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Abstract 
Like other congregate living settings, military basic training has been subject to outbreaks of 

COVID-19. We sought to identify improved strategies for preventing outbreaks in this setting 

using an agent-based model of a hypothetical cohort of trainees on a U.S. Army post. Our 

analysis revealed unique aspects of basic training that require customized approaches to 

outbreak prevention, which draws attention to the possibility that customized approaches may 

be necessary in other settings, too. In particular, we showed that introductions by trainers and 

support staff may be a major vulnerability, given that those individuals remain at risk of 

community exposure throughout the training period. We also found that increased testing of 

trainees upon arrival could actually increase the risk of outbreaks, given the potential for false-

positive test results to lead to susceptible individuals becoming infected in group isolation and 

seeding outbreaks in training units upon release. Until an effective transmission-blocking 

vaccine is adopted at high coverage by individuals involved with basic training, need will persist 

for non-pharmaceutical interventions to prevent outbreaks in military basic training. Ongoing 

uncertainties about virus variants and breakthrough infections necessitate continued vigilance in 

this setting, even as vaccination coverage increases. 
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Significance Statement 

COVID-19 has presented enormous disruptions to society. Militaries are not immune to these 

disruptions, with outbreaks in those settings posing threats to national security. We present a 

simulation model of COVID-19 outbreaks in a U.S. Army basic training setting to inform 

improved approaches to prevention there. Counterintuitively, we found that outbreak risk is 

driven more by virus introductions from trainers than the large number of trainees, and that 

outbreak risk is highly sensitive to false-positive results during entry testing. These findings 

suggest practical ways to improve prevention of COVID-19 outbreaks in basic training and, 

as a result, maintain the flow of new soldiers into the military. This work highlights the need for 

bespoke modeling to inform prevention in diverse institutional settings. 

Introduction 

In addition to the widespread societal and economic harms caused by the COVID-19 pandemic, 

operations in numerous institutional settings have experienced disruptions and necessitated 

major adjustments. As one example, colleges and universities have adopted a variety of testing 

strategies to reduce transmission, including pre-matriculation testing and up to twice-weekly 

testing to survey for asymptomatic and pre-symptomatic infections (1–3). Some sporting 

leagues and workplaces have made similar adjustments to their operations (4, 5). In situations 

where adjustments have been more minimal, such as relying solely on symptom-based 

surveillance, large outbreaks have occurred, requiring the suspension of operations until the 

outbreak has run its course (6–9). These failures indicate that symptom-based surveillance is 

inadequate as the primary intervention for preventing the introduction and spread of SARS-CoV-

2 in these settings (10–13). 

 

Beyond the aforementioned institutional settings, COVID-19 has also caused disruption in 

military settings (14–16). On the USS Theodore Roosevelt, an outbreak of COVID-19 infected at 

least 1,331 out of 4,779 sailors and forced the diversion of the ship to the U.S. Naval base on 

Guam (14, 15). In several basic training settings, COVID-19 outbreaks have occurred shortly 

after trainees arrived, despite the fact that they were tested on arrival and isolated if positive 

(16, 17). Outbreaks in basic training settings are of concern because they disrupt the flow of 

new soldiers into the military, which is essential to maintaining force strength as retirements and 

expiring enlistments continue despite interruptions to basic training. 

 

The fact that outbreaks have occurred in basic training despite efforts to prevent them suggests 

that there is room for improvement with prevention in this setting (18, 19). There are a number 

of unique challenges to preventing outbreaks during basic training, however. First, new recruits 

to the military are generally in good health and young, making it likely that they develop only 

mild symptoms or none at all (20, 21). Second, basic training involves groups of hundreds of 

people training in close quarters (e.g. first aid, partner-based strength and conditioning) and 

spending nearly all of their time together, including in situations that present prime opportunities 

for transmission, such as dining, sleeping, exercising, and performing personal hygiene. Third, 

testing at the time of arrival leaves open the possibility of missing infections among trainees who 
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were infected shortly before arrival or en route (22, 23). In addition, the current lack of regular 

testing of trainers and support staff leaves open the possibility that they could introduce the 

virus into this setting. 

 

We used an agent-based simulation model developed around a hypothetical basic training 

setting (Fig. 1) to investigate the potential to reduce the risk and extent of COVID-19 outbreaks 

in this unique setting. We calibrated the model to data from testing upon arrival and 18-22 days 

later at two U.S. Army posts that experienced COVID-19 outbreaks. That informed the model’s 

assumptions about the initial prevalence of infection among recruits and transmission potential 

in a basic training setting, as represented by the basic reproduction number, R0. Using this 

model, we examined how effective four interventions might be in reducing the probability and 

size of outbreaks in this setting: 1) reducing introductions by trainers and support staff, 2) 

increasing rounds of arrival testing of trainees, 3) increasing compliance with wearing face 

masks and practicing physical distancing, and 4) increasing immunity among trainees through 

pre-arrival vaccination. 
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Figure 1. Model schematic. Trainees arrive in a three-day window (blue), progress to cocoons 

of 60 trainees each for 14 days (yellow), and then progress to companies of 240 trainees each 

for 56 days (green). Trainees have contact with other trainees in their cocoon or company, with 

trainers (brown) assigned to their unit (two per cocoon, eight per company), and with support 

staff (gray). Trainees who test positive following arrival testing or presentation with symptoms 

are placed in the sick bay (red) for ten days before returning to their unit. Trainers and support 

staff who test positive following presentation with symptoms isolate from home for ten days. 

New cohorts like the one depicted here enter training posts on a weekly basis, but we model 

only one given that cohorts do not interact with one another. All processes in the model are 

defined on a daily time step. 
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Results 

Model calibration 

We assumed values of most parameters based on the literature (Table 1) and calibrated two 

others (initial prevalence of infection, p, and the basic reproduction number, R0) for each of two 

U.S. Army posts with known outbreaks during basic training: Fort Benning (FB) and Fort 

Leonard Wood (FLW). Upon arrival, 4/640 recruits were positive at FB and 0/500 at FLW. After 

accounting for the possibility of false negatives and false positives consistent with our model’s 

assumptions about test sensitivity and specificity, we obtained median estimates of p of 1.9% at 

FB (95% credible interval: 0.3-2.9%) and 0.9% at FLW (95% CrI:0.2-1.5%). Simulating the 

model forward until the next testing day on each post, we found that a median R0 value of 11.3 

(95% CrI: 5.7-17.9) best matched the 142/636 positive tests on day 22 at FB and that a median 

R0 value of 10.4 (95% CrI: 6.4-17.8) best matched the 70/500 positive tests on day 18 at FLW 

(Figs. 2, S1). Given that these outbreaks were exceptional events rather than common 

occurrences, we focused our baseline scenario on a value of R0 equal to the average of the 

0.1% quantiles of the R0 estimates from FB and FLW (4.7). 

 

Figure 2. Model calibration to data from outbreaks in basic training settings. Functional 

boxplots show model predictions from 1,000 replicate simulations for Fort Benning (left) and 

Fort Leonard Wood (right) based on median parameter values calibrated to data from each (red 

circles). The functional boxplot shows the median estimate (black line), 25-75% interval (blue 

band), 2.5-97.5% interval (blue lines), and outliers (dashed green lines). These results 

demonstrate agreement between the data and the central tendency of the model but also 

highlight the degree of stochasticity in the model’s behavior. 
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Table 1. Model parameters. For parameters for which references are cited, baseline values 

correspond to median estimates, and low and high values correspond to 2.5% and 97.5% 

quantiles, respectively. Isolation length is the only exception, which was chosen to span a range 

of values that have been considered at different points. 

Parameter Baseline value Low value High value Reference 

Parameters calibrated to outbreak data 

Basic reproduction number 4.7 3.7 5.7 Calibrated, +/- 1 

Initial prevalence of infection 0.014 0.0025 0.022 Calibrated 

Parameters explored in intervention analysis 

Probability of community 

exposure to trainers and 

support staff over the 70 

days of basic training 

0.01 0 0.10 Pei et al. (24) 

Compliance with masks and 

distancing 

0.3 0.1 0.5 Chu et al. (25) 

Proportion immune upon 

arrival 

0.026 0.018 0.033 Pei et al. (24) 

Parameters explored in sensitivity analysis 

Incubation period (shape) 5.807 3.585 13.865 Lauer et al. (22) 

Incubation period (scale) 0.948 0.368 1.696 Lauer et al. (22) 

Duration of symptoms 10 d 8 d 11 d Chen et al. (26) 

Proportion symptomatic 0.57 0.54 0.60 Kasper et al. 
(14) 

Generation interval (shape) 2.89 1.7 4.7 Ferretti et al. 
(27)  

Generation interval (scale) 5.67 4.6 6.9 Ferretti et al. 
(27)  

Test specificity 0.998 0.992 0.999 Perkins et al. 
(28) 
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Test sensitivity 0.859 0.547 0.994 Perkins et al. 
(28) 

Protection from face masks 

(odds ratio) 

0.3 0.2 0.5 Payne et al. (15) 

Isolation length 10 d 7 d 14 d CDC (29) 

Relative infectiousness of 

asymptomatics 

0.8 0.5 1.0 Assumed 

 

Model behavior under baseline scenario 

Following the calibration procedure, simulations of our model tracked a cohort of 1,200 trainees 

who spent their first two weeks of basic training in 20 cocoons of 60 and the next eight weeks in 

five companies of 240 (Fig. 1). Under the baseline scenario, testing occurred upon arrival and 

14 days later, compliance with face masks and physical distancing was assumed as 30%, the 

proportion immune at the time of arrival was 2.6%, and trainers and support staff had a 1% 

chance of becoming infected in the community over the 70-day period of basic training. Given 

that calibrated values of p and R0 from FB and FLW were similar, we used the averages of their 

medians for p (1.3%) and 0.1% quantiles for R0 (4.7) in our baseline scenario. 

 

Under this scenario, cumulative infections over the 70-day training period were distributed 

multimodally across 1,000 replicate simulations, with many resulting in very few infections and 

some resulting in outbreaks in one or more companies (Fig. 3 A). This multimodal pattern was 

driven by stochasticity in the number of companies that experienced an outbreak affecting many 

individuals within the company but few outside it, consistent with the structure of contacts 

assumed in the model. Based on this distribution, we defined an outbreak as a simulation in 

which 100 or more infections occurred over the training period. According to this definition, 62% 

of simulations resulted in an outbreak, and the median size of an outbreak was 382 (25-75% 

interval: 206-424) in the event that one occurred (Fig. 3 B). When all interventions in the 

baseline scenario were relaxed (i.e., no arrival testing, no symptom-based surveillance and 

isolation, and no masks or distancing), the probability of an outbreak increased to 0.93, and the 

median size of an outbreak increased to 448 (25-75% interval: 390-667) (Fig. 3 C, D). Thus, our 

model predicts that even though interventions under our baseline scenario allowed for 

outbreaks, they made them less frequent and less severe than they would have been otherwise. 

Still, results from the baseline scenario indicate that there is scope for further reducing outbreak 

risk. 
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Figure 3. Outbreaks under the baseline scenario (top) and a scenario with no 

interventions (bottom). Left: Distributions of cumulative infections over the 70-day training 

period across 1,000 replicate simulations. Right: Functional boxplots of daily incidence of new 

infections across 1,000 replicate simulations showing the median estimate (black line), 25-75% 

interval (blue band), 2.5-97.5% interval (blue lines), and outliers (dashed green lines). Based on 

A, we defined an outbreak as 100 or more total infections (vertical dashed lines in A and C). The 

probability of an outbreak and the median and 25-75% interval of outbreak sizes are printed in B 

and D. 

 

Impact of interventions 

Reducing introductions by trainers and support staff 

When introductions by trainers and support staff were eliminated completely, the probability of 
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an outbreak decreased from 0.60 to 0.38 under our model (Fig. 4). The size of outbreaks was 

also reduced, with median cumulative infections decreasing from 351 to 210 and the 75th 

quantile decreasing from 428 to 398. This pattern reflects a decrease in the number of 

companies experiencing an outbreak, consistent with the multimodal nature of how cumulative 

infections were distributed across replicate simulations (Fig. 3 A, C). When the probability of 

community exposure for trainers and support staff increased from 0.01 to 0.10 over the course 

of the training period, outbreaks happened in almost all 1,000 (99%) replicate simulations and 

had a large magnitude (median: 828 infections; 25-75% interval: 663-994). 

 

 
Figure 4. Outbreaks in basic training as a function of community exposure of trainers 

and support staff. From left to right, columns show increases from 0 to 0.01 to 0.10 of the 

probability that trainers and support staff were exposed to the virus in the community over the 

course of the 70-day training period. Each panel contains a functional boxplot of the daily 

incidence of new infections across 1,000 replicate simulations showing the median estimate 

(black line), 25-75% interval (blue band), 2.5-97.5% interval (blue lines), and outliers (dashed 

green lines). The probability of an outbreak and the median and 25-75% interval of outbreak 

sizes are printed in each panel. 

 

Arrival testing of trainees 

To isolate the effects of different strategies for arrival testing of trainees, we focused our 

analysis of testing strategies for trainees on a scenario in which there were no introductions by 

trainers (Fig. 5 A, B). Compared with no arrival testing of trainees, our baseline scenario of 

testing on arrival and day 14 reduced the probability of an outbreak from 0.83 (95% confidence 

interval: 0.81-0.85) to 0.37 (95% CI: 0.34-0.40) (Fig. 5 A). The second test on day 14 resulted in 

a modest benefit, with testing on arrival only resulting in an outbreak probability of 0.42 (95% CI: 

0.39-0.45). Adding a third test on day seven (median: 0.29; 95% CI: 0.26-0.32) or using an 

alternative strategy of testing on arrival and days three and five (median: 0.30; 95% CI: 0.33-

0.36) resulted in slightly lower outbreak probabilities than the baseline scenario. Outbreak size 

was reduced similarly under all scenarios that made use of one or more arrival tests for trainees 

(Fig. 5B). Under a scenario in which trainers and support staff had a 1% chance of community 
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exposure, the relative effects of different strategies for testing trainees were similar, but 

somewhat less pronounced (Fig. 5 C, D). Under a scenario with 10% community exposure of 

trainers and support staff, the effects of different testing strategies were minimal, given that 

introductions by trainers and support staff were the primary driver of outbreaks (Fig. 5 E, F). 

 

Figure 5. Outbreak probability (top) and size (bottom) in basic training as a function of 

alternative scenarios for testing trainees upon arrival (x-axis). Testing scenarios are 

labeled according to the day on which a test was administered to trainees following their arrival. 

From left to right, columns show increases from 0 to 0.01 to 0.10 of the probability that trainers 

and support staff were exposed to the virus in the community over the course of the 70-day 

training period. Error bars for outbreak probability indicate 95% Pearson-Clopper confidence 

intervals. 

 

Compliance with face masks and physical distancing 

Across the full range of 0 to 100% compliance with face masks and physical distancing, there 

was 14-fold variation in the probability of an outbreak when there were no introductions by 

trainers or support staff (Fig. 6 A). At baseline levels of community exposure to trainers and 

support staff, this was reduced to nine-fold variation in outbreak probability (Fig. 6 C), and less 

than twofold variation when community exposure to trainers and support staff was high (Fig. 6 

E). The effect of compliance on outbreak size was approximately linear, with reductions being 

highest under a scenario with high levels of introductions by trainers and support staff, given 

that outbreaks were so large in that scenario when compliance was zero (Fig. 6 F). When 
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compliance changed over the course of the training period, outbreak probability was affected 

minimally (Fig. S2 A-C). At the highest level of community exposure to trainers and support 

staff, a modest effect of changes in compliance over time could be seen for outbreak size, with 

higher final compliance reducing outbreak size somewhat (Fig. S2 F). In addition to outbreak 

probability and size, high compliance with face masks and physical distancing resulted in 

outbreaks with lower peak incidence but that were more prolonged (Fig. S3). 

 

 
Figure 6. Outbreak probability (top) and size (bottom) in basic training as a function of 

compliance with face masks and physical distancing (x-axis). From left to right, columns 

show increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff were 

exposed to the virus in the community over the course of the 70-day training period. Error bars 

for outbreak probability indicate 95% Pearson-Clopper confidence intervals. 

 

Pre-arrival vaccination 

Given the continually changing nature of the landscape of COVID-19 vaccine uptake and 

effectiveness, we chose to model vaccination in a simple way: by varying the proportion of 

agents immune at the beginning of the simulation. This corresponds to an all-or-none model of 

vaccination (30) in which the product of coverage and efficacy against infection equals our 

parameter for proportion immune. For example, 80% efficacy against infection and 80% 

coverage would correspond to 64% immune. As the proportion immune in our model increased 

from 0.10 to 0.90, outbreak probability dropped steeply, with very few outbreaks occurring once 

the proportion immune at the beginning of the training period reached around 0.40-0.60 (Fig. 7 
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A, C, E). When outbreaks did occur, they were smaller when the proportion immune was higher 

(Figs. 7 B, D, F; S4). That was particularly so when the rate of virus introduction from trainers 

and support staff was high, given that immunity reduced the number of companies in which 

outbreaks occurred. When compliance with face masks and physical distancing was set to zero 

(Fig. S5), slightly higher levels of immunity were required to achieve the same benefits achieved 

by lower immunity in the presence of 30% compliance with face masks and physical distancing. 

 
Figure 7. Outbreak probability (top) and size (bottom) in basic training as a function of 

the proportion immune upon arrival (x-axis). From left to right, columns show increases from 

0 to 0.01 to 0.10 of the probability that trainers and support staff were exposed to the virus in the 

community over the course of the 70-day training period. Error bars for outbreak probability 

indicate 95% Pearson-Clopper confidence intervals. 

 

Sensitivity analysis 

For model parameters not evaluated in our analysis of interventions, we performed a sensitivity 

analysis to understand how variability in those parameters could affect outbreak probability and 

size. Under the parameter ranges that we explored, most resulted in outbreak probabilities 

within 0.2 of baseline and outbreak sizes within 200 infections of baseline (Fig. 8). 

 

With respect to outbreak probability, sensitivity was greatest to lower values of the initial 

prevalence of infection among trainees, as well as the parameters for the generation interval 

distribution and test sensitivity (Fig. 8 A). Those parameters all influence the probability that 

infections among arriving trainees are missed and go on to produce secondary infections. There 
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was also considerable sensitivity to low values of test specificity (Fig. 8 A). Investigating this 

further, we found that testing three times (either on days 1, 7, 14 or 1, 3, 5) increased outbreak 

probability when test specificity was low (Fig. S6 A, C, E), whereas those additional tests 

decreased outbreak probability under baseline test specificity (Fig. 5 A, C, E). This suggests 

that, as a result of lower specificity, additional individuals with false positive test results go on to 

become infected in group isolation and then return to training, where they contribute to the 

development of outbreaks. As a potential remedy to this problem, we assessed the impact of 

testing upon exit from group isolation. Under a scenario with low specificity and no introductions 

by trainers or support staff, we found that testing reduced outbreak probability from 0.71 (95% 

CI: 0.68-0.74) to 0.43 (95% CI: 0.40-0.46) (Fig. S7). This brought outbreak probability back 

within the range expected under higher values of test specificity (median: 0.39; 95% CI: 0.36-

0.42). Even when test specificity was at its baseline value to begin with, testing upon exit from 

group isolation further reduced outbreak probability (Fig. S7). While this form of testing could 

unnecessarily prolong the time spent by individuals in group isolation who may no longer be 

infectious, we found that testing upon exit from group isolation did not significantly increase the 

total person-days in group isolation (Fig. S8, top). In fact, when test specificity was low, testing 

upon exit from group isolation reduced total person-days in group isolation, given that there 

were fewer infections who entered group isolation in the first place (Fig. S8, bottom). 

 

The parameters to which outbreak size was sensitive differed according to the extent of 

community exposure for trainers and support staff. When there were no introductions from 

trainers or support staff, the greatest sensitivities were to low values of test specificity and 

longer isolation periods (Fig. 8 B). As for outbreak probability, this behavior was attributable to 

false positives becoming infected in group isolation and seeding outbreaks upon return to 

training, which happened more when specificity was low and a longer isolation period prolonged 

exposure in group isolation. Likewise, this problem was mitigated by testing upon exit from 

group isolation (Fig. S9). At our baseline level of community exposure for trainers and support 

staff, there was moderately high sensitivity to several parameters (Fig. 8 D). At the highest level 

of community exposure, sensitivity of outbreak size was greatest to low values of R0 and high 

compliance with face masks and physical distancing, with smaller outbreak sizes in both cases 

(Fig. 8 F). 
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Figure 8. Univariate sensitivity analysis. Changes in outbreak probability (top) and outbreak 

size (bottom) relative to the baseline scenario are shown by the width of each bar. From left to 

right, columns show increases from 0 to 0.01 to 0.10 of the probability that trainers and support 

staff were exposed to the virus in the community over the course of the 70-day training period. 

Discussion 

Calibration of our model to data from two known outbreaks in military basic training settings 

resulted in a point estimate of initial prevalence among recruits of around 1% at that time, with 

testing from one of those outbreaks yielding zero positive tests upon arrival and implying one or 

more false-negative test results. Despite the implication of this result that there should be a 

steady stream of infections among incoming trainees, our results showed that outbreaks are not 

an inevitability under these circumstances, with more than half of simulations under our baseline 

scenario resulting in no outbreak. Accordingly, chance is likely to play a role in why more 

outbreaks in basic training have not been reported during the pandemic. Higher compliance with 

face masks and physical distancing than we assumed in our baseline scenario (30%) could also 

contribute to the prevention of outbreaks in some cases. At the same time, changes in the 

prevalence of SARS-CoV-2 in communities across the United States (24) are likely to make the 

risk of undetected introductions by trainees highly dynamic over the course of the pandemic, as 
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they affect the prevalence of infection among trainees. Similar concerns about community 

transmission for risk of COVID-19 outbreaks in institutional settings have also been raised for K-

12 schools (31–35). 

 

Although introductions of SARS-CoV-2 by trainees have been implicated in high-profile 

outbreaks such as the ones we used to calibrate our model, our analysis predicts that trainers 

and support staff could play an even greater role in introducing the virus into basic training 

settings. Whereas trainees enter the training post once, are tested upon arrival, and do not 

interact with the surrounding community until completion of training, trainers and support staff 

come and go on a nightly basis over the entire period of training and are not tested unless they 

present with symptoms. Thus, even though trainees considerably outnumber trainers and 

support staff, the latter have a much greater chance of becoming infected at some point during 

the training period and are also more likely to be present on days on which they are maximally 

infectious. Trainees, on the other hand, are only likely to transmit appreciably if infected within a 

few days prior to arrival (22, 23). Our results suggest that the risk of outbreaks in basic training 

could be reduced considerably if introductions by trainers and support staff could be prevented. 

In the absence of vaccination, one means of doing so could be to have them remain on post 

during the training period. Another could be to test them frequently to screen for asymptomatic 

and presymptomatic infections (36, 37). Once vaccines did become available, a strategy was 

adopted at one Army basic training post in response to this study whereby trainers and support 

staff were categorized as Front Line Essential Workers and prioritized for vaccination. 

 

One unique feature of how COVID-19 is managed in basic training that strongly influenced our 

results is the fact that individuals who test positive are placed into isolation as a group along 

with others who test positive. In theory, individual versus group isolation should not be of much 

consequence if everyone in group isolation has already been infected, but in practice this could 

lead to new infections for individuals who enter group isolation as a result of a false-positive test 

result. Our results showed that this possibility means that increasing rounds of testing after 

arrival could come with the downside of producing more false-positive test results and seeding 

outbreaks once those individuals return to training units. Likewise, our sensitivity analysis 

showed that seemingly minor imperfections in test specificity can exacerbate this phenomenon. 

As long as group isolation remains logistically necessary, our results indicate that testing upon 

exit from group isolation is a promising strategy for mitigating this risk. Importantly, our results 

also demonstrate that this form of testing appears to be a practical solution, as it does not 

substantially increase the time that trainees spend in isolation and, under some scenarios, may 

actually reduce it. 

 

Our calibration resulted in estimates of the basic reproduction number, R0, of 11.3 (95% CrI: 

4.9-17.9) and 10.4 (95% CrI: 4.5-17.8) in the two outbreaks used in our calibration. Although the 

central estimates were most consistent with the data from those outbreaks, we opted for lower-

bound estimates given our perception that these outbreaks were not representative of basic 

training experiences during the pandemic more generally. While even these lower-bound 

estimates are higher than many R0 estimates in community settings (38, 39), it is common for R0 

estimates from congregate living settings like basic training to be higher. For example, R0 was 
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estimated to be at least 6.7 for an outbreak on the Diamond Princess cruise ship (40). Other 

congregate living settings including homeless shelters (41, 42), colleges and universities (1, 43), 

overnight summer camps (44, 45), and prisons (46, 47) have all experienced high attack rates 

suggestive of high basic reproduction numbers. A relatively high R0 in basic training makes 

preventing outbreaks with face masks and physical distancing more difficult, particularly given 

that trainees sleep in group quarters. It also means that vaccines will need to be highly effective 

at blocking transmission to prevent outbreaks in basic training settings. Assuming that 

symptomatic individuals continue to be tested and isolated if positive well into the future, our 

results suggest that half or more of trainees would need to be fully protected from infection for 

outbreaks in basic training to be prevented altogether. 

 

Consistent with a long history of research on military medicine translating into benefits for civil 

society (19), our findings have implications for COVID-19 prevention in institutional settings 

beyond military basic training. Some of the most visible work modeling COVID-19 in relation to 

institutional settings has focused on surveillance screening in generic workplace environments 

(36, 37). An aspect relevant to many institutional settings that generic models neglect is the 

differential nature of how some classes of individuals interact with the institution. In military 

basic training, there are two classes: one with a continuous risk of introducing the virus into the 

institution (trainers and support staff) and another with a one-time risk of doing so (trainees). 

Two-class structures apply in other institutional settings, as well—e.g., staff and students in a 

university, guards and inmates in a prison. In universities, imperfect entry testing of students 

has been implicated as playing a role in COVID-19 outbreaks early in a new semester (9). Our 

work suggests that more than one round of entry testing and individual, rather than group, 

isolation may be important for mitigating such outbreaks. In prisons, our work suggests that 

reducing introductions of SARS-CoV-2 by guards is likely to be a critical means of prevention. 

As in military basic training, measures that are recommended in generic settings (e.g., frequent 

testing, individual isolation) may not be practical, or even advisable, in prisons. In this way, our 

work not only offers lessons for those settings, but points to the need for additional work to 

devise solutions appropriate to them. 

 

One limitation of our analysis is that we did not have detailed information on contact structure 

within training units. In the absence of this information, we made the simplifying assumption that 

everyone within a training unit had equal contact with everyone else. There are also details 

about sex segregation at certain stages of the basic training process that we did not consider 

and could affect contact patterns. Because contact heterogeneity is thought to be a primary 

driver of individual heterogeneity in transmission (48), our model was not well-suited to 

addressing the potential role of superspreading in the basic training setting. In addition, there is 

also uncertainty regarding the extent and nature of contacts among trainees, trainers, and 

support staff. Because outbreak probability was strongly influenced by the probability of 

introductions by trainers and support staff, studies of the relative strength of trainee-trainee and 

trainer-trainee contacts could be important for refining understanding of outbreak risk in basic 

training settings. We also did not evaluate the potential impact of contact tracing in this setting. 

While contact tracing has proven effective in other settings (49), it may be difficult to implement 

effectively in this setting because the frequency and nature of contacts within a relatively large 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2021. ; https://doi.org/10.1101/2021.11.28.21266969doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.28.21266969
http://creativecommons.org/licenses/by/4.0/


 
 

17 

group make standard definitions of close contacts uninformative (50). There are uncertainties 

about some of our parameter values, such as mask effectiveness, baseline immunity, and 

testing accuracy. We addressed these uncertainties through a sensitivity analysis, which 

showed that outbreak probabilities remained similar to our baseline scenario under a range of 

parameter values. The parameters that did significantly impact outbreak probability (community 

exposure of trainers and support staff, pre-arrival immunity) are likely to vary over the course of 

the pandemic, with our estimates offering intuition about how outbreak probability and size could 

change as a result. 

 

In conclusion, our results show that military basic training is a unique setting that requires 

customized strategies for preventing COVID-19 outbreaks. Specifically, we show that while 

testing of trainees upon arrival is important, frequent testing of trainers and support staff who 

interact with trainees may be even more important. Unlike other settings, our results show that 

testing of trainees that is too frequent could come with the drawback of increasing the risk of an 

outbreak. This counterintuitive result is a consequence of the fact that false positives could 

result in susceptible trainees becoming infected in group isolation and then seeding an outbreak 

in their training unit upon release from isolation. Like other settings, our results suggest that 

compliance with face masks and physical distancing is important and that a transmission-

blocking vaccine could be effective at preventing outbreaks. At the same time, the relatively high 

values of R0 that we estimated from two outbreaks in basic training settings imply that these 

interventions will be less impactful in basic training than in community settings. 

Methods 

Model description 

We developed an agent-based model of SARS-CoV-2 transmission in a single cohort of 

trainees, their trainers, and associated support staff at a single U.S. Army training post, based 

on hypothetical assumptions provided by an author (PTS) familiar with operations in this setting. 

In reality, new cohorts enter a training post on a weekly basis. Although there is some possibility 

for an outbreak in one cohort to spill over into another cohort, such outbreaks are likely to be 

mostly independent of one another given limited contact among trainees and trainers from 

different weeks’ cohorts. As such, we viewed a model of a single cohort as sufficient to inform 

on the effects of various prevention efforts, which was our primary goal in this study. Because of 

the rapid timescale of outbreaks in this setting, we modeled all processes on a daily time step. 

Below, the model is described in general terms, with parameter values provided in Table 1. The 

model was implemented in the R programming language (51), with a single realization of the 

model taking around a second to execute on a personal computer. All code used in this analysis 

is available at https://github.com/confunguido/prioritizing_interventions_basic_training. 

Structuring of agents and their contacts 

Our model included a total of 1,200 trainees, 40 trainers, and 60 support staff (Fig. 1). Trainees 
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arrived over a three-day window and proceeded to one of 20 cocoons of 60 recruits each. After 

14 days, five companies of 240 recruits each were formed by pooling together four cocoons. 

Trainees remained in their company for an additional 56 days until training was completed. 

Throughout the 70-day training period, trainees were in contact with other trainees in their unit 

(initial cocoon and then company) and with trainers assigned to their unit: two trainers for each 

cocoon and eight for each company. Trainees also came into contact with a set of 60 support 

staff, which includes staff providing support for dining, shooting ranges, equipment, and first aid. 

In the event that trainees tested positive for SARS-CoV-2, they were separated from their unit 

and placed in the sick bay, where they had contact with everyone else in the sick bay. Trainers 

and support staff who tested positive isolated at home, meaning that they had no contact with 

any other agents in the model during that time. 

SARS-CoV-2 infection and transmission 

Introduction of SARS-CoV-2 into the cohort occurred by two means: through trainees upon 

arrival or through trainers or support staff at any point over the training period. Whereas trainees 

are restricted to the training setting once they arrive, trainers and support staff go home at night 

and engage in day-to-day activities in the community in their time away from work. We 

simulated initial infections among trainees according to a binomial random variable based on 

their initial prevalence of infection and simulated the timing of any initially infected trainee’s 

infection as a uniform random variable between one and 39 days prior to arrival. This period 

was chosen based on the period in which test sensitivity was assumed to exceed zero under 

our model, which also encompasses the period of infectiousness. Because trainers and support 

staff could become infected at any point during the training period in the community surrounding 

the training post, we simulated community-acquired infections with a daily probability consistent 

with a given infection attack rate over the 70-day period of training. We chose values for this 

probability consistent with infection attack rates over a 70-day period spanning a range of 

estimates by Pei et al. (24) from the four states with U.S. Army basic training posts from May 

through July, 2020 (Fig. S10). At the same time, trainers and support staff could also become 

infected within the training environment and were subject to the same model parameters as 

trainees pertaining to that environment. 

The course of each agent’s infection was defined on a daily basis relative to their day of 

exposure. In terms of infectiousness, the probability that an infected agent transmits to a 

susceptible contact on a given day of infection is proportional to the value of the generation 

interval distribution for that day, which we modeled with a Weibull distribution (27). Because our 

model operates on a daily time step, we used a discretized version of this distribution wherein 

the probability of an interval of length t was 𝑝(𝑡) = 𝐹(𝑡 + 1) − 𝐹(𝑡), where F(t) is the distribution 

function. The magnitude of infectiousness was captured by a parameter that was multiplied with 

the generation interval distribution value on a given day of infection, resulting in a daily 

probability of transmitting to a given susceptible contact. The sum of those daily probabilities 

across all days of infection multiplied by the average number of contacts was equivalent to R0. 

Only a subset of agents develop symptoms, with that outcome determined by a Bernoulli trial for 

each infected agent. For those who do, symptoms manifest according to an incubation period 

drawn from a discretized gamma distribution (22), and symptoms conclude a number of days 
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later drawn from a Poisson distribution (26). For agents who remain asymptomatic, their 

probability of transmitting to one of their contacts is lower than for their symptomatic 

counterparts. 

We assumed that a small proportion of individuals in the model were previously infected prior to 

arrival of trainees, consistent with the timing of reported outbreaks at two U.S. Army training 

posts in spring 2020. Given that those outbreaks were reported on May 31, 2020 and were 

based on testing on days 18 and 22 of training (17, 52), we assumed that those trainees likely 

arrived during the week of May 3, 2020. Thus, estimates of cumulative incidence of infection 

prior to that time should provide a reasonable approximation of previous exposure and 

immunity. Based on estimates from a study (24) that modeled cumulative infections in the U.S. 

population over the course of the epidemic, a median estimate of immunity among trainees as 

of May 3, 2020 was 2.6% (95% CrI: 1.8-3.3%). These estimates are national averages of state-

level estimates weighted by state-level Army recruitment rates (53). We used the median 

estimate in the model calibration and baseline scenario, and we explored the lower and upper 

values in a sensitivity analysis. 

Interventions 

The primary means of preventing transmission in the model involved testing for active infection 

and isolating test-positives. In our baseline scenario, trainees were tested upon arrival and 14 

days later, as well as any time they developed symptoms. Trainers and support staff were also 

tested if they displayed symptoms. There was a modest delay of one day between the time that 

a test was administered and when results were available. Individuals continued with their normal 

activities while awaiting test results, entering isolation in the event of a positive result and 

remaining there for ten days (29). 

Test sensitivity varied by day of infection according to a piecewise model of daily test sensitivity 

proposed by Grassly et al. (37). In days one through six after infection, daily test sensitivity is 

proportional to daily infectiousness. In days seven and after, daily test sensitivity declines 

according to a curve estimated with a generalized additive model by Wikramaratna et al. (54). 

To allow for flexibility in the magnitude of sensitivity, we multiplied the curve for daily test 

sensitivity by a scalar such that an average of daily test sensitivity weighted by the incubation 

period distribution equaled a parameter for overall test sensitivity. This approach to calculating a 

weighted average of daily test sensitivity resulted in the sensitivity of tests applied to individuals 

presenting with symptoms being equal to the parameter for overall test sensitivity, on average. 

For specificity, we assumed a constant value. 

We chose values of overall test sensitivity and specificity based on data from an analysis of 

more than 800 individuals tested two to three times each on the same day with a combination of 

PCR tests of nasal swab specimens, PCR tests of saliva specimens, and antigen tests of nasal 

swab specimens (28). A Bayesian latent class analysis of those data obviated the need to 

define any one of those tests as a gold standard by simultaneously accounting for imperfect 

sensitivity and specificity of each test. The majority of individuals in that data set were college 

students tested for surveillance purposes, meaning that their detectability of infection should be 
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very similar to surveillance testing in a military basic training population. We used median 

values of estimates for PCR tests of nasal swab specimens, which were 0.859 (95% CrI: 0.547-

0.994) for sensitivity and 0.998 (95% CrI: 0.992-0.999) for specificity. These values of sensitivity 

were similar to estimates from a meta-analysis of 16 published studies (median: 0.848; 95% CrI: 

0.768-0.924) (55). We were unable to find other studies on the specificity of clinical testing with 

PCR tests, but similar ranges were found in a meta-analysis that evaluated data from 2004-

2019 on 43 studies of PCR tests for other RNA viruses (56). 

In addition to testing, we assumed that agents made use of face masks and physical distancing, 

when possible, to reduce transmission. These interventions impacted transmission by reducing 

the probability of transmission between an infectious agent and one of their contacts 

proportional to the probability that either or both agents were in compliance with face-mask and 

physical-distancing guidelines at the time of contact and the per-contact reduction in the 

probability of transmission from these interventions. 

Model calibration 

We calibrated the model to two known outbreaks in U.S. Army training posts: Fort Benning (FB) 

(52) and Fort Leonard Wood (FLW) (17). In both cases, we made use of reports of positive tests 

upon arrival (FB: 4/640; FLW: 0/500) and following an initial period of group quarantine (FB: 

142/636 on day 22; FLW: 70/500 on day 18). We used a two-step approach that leveraged the 

information at these time points in a sequential manner. Because no information about 

infections among trainers or support staff were provided in these reports, we limited the 

calibration to infections among trainees only.  We performed this calibration procedure 

separately on the data from FB and FLW. 

In the first step, we used data on the number of positive tests upon arrival, PositiveArrival, to 

inform an initial estimate of the prevalence of infection among trainees upon arrival, p. 

According to our assumptions about test sensitivity as a function of day of infection, 99% of 

positive tests should have resulted from individuals infected within 39 days of arrival, assuming 

a constant rate of infection over that period. Given the average test sensitivity, Se, over this 39-

day period and the test specificity, Sp, we defined the likelihood of p according to 

𝐿(𝑝|𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐴𝑟𝑟𝑖𝑣𝑎𝑙) = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐴𝑟𝑟𝑖𝑣𝑎𝑙|𝑇𝑒𝑠𝑡𝑒𝑑𝐴𝑟𝑟𝑖𝑣𝑎𝑙, 𝑝 × 𝑆𝑒 + (1 − 𝑝) × (1 − 𝑆𝑝)), 

where p x Se + (1 - p) x (1 - Sp) is the probability of a trainee testing positive when accounting 

for imperfect test performance. We defined the posterior probability density of p as 

𝑃𝑟 (𝑝|𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐴𝑟𝑟𝑖𝑣𝑎𝑙) =
𝐿(𝑝|𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐴𝑟𝑟𝑖𝑣𝑎𝑙) 

∫ 𝐿(𝑝|𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐴𝑟𝑟𝑖𝑣𝑎𝑙)
1

0
 𝑑𝑝

, 

which assumes a uniform prior on p. 

In the second step, we used approximate Bayesian computation to select combinations of p and 

R0 that were consistent with data on the number of positive tests following group quarantine, 
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PositiveLater. The posterior distribution of p from the first step served as a prior distribution of p in 

the second step. Draws of p from this distribution combined with independent draws of R0 from 

a uniform distribution between 2 and 20 comprised the initial set of particles we used in this 

step. Each of 200,000 of these particles was used to simulate forward under the model one time 

until day 22 at FB and day 18 at FLW. In these simulations, the timing of infection of trainees 

infected upon arrival was drawn uniformly from one to 39 days prior to arrival, given that this 

was the period of time over which test sensitivity was allowed to exceed zero under our model. 

For a given particle i, 𝑇𝑒𝑠𝑡𝑒𝑑𝐿𝑎𝑡𝑒𝑟 trainees were tested (FB: 636; FLW: 500), and the number 

positive, 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐿𝑎𝑡𝑒𝑟
 𝑖 , was recorded. Particles for which 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐿𝑎𝑡𝑒𝑟

 𝑖  equaled the observed 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐿𝑎𝑡𝑒𝑟 (FB: 142; FLW: 70) were retained, the set of which comprised our approximation 

of the posterior distribution of p and R0 for each of FB and FLW. Given that the observed 

outbreaks were likely exceptional events rather than common occurrences, we focused our 

baseline scenario on a value of R0 equal to the average of the lower bounds of the R0 estimates 

from FB and FLW. 

Analyses 

Model behavior under baseline scenario 

Following calibration of the model, we added average values of initial prevalence and R0 to the 

list of baseline parameter assumptions in Table 1. Under this baseline scenario, we performed 

1,000 replicate simulations with the hypothetical cohort portrayed in Fig. 1, examining the time 

course of the outbreak across replicates, the probability of a large outbreak, and the size of a 

large outbreak, if one occurred. We evaluated these same three model outputs under varying 

levels of four factors that could be altered by interventions. 

Reducing introductions by trainers and support staff 

On the one hand, community exposure of trainers and staff could go up or down depending on 

the prevalence of SARS-CoV-2 in the community at any given time. On the other hand, 

introductions from this source could potentially be reduced by regularly testing trainers and 

support staff (36) or by having them remain on base for the duration of the training period. 

Arrival testing of recruits 

In addition to the baseline scenario of PCR tests on days 0 and 14, we considered a scenario 

without the test on day 14, a scenario with an additional test on day 7, a scenario with tests on 

arrival and days 3 and 5, and a scenario with no arrival testing. 

Compliance with face masks and physical distancing 

Our default assumption was that compliance with face masks and physical distancing was 

relatively low (30%) due to the physically intense nature of training and the fact that training 

entails large groups of people spending prolonged periods of time together. Given uncertainty 

about the appropriateness of our baseline assumption of 30% and the potential for compliance 
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with these measures to be either disregarded completely or enforced strictly, we explored 

scenarios in which compliance ranged from 0 to 100%. We also explored scenarios in which 

compliance began at the baseline value of 30% and either decreased or increased linearly over 

the course of the training period (to 10%, 20%, 40%, or 50%). The purpose of these scenarios 

was to understand the possible impact of behavioral change over the course of the training 

period, were trainees to relax their precautions or heighten them. 

Pre-arrival vaccination 

On the one hand, immunity among trainees, trainers, and support staff will vary naturally 

depending on the history of the epidemic in communities that these individuals come from and 

the time in the epidemic when they arrive. On the other hand, with indications that multiple 

COVID-19 vaccines appear highly effective and are anticipated to become increasingly 

available over the course of 2021, immunity could later become considerably higher than our 

baseline assumption of 10%. We varied this from 0 to 90% in increments of 10%. 

Sensitivity analysis 

To understand sensitivities of the model’s behavior to parameters not explored in the 

intervention analyses, we conducted a univariate sensitivity analysis for all other model 

parameters. These parameters, and the alternative low and high values that we explored, are 

listed in Table 1. For each alternative parameterization, we ran 1,000 simulations and calculated 

the probability of an outbreak and the size of one, if it occurred. 

Wherever possible, we selected high and low values based on upper and lower bounds of 95% 

confidence or credible intervals from studies that estimated those parameters. Our reasoning for 

doing so was to convey the extent to which model outputs might change within a plausible 

range of uncertainty about a given parameter. At the same time, we note that a limitation of this 

approach is that it does not convey the full uncertainty in model outputs attributable to 

parameter uncertainty, which would require a fuller accounting of joint uncertainty across all 

model parameters (e.g., as in (57)). Accordingly, this analysis is intended to aid in the building of 

intuition of decision makers rather than to provide quantitative projections. 

 

For three parameters, we chose values based on our judgement about what constituted 

reasonable ranges, due to difficulty in identifying reliable descriptions of uncertainty for those 

parameters. The first of those parameters was R0, which had extremely wide ranges of 

uncertainty in our model calibration that likely exceed the true range of uncertainty about this 

parameter. The second of those parameters was the probability of community exposure to 

trainers and support staff, values of which were loosely based on estimates of time-varying 

prevalence of infection in the four states with U.S. Army training posts in May 2020 (Fig. S10). 

The third of those parameters was the relative infectiousness of asymptomatics, which we 

perceive to be generally viewed as somewhat less than that of symptomatic infections but not to 

a great extent (58). 
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Supplemental Figures 

Figure S1. Simulation results used for the model calibration. We simulated 200,000 

replicate outbreaks for values of R0 evenly spaced between 2 and 20. The horizontal line shows 

the observed data.  
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Figure S2. Outbreak probability (top) and size (bottom) in basic training as a function of 

final proportion of compliance with face masks and physical distancing (x-axis). The 

starting proportion of compliance was set to the baseline value of 0.3, which linearly increased 

or decreased over time to its final value by the end of the training period. From left to right, 

columns show increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff 

were exposed to the virus in the community over the course of the 70-day training period. Error 

bars for outbreak probability indicate 95% Pearson-Clopper confidence intervals. 
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Figure S3. Outbreaks in basic training as a function of compliance with face masks and 

physical distancing. From left to right, columns show increases in the proportion of time that 

individuals comply with face masks and physical distancing. From top to bottom, rows show 

increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff were exposed 

to the virus in the community over the course of the 70-day training period. Each panel shows a 

functional boxplot of the daily incidence of new infections across 1,000 replicate simulations, 

showing the median estimate (black line), 25-75% interval (blue area), 2.5-97.5% interval (blue 

lines), and outliers (dashed green lines). 
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Figure S4. Outbreaks in basic training as a function of the proportion immune upon 

arrival. From left to right, columns show increases in the proportion immune upon arrival. From 

top to bottom, rows show increases from 0 to 0.01 to 0.10 of the probability that trainers and 

support staff were exposed to the virus in the community over the course of the 70-day training 

period. Each panel shows a functional boxplot of the daily incidence of new infections across 

1,000 replicate simulations, showing the median estimate (black line), 25-75% interval (blue 

area), 2.5-97.5% interval (blue lines), and outliers (dashed green lines). 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2021. ; https://doi.org/10.1101/2021.11.28.21266969doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.28.21266969
http://creativecommons.org/licenses/by/4.0/


 
 

28 

 

Figure S5. Outbreak probability (top) and size (bottom) in basic training as a function of 

the proportion immune upon arrival (x-axis) when there is zero compliance with face 

masks and physical distancing. From left to right, columns show increases from 0 to 0.01 to 

0.10 of the probability that trainers and support staff were exposed to the virus in the community 

over the course of the 70-day training period. Error bars for outbreak probability indicate 95% 

Pearson-Clopper confidence intervals. 
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Figure S6. Outbreak probability (top) and size (bottom) in basic training as a function of 

alternative scenarios for testing trainees upon arrival (x-axis) when test specificity is low 

(0.992). Testing scenarios are labeled according to the day on which a test was administered to 

trainees following their arrival. From left to right, columns show increases from 0 to 0.01 to 0.10 

of the probability that trainers and support staff were exposed to the virus in the community over 

the course of the 70-day training period. Error bars for outbreak probability indicate 95% 

Pearson-Clopper confidence intervals. 
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Figure S7. Outbreak probability as a function of testing upon exit from group isolation (x-

axis). Rows show results for different values of test specificity. From left to right, columns show 

increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff were exposed 

to the virus in the community over the course of the 70-day training period. Error bars indicate 

95% Pearson-Clopper confidence intervals. 
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Figure S8. Total person-days in group isolation as a function of testing upon exit from 

group isolation (x-axis). Rows show results for different values of test specificity. From left to 

right, columns show increases from 0 to 0.01 to 0.10 of the probability that trainers and support 

staff were exposed to the virus in the community over the course of the 70-day training period. 
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Figure S9. Outbreak size as a function of testing upon exit from group isolation (x-axis). 

Rows show results for different values of test specificity. From left to right, columns show 

increases from 0 to 0.01 to 0.10 of the probability that trainers and support staff were exposed 

to the virus in the community over the course of the 70-day training period. 
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Figure S10. Community exposure over time in states with U.S. Army basic training posts. 
This measure of exposure is defined as infection attack rate over a 70-day period commencing 
on the date indicated on the x-axis in 2020, as estimated by Pei et al. (24). Solid lines show 
medians, and bands show 95% credible intervals.  
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