitatively dif-
ferent results depending on the exact value of ν (figure 7, panels A and
B). Fortunately, these changes have at most modest effects on the optimal
mixing ratio, even for X365. Hence, precise knowledge of ν is not crucial.

The important lessons from figure 7 in terms of criteria comparison
are that XT and T1/2 are virtually indistinguishable, and can be seen to
optimize in almost precisely the opposite direction to X365 and XT∗. X365

and XT∗ are broadly similar in their overall behaviors, though not always
in their precise recommendations.

4.2 Comparison of optimization criteria: cycling

We next consider the implications of different optimization criteria in
the context of antibiotic cycling. In this case the 5-box model is used,
with parameter values βS = 1, βA = βB = 0.99, βAB = 0.98. Rather
than attempt to explore the entire parameter space of possible cycling
protocols, we here assume symetric cycling times, and equal importa-
tion rates (TA = TB ,mA = mB), see appendix D for comparisons in the
asymetric case. We are interested in determining the expected value of
X365, T1/2, XT and XT∗ for a variety of cycling times T . Expectation is
taken over all possible introduction times of the multiresistant mutant,
and also over the ‘initial phase’ (how far through the cycle the system
is at t = 0). Inital phase is selected uniformly at random between 0
and 2T . Full code is avaliable via github [20], and is saved in the file
‘EvaluatingAllOptimal cycling5box.m’. See figure 8 for results.

Once again, XT and XT∗ give conflicting recommendations. Much
like the mixing case, XT and T1/2 both recommend extreme parameter
values: both metrics increase monotonically with cycle time T and tend
to infinity as T → 3957.86; this is the smallest value for which X̄ < X̄AB .
In contrast, both X365 and XT∗ are maximized for intermediate values
of T . For XT∗, optimal cycle time for all multiresistant introduction
channels cluster around tsat. This makes sense – tsat denotes the largest
T value that can be used without suffering reductions in X̄. Any Mi

that is minimized by increasing cycle time T can be increased up to tsat
at no cost. Any increase beyond tsat inevitably comes at the cost of a
reduction in X̄. Because the transition between X̄slow

cycle and X̄fast
cycle at tsat

is not sharp, the exact location of the maximum of XT∗ varies slightly
depending on the source of multiresistance. For Mbase and Mimport, XT∗
is maximized just below tsat, for MHGT and Mselect, the cost of switching
antibiotic is higher, and XT∗ is maximized for T slightly larger than tsat.
This clustering of optimal results around tsat is stable to variations in
parameter values; see appendix C.

Qualitatively, X365 gives results that are similar to XT∗ in some ways,
but not identical. Overall, X365 can be described as ‘lumpier’; this higher
complexity results from the interaction between three different timescales:
the timescalse of cycling, the timescale of ABR introduction, and the
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Figure 7: (A & B) The expected values of X365 for high and low muta-
tion/importation rate ν. Each line indicates a different channel for introduction
of multiresistance. (C & D) Expected valued of T1/2 and XT . As might be
expected, both optimality criteria tend to infinity as χA nears 1 or 0, indicat-
ing that for sufficiently extreme values, RAB will never account for half the
infected population. This applies regardless of the multiresistance introduc-
tion channel. (E) XT∗ for a variety of χA values. (F) XT∗ rescaled such that
max(XT∗) = 1. This rescaling makes maxima more clearly identifiable, and is
as mathematically valid as any other scaling, seeing as comparing ν between
different multiresistance introduction methods is inherently meaningless in the
context of the current model.
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timescale of the integral (one year). When ν values are very small, the
probability of a mutation occurring within 365 days becomes small. In
this case, X365 approaches 365X̄. In contrast, when ν values are large,
mutation occurs within one or two cycles. In this case the approxima-
tion M = M̄ is no longer appropriate and the exact phase of cycling at
the start of the simulation has a significant impact: for example, if us-
ing MHGT then multiresistance most commonly arises during the time of
drug switching. Whether t = 0 occurs before or after a switch can have
significant impact on the time until multiresistance arrival, and hence on
the overall shape of X365. The large ν regime for X365 draws attention to
transient effects caused by initial conditions. These timescale effects are
ignored by XT∗, which considers only long term averages of M , and has
no predefined ‘end point’ at one year.

4.3 Comparison of optimization criteria: combi-
nation therapy

The final antibiotic management protocol that we consider is combination
therapy, in which both antibiotic treatment options are used simultane-
ously for all infections. Unlike the previous two cases, where we have
a parameter value to vary over, combination therapy has no such pa-
rameter values: it is, in essence a single protocol, as opposed to a wide
family of protocols. As such, there is no good way of comparing combina-
tion therapy to itself, and instead the protocol must be compared to the
best results from the previous protocols. The results below are based on
solving equation 8 and comparing to the optimal results for mixing and
cycling. Full code for this work can be found on github [20] included as
a special case in the file ‘EvaluatingAllOptimalMetricsMixing.m’. The
parameter values assumed were µ = 1/5, βS = 1, βA = βB = 0.99, βAB =
0.98, γ = 1/10, γ + τ = 1/2.5, other import/export parameters can be
found in the file itself, as needed.

Using either cycling or mixing, XT and T1/2 can be pushed towards
infinity for suitably extreme parameter values (χ → 0 or 1 in the case of
mixing, T → ∞ in the case of cycling). Combination therapy allows no
such ‘infinite optimization’ for either of these protocols, and hence, for
any protocol focused on the dominance time of multiresistance, must be
considered strictly worse. This is in line with results by Obolski & Hadany
[33], who rank protocols based on the emergence time of multiresistance,
and conclude that cycling is preferable to combination therapy.

For X365, with either large or small ν values, combination therapy is of
the order of 2-3 times better than optimal mixing and optimal cycling for
Mbase,Mselect and MHGT (cycling beats mixing for Mbase,Mimport, but
is inferior for MHGT , though in most cases, differences are marginal). For
Mimport, we find that optimal cycling is superior to combination therapy,
which is superior to optimal mixing, regardless of ν.

For XT∗ however, we find that combination therapy dominates all
other strategies, regardless of M . For Mimport, combination therapy gives
XT∗ three times larger than both optimal cycling and optimal mixing. For
Mselect we find a ∼ 190 fold increase, for Mbase, combination therapy is
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Figure 8: The same as figure 7, except here we optimize for different cycle times
as opposed to different mixing ratios. (C & D) Once again we see that T1/2 and
XT are maximized for extreme values (in this case, infinity cycle time). In F
we observe that regardless of the multiresistance arrival channel, the saturation
time tsat gives close to optimal results.
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∼ 500 times better than optimal (symmetric) cycling, and ∼ 700 times
better than optimal mixing. In the case of MHGT , combination therapy
gives XT∗ values more than 1000 times greater than optimal mixing, which
is in turn more than 10 times greater than optimal symmetric cycling (this
difference is reduced for asymmetric cycling, but in this case, the optimal
cycling times tend to zero, indicating that mixing is the superior strategy,
see appendix D for details). The large ratios involved here should be read
with a degree of caution: we do not claim that combination therapy is
hundreds (or thousands) of times ‘better’ than mixing or cycling strate-
gies. By its nature XT∗ takes values closer to 0 than many of the other
evaluation criteria, hence exaggerating the ratio between different values.
X365 may be preferable for more physically meaningful comparisons be-
tween combination therapy and other protocols. That said, it is clear that
XT∗ unequivocally favors combination therapy over all other protocols.

5 Discussion

Antibiotic resistance, and the proliferation of multi-resistant bacteria pose
significant challenges to modern healthcare systems, threatening to roll
back the past century of antibiotic research [8]. Antibiotic management
protocols are designed with the goal of improving patient outcomes while
preventing (as much as possible) increases in resistance. The question of
how best to represent ‘good outcomes’ mathematically runs into certain
difficulties: individual optimization criteria often run at cross purposes
and in many cases entirely contrary to one another.

Based on our explorations in section 4, it seems likely that criteria
intended primarily to delay the arrival of multi-resistance (T1/2 and XT )
should be avoided in most circumstances. These criteria tend to infinity
precisely in those regions where health outcomes are worse than the long
term impact of multiresistance itself. This may be appropriate in certain
cases: when dealing with mild, short term illness, antibiotic stewardship
may be prioritized over immediate recovery [? ]. This is not generically
the case considered in this article however, where our focus has been
antibiotic policy for preliminary antibiotic allocation for inpatients at a
hospital (prior to more detailed ABR testing). With this in mind, it would
appear that time maximizing optimality criteria are most often actively
harmful to the patient population, both in the short and long term. We
also note that, based on our reading of the literature, it is precisely these
time maximizing optimality criteria that recommend against combination
therapy. In all other cases, when combination therapy is considered, it
is found to be superior to both cycling and mixing based protocols. It
seems likely that other criteria not considered here, such as cost, may
recommend against combination therapy. This is outside the scope of the
present analysis.

In order to balance the value of delayed multiresistance with im-
proved health outcomes, we construct the novel optimization criteria,
XT∗ =

∫ Tc
0
X̄ − X̄ABdt; this is in some sense equivalent to optimizing∫∞

0
X(t)dt, all be it with the ‘constant’

∫∞
0
X̄ABdt subtracted off so as to

avoid infinities. By definition, the criteria only gives positive values for
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protocols that improve patient outcomes relative to a ward dominated by
multiresistant bacteria.

Asymptotic arguments allow us to calculate the mean number of unin-
fected patients, X̄, for a variety of cases, both pre and post multiresistance
arrival (section 3). X̄AB can be shown to be independent of management
protocol, while X̄ is protocol dependent. In almost all approximations
of X̄, the infection rate β is a key parameter. While we have gener-
ally discussed differences in β as being metabolic costs of resistance, it is
important to note that these costs can be imposed ‘artificially’ through
targeted isolation of infected individuals. This is suggestive of the critical
importance of such clinical measures as improved hygiene practices and
rapid diagnostics and isolation of ABR cases[29, 18, 43].

In all cases we find that our results are sensitive to ABR importation
rate mA,mB and mAB , that is to say, the prevalence of ABR in the
community. When using cycling, we find that optimal cycle times for X̄T∗
scale with tsat, the so called ‘saturation time’ above which which X̄ rapidly
decays (see figure 8). The exact position of optimal cycling relative to tsat
depends on the source of multiresistant infection (horizontal gene transfer,
spontaneous de novo mutation, or selective de novo mutation). Because
tsat depends on the prevalence of ABR in the community, knowledge of
the local community may be crucial for selecting optimal cycle times.

Recommendations for optimal mixing depend on the means of mul-
tiresistance introduction: balanced 50:50 mixing gives good results when
multiresistance is either imported, or generated through de novo mutation
and poor results if multiresistance arises via horizontal gene transfer (see
figure 7). Further empirical work will be needed in order to determine
which of these channels is most significant.

While the discovery of tsat, and its use in estimating optimal cycling
times is a nice result, there are (inevitably) a number of caveats, condi-
tions, and stones still left unturned. Firstly, many of the asymptotic re-
sults here are made on the assumption that both mA and mB are rather
small; ABR spread is dominated by infection within the hospital (nonso-
comal infection). Outside of this parameter range, the results presented
here may be less relevant. The second limitation in the present research
is the assumption of continuously varying population; given the relatively
small size of a hospital (dozens to hundreds of individuals), this continuity
assumption is at best suspicious, especially when many key dynamics of
the system occurring when RA(t), RB(t) � 1. It would be interesting to
explore these results in the stochastic context. It seems likely that some
analogue to both X̄AB and Tε can be determined, though it is far from
clear that X̄AB will be independent of ABR protocol in the stochastic case.
Similarly, the addition of a 3rd antibiotic is also predicted to change the
behavior of the system, and the appropriate definition of X̄AB . Despite
these complications, we would still posit that some optimization criteria
conceptually equivalent to XT∗ is likely to prove useful in all of these
cases.

While X̄ was found analytically for all management protocols, calcu-
lation of mutant arrival rates relied on numeric solutions of ODEs, and
no analytic approximation looks forthcoming. This problem is further
exacerbated by the fact that it is not even clear which M function is ap-
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propriate, and the possibility of horizontal gene transfer between native
commensule bacteria carrying resistance genes and invasive pathogenic
bacteria [46, 30, 45] raises the possibility that none of the M functions
explored here give reliable results. Determination of which M function
should guide selection of cycle time is an empirical question rather than
a mathematical one. We do note however that, while seldom optimal,
T = tsat is considered ‘good’ for all channels of multiresistance considered
here.

Throughout the literature, numerous antibiotic deployment protocols
have been proposed, each with the conflicting goals of maximizing patient
health and maintaining antibiotic effectiveness. Our goal focus through-
out this article has been to compare these protocols and (more crucially)
to compare the various optimization criteria used to rank them. We find
criteria that are overly focused on antibiotic stewardship (T1/2, XT ) tend
to recommend patient outcomes which are worse than the long term out-
come of multiresistance, and hence are harmful to patients both in the
short and long term. For this reason, we recommend against the use of
such optimization criteria. We find that optimization criteria which are
more patient-centric (X365, XT∗) generally recommend combination ther-
apy as the best method of preventing the creation of multiresistance inside
the hospital, but may occasionally recommend cycling if multiresistance
is primarily introduced from the community.
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A Minimizing Mortality and Hospital Stay

Along with the question of “which integral of X best represents our ABR
goals?”, Uecker & Bonhoeffer also raise the question of whether or not
integrals of X are the best starting point for any evaluation criteria, ref-
erencing the three competing goals of ‘disease prevalence, mortality rate,
length of hospitalisation’ ([41], page 13), after all, the most obvious clinical
goal of a hospital is to minimize mortality, and assist in patients speedy
recovery. Maximizing the number of patients in the ward in the uninfected
class is not (at face value) the same as minimizing the number of fatal-
ities. In Bonhoeffer’s original investigation [6] infection compartments
represented the number of infections in the community – in this context
maximizing the uninfected population is a fairly direct ‘maximization of
health’. However, later adaptions of the model [5] instead imagine each
compartment as populations within a hospital, with immigration and dis-
charge rates back into the community. The exposed class in these models
represents patients who have no major infection, but remain in the hos-
pital for other unrelated reason (for example post operative care). In this
context it is not obvious that maximizing X should be our primary goal;
instead a hospital director might want to minimize fatalities, or minimize
the average number of patients (a rough proxy for the burden on the
health system, and the amount of time patients spend in hospital).

In order to study alternative evaluation metrics we extend the model
in two ways; firstly, we separate emigration from the system into two
streams: death and emigration. Secondly we allow the death/emigration
rate to vary between infected and uninfected individuals. For the time
being, all infections are assumed to have the same death/emigration rates,
regardless of the ABR of any given compartment. This leads us to replace
the exit rate µ with four parameters: d, dX , e and eX ; that is to say
an infected and uninfected death rate, and an infected and uninfected
emigration rate (via hospital discharge).

The total death rate at any given time is given by:

D = dXX + d(S +RA +RB +RAB). (16)

This total population is given by:

σ = X + S +RA +RB +RAB . (17)

Noting that the total number of patients within the hospital is con-
served, but for immigration, death and discharge, we find:

σ̇ =
∑

mi − (d+ e)σ − (dX + eX − d− e)X.

Integrating the above over an entire cycle (when cycling drugs) or
solving for steady states (for mixing and combination therapy) gives us
a relationship between the mean uninfected population and mean total
population:

0 =
∑

mi − (d+ e)σ̄ − (dX + eX − d− e)X̄ (18)

σ̄ =

∑
mi

(d+ e)
− (dX + eX − d− e)

(d+ e)
X̄. (19)
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Combining eq. 16, 17 and 19

D̄ = (dX − d)X̄ + dσ̄ =

∑
dmi

(d+ e)
− (deX − edX)

(d+ e)
X̄. (20)

For any reasonable illness, where eX > e, dX < d, the problem of min-
imizing death is equivalent to maximizing X̄ (the two have a negative
linear relationship). The relationship between σ̄ and X̄ will be posi-
tive or negative depending on the sign of (d + e − dX − eX). When
d− dX < eX − e, improvements in discharge rate are larger than changes
to mortality rate and minimizing hospital load is equivalent to maximiz-
ing X̄. When d−dX > eX − e, the ‘best’ strategy for minimizing hospital
load is to maximize the spread of infection; however in this case, hospital
load is reduced purely through patient fatality. In such a case, maximiz-
ing X̄ would still appear preferable according to any reasonable medical
or ethical standard.

It is also worth noting that the various asymptotic results throughout
this paper are determined by ṘA, ṘB and independent of σ and dX , eX ,
hence they will still apply even when dX 6= d, eX 6= e. The one exception is
equation 32, a quadratic in S and σ; given the linear relationship between
σ and X, this quadratic can be easily adapted for variable exit rates.

Hence maximizing X̄ is an optimal strategy, both for minimizing mor-
tality, and patient recovery time. While not exactly a revelation, it is
reassuring to know that these goals are well aligned and in some sense
‘equivalent’ to one another; both downstream goals are not only mono-
tone in X̄, but also linear. These results may be more complicated in
situations where death or discharge rates vary between different ABR
classes, or if we are dealing with multiple different infections of varying
severity, but based on what we have seen so far, all reasonable measures
of success with generally point in the same direction.

B Analytic approximations of X̄ for var-
ious protocols

In this section we give derivations for the various X̄ approximations of
the main text, that is to say equations 8, 11, 12 and 15. For each of
these approximations, we describe the underlying assumptions, where the
approximation is applicable, and how it can fail.

B.1 Combination Therapy

In the case of combination therapy, all infected compartments are subject
to at least one effective antibiotic. There exists a single stable equilibrium,
which can be found numerically. Under the assumption that A and B are
effective at keeping infection down (τ + µ) � βiX for each βi, and all
infected compartments can be well approximated by the balance between
immigration and recovery: S ≈ mS/(τ + µ + γ), RA ≈ mA/(τ + µ +
γ), RB ≈ mB/(τ + µ + γ). The total population of the ward is given by
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σ =
∑
mi/γ, and hence the healthy population is

X ≈
∑

mi/γ − (ms +mA +mB)/(τ + µ).

This gives equation 8 of the main text.

B.2 Mixing

Antibiotic mixing is best represent by the ‘7-box’ model, as proposed by
by Uecker & Bonhoeffer[42] (see section 2 for details).

As in the case of combination therapy, the equilibrium state for mixing
can be found by solving Ṡ = ṘBA = ... = 0 numerically. Analytic solutions
can be found by first determining what fraction of RA and RB are being
treated effectively. This can be done by first noting:

χBṘ
A
B = χAṘ

B
B = 0 (21)

mBχBχA + βB(RAB +RBB)XχAχB = mBχBχA + βB(RAB +RBB)XχAχB

−µRABχB − (γ + τ)RABχB + qRBBχB − µRBBχA − γRBBχA − qRBBχA,
(22)

cancelling common terms (the top row) gives

−µRABχB − (γ + τ)RABχB = −µRBBχA − γRBBχA − qRBB(χA + χB) (23)

RAB
RBB

=
(µ+ γ)χA + q

(µ+ γ + τ)χB
(24)

RAB
RBB +RAB

=
(µ+ γ)χA + q

τχB + µ+ γ + q
(25)

Let us call this ratio ρB = RAB/(R
B
B +RAB), the effective treatment ratio.

A similar ratio applies for A, ρA = RBA/(R
A
A + RBA). Equipped with an

analytic expression for how often RB is treated effectively, we can now
determine for what values of X RB can be stable

ṘAB + ṘBB = mB + βB(RAB +RBB)X − (µ+ γ)(RAB +RBB)− τRAB (26)

0 =
mb

RAB +RBB
+ βBX − (µ+ γ)− τρB (27)

X ≤ µ+ γ + τρB
βB

(28)

In the case where mb � βB(RAB+RBB) (resistance importation is rare),
the inequality will end up being a reasonably tight estimate of X, which
can in turn be used to estimate S,RBA + RAA, and finally (via population
conservation) RBB + RAB . A similar X inequality can be found, as dic-
tated by ṘAA + ṘBA (equation 11a). Finally, a third ‘successful treatment’
upper bound can be found by assuming all resistant infections are rare
(RAA, R

B
A , R

A
B , R

B
B � 1), and X + S make up the vast majority of the

population: X + S ≈ σ =
∑
mi/µ. Here σ represents the total hospital

population at equilibrium. For the particular model considered here, σ is
independent of time and AB protocol.
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The S dominated equilibrium can be found via the quadratic formula:

Ṡ = 0 ≈mS + βS(σ − S)S − (γ + τ + µ)S (29)

S ≈
(γ + τ + µ− σβS)±

√
(γ + τ + µ− σβS)2 − 4βSmS

2βS
(30)

≥ mS

γ + τ + µ− σβS
(31)

X ≈σ − S ≤
∑

miµ−
mS

γ + τ + µ− σβS
(32)

Taken together these three upper bounds (RA, RB or S dominated equi-
libria, equations 11a,11b,11c) constrain the long term equilibria X̄. Di-
agrams comparing the exact equilibrium (found numerically) to the ap-
proximations above for a variety of χ and q values are given in figure 5.
As can be seen, all approximations are highly accurate within their do-
main of applicability. Near the boundary of these regions, where multiple
constraints are approximately equal, multiple different strains of infection
have non-trivial contributions, and X is correspondingly reduced, leading
to a smooth transition.

B.3 Cycling

Let us now turn our attention to cycling protocols. Cycling protocols take
one of two major forms: ‘fast’ cycling, in which the system is never allowed
to reach equilibrium, and ‘slow’ cycling, in which the system reaches equi-
librium with each cycle. Typical trajectories of such cycling protocols are
given in figure 4 C,D of the main text. Each dynamic regime allows for dif-
ferent simplifying assumptions and gives rise to different approximations
of X̄ (equations 12).

In the main text we explore cycling protocols in the context of sym-
metric parameter values βA = βB ,mA = mB and cycle times TA = TB .
Here, for the sake of generality, we consider the alternative case, where
these parameter values are not assumed to be equal. The symmetric case
considered in the main text follows directly as a special case. In what
follows, TA and TB indicate the amount of time during a cycle spent ad-
ministering drug A and B respectively (total cycle time TA + TB). This
gives:

χA(t)

{
1 mod (t, TA + TB) < TA

0 mod (t, TA + TB) ≥ TA
with χB(t) = 1− χA(t).

Let us first consider the case of ‘fast’ cycling. For fast cycling neither
RA nor RB approach their equilibrium values and we can integrate over
a full A/B drug cycle to find:∫ TA+TB

0

ṘA
RA

dt =

∫ TA+TB

0

mA

RA
dt−((TA+TB)(µ+γ)+TBτ)+βA

∫ TA+TB

0

Xdt.

(33)
By periodicity log(RA(2T )) = log(RA(0)), and hence

X̄ ≤ X̄A
fast =

[
µ+ γ +

TB
TA + TB

τ

]
/βA (34)
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Figure 9: Asymmetric cycling with asymmetric infectivity parameters. (A)
when X̄A > X̄B , X̄ is forced close to X̄B and the X population is not large
enough to sustain the RA population, leading the population to decline with
each cycle. (B) when X̄A ≈ X̄B both resistant strains coexist; while X̄A is
fractionally lower than X̄B , decay is slow, and influx via mA,mB stabilizes
both populations away from zero. Numerical artifacts and the peculiarities of
the initial conditions are enough to cause minor drift with each cycle.

Similarly, integrating ṘB over a full cycle gives rise to

X̄ ≤ X̄B
fast =

[
µ+ γ +

TA
TA + TB

τ

]
/βB (35)

Much like the mixing case, one of these two bounds will be smaller; the
associated strain (either RA or RB) will maintain a significant population
at all times, while the other strain is pushed to low population levels
maintained only by immigration (see figure 9A). Because mi � Ri at all

times for the dominant strain,
∫ TA+TB

0
mA
RA

dt ≈ 0 and the X̄ ≈ X̄
A/B
fast .

In the symmetric case with βA = βB ,mA = mB , TA = TB we recover
equation 12a.

Let us now consider the ‘slow’ cycling case. This case is more com-
plicated, because both RA and RB dip low enough such that mA/RA and
mB/RB can no longer be ignored, but also simpler, because the system
returns to equilibrium with each cycle before the new drug regime can
begin. In general, X spikes for a brief period following the introduction of
each new antibiotic, and then quickly returns to some equilibrium level,
X̌, which may depend on the antibiotic being used (denoted X̌A, X̌B).∫ TA

0
Xdt is thus equal to TAX̌

A + CA, where CA represents the area be-
neath the spike and above the equilibrium when switching from drug B
to drug A (see figure 10). A similar integral applies when administering
drug B. In the symmetric case we refer to equilibrium values, X̌, and
spike integral, C, without superscripts.

We begin by determining the relevant equilibrium in each part of the
cycle. Let σ =

∑
mi/µ = S + RA + RB + X. The equilibrium level

of X while drug A is applied is X̌A = (µ + γ)/βA, and similarly X̌B =
(µ+γ)/βB . These two equilibria determine the equilibria of the remaining
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populations, namely:

ŠA = ms/(µ+ γ + τ − βSX̌A), ŠB = ms/(µ+ γ + τ − βSX̌B), (36)

ŘAB = mB/(µ+ γ + τ − βBX̌A), ŘBA = mA/(µ+ γ + τ − βAX̌B), (37)

R̂AA = σ − ŠA − X̌A − ŘAB , R̂BB = σ − ŠB − X̌B − ŘBA . (38)

Note here that we use notation in a different way to the 7-box model
previously discussed in the main text. While superscripts once again
represent the antibiotic currently being applied, it is assumed that a switch
in the hospitals drug protocol will shift the entire population (not only
freshly incoming patients, as in the 7-box model).

  

X

t

∫ X̌ dt

∫ X− X̌ dt=C

Figure 10: Schematic depiction of
∫
Xdt over one antibiotic cycle. The integral

can be broken into two components; one that accounts for the equilibrium X
value, and the other that accounts for the excess X levels immediately after
switching.

In order to calculate X̄ over the time period [0, TA +TB ] we break the
integral into two parts, and make use of the Ṙ equation for the resistant
strain in each part, hence:

ṘA =mA + βAXRA − (µ+ γ)RA, (39)

dividing through by RA and rearrange to make X the subject,

βA

∫ TA

0

Xdt = (µ+ γ)TA −
∫ TA

0

ṘA
RA

dt+

∫ TA

0

mA

RA
dt. (40)

Each of the terms on the right hand side of the above can be approximated.∫ TA
0

mA
RA

dt corresponds (after some rearrangement) with X̌A. Simple in-

tegration tells us that
∫ TA

0
ṘA
RA

= [log(RA)]TA0 dt ≈ log(R̂AA) − log(ŘBA),

leaving only
∫ TA

0
mA
RA

dt.

Directly before drug switching RA = ŘBA . Directly after switching
drugs, we have ṘA = τRA; all remaining terms sum to zero, as otherwise
the pre-treatment equilibria would not be an equilibria. Hence, imme-
diately following drug switching mA/RA ≈ mA

ŘB
A

e−τt. See figure 11 for a
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comparison of this approximation to numeric solutions of the full ODE
system. Straight forward integration gives

∫ TA
0

mA
RA

dt ≈ mA
τ̌RB

A

.
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Figure 11: Trajectories of RA in a number of different coordinate regimes. Drug
A is administered from time 0 to t = 25, while drug B is administered within
[−25, 0) and [25, 50). (A) RA in the original coordinates. (B) m/RA, the func-
tion we must integrate in order to determine

∫
Xdt. The approximation τe−τt

is given by the black line. The shape of m/RA in the region t = [T, 2T ) follows a
clean ‘logistic-like’ curve. (C) A closer examination of (B), comparing mA/RA
(thick blue line) with the approximation τe−τt (thin black line). (D) the RA
trajectory in logarithmic coordinates. As can be seen in both (A) and (D), in
the time window (25,50], when drug B is administered, the decay trajectory
of RA towards m/τ is rather complicated; in contrast, when drug A is admin-
istered m/RA follows an approximately exponential curve of the form τe−τt

before converging to R̂A (see the smooth exponential curve in (B) and linear
increase in (D) ).

Taken together, these elements give:∫ TA

0

Xdt =
µ+ γ

βA
TA +

[
log(ŘBA)− log(R̂AA) +

mA

τ̌RBA

]
/βA, (41)∫ TA

0

Xdt = X̌ATA + CA (42)

And similarly, it can be shown∫ TA+TB

TA

Xdt =
µ+ γ

βB
TB +

[
log(ŘAB)− log(R̂BB) +

mB

τ̌RAB

]
/βB , (43)∫ TA+TB

TA

Xdt = X̌BTB + CB (44)
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In the symmetric case mA = mB , βA = βB , TA = TB , we find mA
τ̌RB

A

= 1

and
∫ TA+TB
TA

Xdt =
∫ TA

0
Xdt. Substituting in we recover equation 12b.

B.4 Equilibrium post multi-resistance, and con-
struction of XT ∗

Suppose we wish to determine X̄AB , the long term average number of
uninfected individuals, in the presence of multiresistant bacteria. When
using cycling therapy, we average X̄AB over a complete cycle. If using
mixing or combination protocols, X̄AB is instead equal to the long term
steady state value ofX(t). We would like to determine this value under the
assumption that RAB > 0. While it is possible to find steady states in the
case of mixing and combination therapy, solving equations 1 analytically
for cycling protocols is not (generically) possible. Fortunately, it also
proves unnecessary.

Consider eq. 1d

ṘAB = mAB − µRAB + βABRABX − γRAB . (45)

Assuming that multiresistant bacteria are rare in the community (mAB �
1) and mutation events producing RAB strains are rare, it is possible to
divide through by RAB and integrate. This is the approach used by Bon-
hoeffer et al. [6] in their original paper, although here we will emphasize
and make use of the results in a somewhat different manner.

[log(RAB)]
tf
ts

=

∫ tf

ts

mAB

RAB
dt+ βAB

∫ tf

ts

Xdt− (γ + µ)(tf − ts). (46)

Both mAB and RAB are non-negative, hence
∫
mAB/RABdt ≥ 0.

[log(RAB)]
tf
ts

is positive when RAB is increasing, but RAB is bounded
above by the total population size, and hence, RAB can not increase in-
definitely. Hence, in the long run [log(RAB)]

tf
ts
≤ 0 regardless of AB

protocol.
Taken together, these facts imply∫ tf

ts

X

tf − ts
dt = X̄AB ≤

γ + µ

βAB
. (47)

The existence of this equilibrium was implied in [6], though never
explicitly stated.

Strategies that would receive higher X̄ in the absence of multiresistant
infections will instead approach an equilibrium or cycle with mean value
close to X̄AB . Protocols that would otherwise result in X < X̄AB (such
as withholding antibiotics entirely) will retain their low X value, and will
result in the RAB population decaying at a rate proportional to X̄AB−X.
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With equation 46 in mind, it is possible (through some abuse of nota-
tion) to ‘integrate’ X from t = 0 to ∞:∫ ∞

0

Xdt =

∫ Tε

0

X − X̄ABdt+

∫ ∞
Tε

X − X̄ABdt+

∫ ∞
0

X̄ABdt (48)

= XT∗ + [log(RAB)]∞Tε +

∫ ∞
Tε

mAB

RAB
dt+∞. (49)

While infinite, the term
∫∞

0
X̄ABdt is entirely independent of our antibi-

otic management regime, and hence can be ignored from the perspective
of optimization (its derivatives are zero). Assuming a hospital does not
pursue an elimination strategy for multiresistance, RAB will eventually
approach RAB ≈ σ − X̄AB , hence the log term equation 49 can also be
considered constant (or approximately so). Finally, mAB

RAB
is approximately

zero whenever mAB � RAB . Hence, optimization over all time will closely
resemble optimization over the far more reasonable timespan [0, Tε].

It is worth discussing the similarities between XT∗ and the optimiza-
tion criteria G1/2, as originally proposed by Bonhoeffer et al. [6]. G1/2

is defined as “the gain in uninfecteds before 50% of infecteds are AB-
resistant”, where ‘gain’ is defined as the gain relative to the no antibiotic
use equilibrium. Stated in the notation of the current work, this would
be written as:

G1/2 =

∫ T1/2

0

X − X̄∅dt =

∫ T1/2

0

X − γ + µ

βS
dt, (50)

where here X̄∅ represents the ‘no antibiotic treatment’ equilibrium.
This constant term −X̄∅ is frequently dropped in works following up

from Bonhoeffer et al. – an approach which is valid when considering
integrals with a fixed endpoint such as X365, for which

∫
X̄∅dt is itself

constant, but significantly alters the optimization criteria for any integral
with variable end point, such as G1/2 and XT (which are ‘identical’, but
for the offset term).

XT∗ differs from G1/2 in two major ways. First, it uses a different
‘offset’ term: this change, while numerically minor, is also fairly critical
for the sake of physically meaningful results. Whenever βAB < βS there
will exist AB management strategies satisfying (γ + µ)/βS < X̄ < (γ +
µ)/βAB such that T1/2 =∞, leading to G1/2 =∞. Any protocol designed
to achieve this intermediate X will be strictly worse than dealing with
multiresistant infections directly, and yet this is precisely the strategy
that G1/2 will optimize towards. Note that no such degenerate results
occur for offset terms slightly higher than X̄AB .

The second difference between G1/2 and XT∗ is the choice of integral
endpoint: T1/2 in the former case and Tε in the later. This is done for
two reasons: firstly, Tε is easier to deal with analytically; it depends
only on mutation rate, unlike T1/2 which depends on both mutation and
spread of RAB . Secondly, Tε occurs precisely when RAB = ε, as opposed
to when RAB = S + RA + RB as in the T1/2 case. This means that the
neglected term [logRAB ]∞Tε is constant. In contrast [logRAB ]∞T1/2

will vary

between protocols, leading to a non-constant offset between
∫∞

0
Xdt and
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∫ T1/2

0 X̄ − X̄ABdt. With that said, both these advantages are theoretical,
and T1/2 may well be the more appropriate end point when dealing with
clinical trials. In general, we do not anticipate Tε or T1/2 giving radically
different clinical recommendations.

C Stability of XT∗ optima to variation in
parameter values.

In order for XT∗ to provide reliable recommendations, we might require
that it not be too sensitive to model specifications (5 vs 7 box model) and
parameter values – particularly those parameter values which are hard
(or impossible) to measure. Unlike previous optimization criteria, correct
evaluation of XT∗ requires knowledge of µ, γ and βAB . While µ and γ can
be reasonably calculated in advance, βAB , the infectiousness of multire-
sistant bacteria can not be measured in advance. It depends not only on
the reproductive cost of resistance, intrinsic to the bacteria itself, but may
also be influenced by medical interventions, such as quarantine, that may
artificially influence infection rates. Figure 12 demonstrates how optimal
cycle times vary depending on βAB ; optimal cycle times are relatively
stable across a range of βAB values, but notably have sudden jumps, es-
pecially near βAB → βA = βB . Fortunately, these jumps correspond
to regions of parameter space where many T values give almost optimal
results. While picking truly optimal T becomes more difficult, selecting
almost optimal T is relatively easy.

Another important and less easily determined variable is the ABR
importation rates mA and mB . Throughout this paper these rates are
assumed to be ‘low’, but how small, and how sensitive optimal switching
times are to these parameters is a question of some interest, especially
given our previous hypothesis that optimal arrival times scale with tsat,
a function of mA,mB .

In order to investigate this, we run numerical simulations and calculate
(X̄ − X̄AB)/M̄ for a variety of mA = mB and T values, and then select
the optimal T for each m (see figure 13). For each m, we also calculate
tsat. Optimal T for both Mbase and MHGT are roughly parallel to tsat
over several orders of magnitude, with THGT ≈ tsat + 30, and Tbase ≈
tsat−10. Optimal T for Mselect is found between these two values, though
where it falls in this range varies depends on m. It seems likely that the
offset between tsat and optimal T will vary depending on other system
parameters. We observe remarkable consistency between both 5 and 7-
box models; it would appear that antibiotic ‘switching lag’ in the 7-box
model has minimal impact on optimal cycling time. This is likely the
result of ‘lag’ being significantly smaller than switching time T , and thus
not playing into the overall dynamics, so long as T is not too close to 0.
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Figure 12: Optimal cycle times. Coloured lines give optimal cycling protocols for
each mutant arrival channel, with T = 0 equivalent to a 50:50 mixing protocol.
The horizontal black line represents tsat, while the dashed vertical line represents
βA = βB ; βAB values above this line represent multiresistant strains which
are more infectious than their single resistant counterparts. As can be seen,
optimal cycling strategies are broadly stable over a range of βAB value, with
sudden changes in optimal strategy in the vicinity of various ‘tipping points’,
for example βAB ≈ 0.95 when using Mbase in the 5-box system.
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Figure 13: Optimal cycle times for a given importation rate. Coloured lines give
optimal cycling protocols for each mutant arrival channel, with T = 0 equiva-
lent to a 50:50 mixing protocol. The black line represents tsat. As resistance
importation rate increases, optimal cycling time decreases.
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D Further comparisons of optimization
criteria

In the main text (section 4) we compared four optimization criteria in the
context of both mixing and cycling. In each case we made simplifying
assumptions – namely, in the mixing case, we assumed zero treatment
switching, q = 0, and in the cycling case, we assumed symmetric cycling
and symmetric parameter values. Here we (briefly) consider the implica-
tions of relaxing these assumptions. In figure 14 we consider mixing, with
a drug correction rate q = 1/6. As might be expected, the inclusion of
drug switching improves outcomes as measured according to X365, XT∗,
but reduces T1/2 and XT (with the exception of XT under the influence
of MHGT ). Once again, we observe that for X365, XT∗, a mixing ratio
close to 50:50 is recommended in all cases except MHGT ; in this case, the
optimal χA ratio remains only slightly offset for X365, the maximum value
for XT ∗ moves from χA ≈ 0.25 to χA ≈ 0, that is to say (for the parame-
ter values considered here), horizontal gene transfer is best minimized by
having a single ‘front line’ treatment, and only switching the patient to
the second treatment if the first does not work. This contrasts with the
case of ‘no switching’, where both antibiotics needed to be applied with
non-trivial frequency in order to get optimal outcomes.

In figure 15 we also consider a single case of ‘asymmetric cycling’. In
this case, we assume that βA = βB ,mA = mB and TA = 3

2
TB . In general,

it is found the asymmetry reduces X365 and XT∗, while increasing T1/2

and XT . The one exception being the case of multiresistance arrival via
horizontal gene transfer; in this case fast asymmetric cycling significantly
improves X365 and XT∗ compared to the symmetric case.
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Figure 14: Comparison between optimization criteria assuming either q = 0
(thin lines) or q = 1/6 (thick, dashed lines). (A & B) The expected values
of X365 for high and low mutation/importation rate ν. Each line indicates a
different channel of multiresistance arrival. (C & D) Expected valued of T1/2
and XT . Note that unlike that q = 0 case, the q = 1/6 case does not allow
infection time to tend to infinity. Optimal values are still found for the extreme
values χA = 0, 1 (E) XT∗ for a variety of T values. (F) XT∗ rescaled such
that max(XT∗) = 1. In all cases, drug-switching improves outcomes. With the
exception of MHGT , changing q has no impact on the position of the optimal χ.
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Figure 15: Here we compare symmetric (thin lines) and asymmetric (thick,
dashed) cycle times. In the asymmetric case, drug A is used for 60% of the cycle
time and drug B for 40%. (A & B) The expected values of X365 for high and
low mutation/importation rate ν. Asymmetry reduces X365 in all cases except
for MHGT with short cycle time. If mutation rate is high enough, asymmetry
can also provide some improvements for short cycle times for Mselct, though the
maximum still remains with long cycle times. (C & D) Expected values of T1/2
and XT . In both cases, asymmetry slows development of antibiotic resistance.
(E) XT∗ for a variety of T values. (F) XT∗ rescaled such that the maximum for
symmetric cycling equals one. Asymmetric cycling for each M is scaled using
the same scaling factor. Asymmetry significantly worsens results in all cases
except MHGT with short cycle time.
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