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Abstract 
 
Background 
Clostridioides difficile infection (CDI) is the most common hospital acquired infection in the U.S., 
with recurrence rates >15%. Although primary CDI has been extensively linked to gut microbial 
dysbiosis, less is known about the factors that promote or mitigate recurrence. Moreover, previous 
studies have not shown that microbial abundances in the gut measured by 16S rRNA amplicon 
sequencing alone can accurately predict CDI recurrence. 
 
Results 
We conducted a prospective, longitudinal study of 53 non-immunocompromised participants with 
primary CDI. Stool sample collection began pre-CDI antibiotic treatment at the time of diagnosis, 
and continued up to eight weeks post-antibiotic treatment, with weekly or twice weekly collections. 
Samples were analyzed using: (1) 16S rRNA amplicon sequencing, (2) liquid 
chromatography/mass-spectrometry metabolomics measuring 1387 annotated metabolites, and 
(3) short-chain fatty acid profiling. The amplicon sequencing data showed significantly delayed 
recovery of microbial diversity in recurrent participants, and depletion of key anaerobic taxa at 
multiple time-points, including Clostridium cluster XIVa and IV taxa. The metabolomic data also 
showed delayed recovery in recurrent participants, and moreover mapped to pathways 
suggesting distinct functional abnormalities in the microbiome or host, such as decreased 
microbial deconjugation activity, lowered levels of endocannabinoids, and elevated markers of 
host cell damage. Further, using predictive statistical/machine learning models, we demonstrated 
that the metabolomic data, but not the other data sources, can accurately predict future 
recurrence at one week (AUC 0.77 [0.71, 0.86; 95% interval]) and two weeks (AUC 0.77 [0.69, 
0.85; 95% interval]) post-treatment for primary CDI. 
 
Conclusions 
The prospective, longitudinal and multi-omic nature of our CDI recurrence study allowed us to 
uncover previously unrecognized dynamics in the microbiome and host presaging recurrence, 
and, in particular, to elucidate changes in the understudied gut metabolome. Moreover, we 
demonstrated that a small set of metabolites can accurately predict future recurrence. Our 
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findings have implications for development of diagnostic tests and treatments that could ultimately 
short-circuit the cycle of CDI recurrence, by providing candidate metabolic biomarkers for 
diagnostics development, as well as offering insights into the complex microbial and metabolic 
alterations that are protective or permissive for recurrence. 
 
Keywords: human infection, longitudinal, metabolomics, gastrointestinal, predictive model, C. 
difficile   

Introduction 
Clostridioides difficile infection (CDI) is the most common cause of health-care associated 

infection in the U.S., with symptoms ranging from diarrhea to life-threating fulminant colitis [1]. 
Annually in the U.S., there are >460K CDI cases and >30K deaths, with costs to the health care 
system estimated at >$4.8 billion [2]. CDI recurrence after initial infection is common, with an 
estimated overall 15.5% rate of first recurrence, and escalating recurrence risk with each 
subsequent episode [2], [3]. Clostridioides difficile is a Gram positive, anaerobic spore-forming 
bacteria that can colonize the gut asymptomatically, with estimates of asymptomatic colonization 
up to 17% of healthy adults in the community and 50% of hospital patients [1], [4]. Toxigenic 
strains of C. difficile can release endotoxins that bind to intestinal epithelial cells to cause cell 
death and severe inflammation [4], [5]. However, even toxigenic strains have been found to 
colonize asymptomatically, and dysbiosis of the microbiome is critical for CDI to occur [4]. Indeed, 
antibiotic exposure, particularly with drugs that deplete gut anaerobes, is a major risk factor for 
development of CDI [6], [7].  
 The mechanisms through which gut microbial dysbiosis drives CDI remain incompletely 
understood, but there is mounting evidence that the gut metabolome plays an important role. C. 
difficile is capable of metabolizing a variety of carbon sources, including proline, glycine, and 
branched-chain amino acids via Stickland fermentation [8]. Murine studies have shown that CDI 
decreases amino acid Stickland substrates and increases Stickland products such as 5-
aminovalerate, indicating a utilization of Stickland substrates by C. difficile [9], [10]. In recent work 
in gnotobiotic mice, the commensal bacteria Paraclostridium bifermentans, which preferentially 
uses Stickland fermentation for energy and depletes Stickland substrates in the gut, provides 
strong protection against CDI infection [11]. Certain cholate-derived primary bile acids, which are 
depleted in a healthy gut microbiome due to microbial metabolism, have been shown to be co-
germinants for C. difficile in vitro. However, the role of these metabolites in vivo is less clear, and 
recent studies have shown that the mechanism by which microbes such as Clostridium scindens 
provide protection in vivo may be due to their utilization of C. difficile’s preferred carbon sources, 
rather than through primary bile acid depletion [11]–[13]. Short chain fatty acids (SCFAs) have 
also been associated with CDI, although their role is less clear. Acetate and butyrate, gut microbial 
products of dietary fiber fermentation, have been associated with general gut health in some 
studies; butyrate, in particular, is a primary energy source for colonocytes and thus may help 
maintain intestinal barrier integrity [14]. However, Clostridium sardiniense, which significantly 
increases butyrate in the gut, was not protective against CDI in gnotobiotic animal studies, and in 
fact worsened infection [11]. Taken together, evidence drawn from in vitro or murine studies 
suggests that CDI may be driven by a multifactorial gut metabolic dysbiosis, which includes 
alterations in carbon sources.  
 Despite compelling evidence for the importance of gut metabolomic dysbiosis in CDI, to 
our knowledge, there have only been three studies that analyzed metabolic factors of CDI in 
reasonably sized (>20 subjects) human cohorts. Allegretti et al. performed a cross-sectional 
comparison of bile acid profiles of participants with first-time CDI (n=20), recurrent CDI (n=19), 
and no CDI (n=21), and found higher primary bile acids and lower secondary bile acids in those 
with CDI versus those without CDI [15]. Robinson et al performed a cross-sectional analysis of 
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untargeted metabolomes of participants (n=186) with CDI versus with non-CDI diarrhea, and 
found higher Stickland fermentation products and lower fructose in CDI participants [16]. 
Bushman et al. compared the metabolomes of children with IBD (n=27), children with IBD and 
CDI (n=23), and healthy controls (n=38) at CDI diagnosis, 4 weeks, and 8 weeks later, and found 
higher primary bile acids, sphingomyelins, and intracellular fatty acids in CDI+IBD and IBD 
children [17]. 
 CDI recurrence has also been relatively understudied, and it remains unclear whether the 
factors described above for primary CDI play similar roles in recurrent disease. Pakpour et al. 
assessed whether the composition of the gut microbiome could predict recurrence, but found only 
a weak relationship (area under the receiver-operator curve [AUC] of 0.61) [18]. Four other studies 
have investigated predicting recurrence solely using electronic health record (EHR) data, and 
have achieved AUCs ranging from 0.67 to 0.82 [19]–[22]. Three of these studies found proton-
pump inhibitor use to be predictive of recurrence, and two of the studies found higher age to be 
predictive of recurrence; however, there were no other predictive features common among the 
studies. Moreover, two of these studies on independent cohorts was attempted, and found poor 
predictive accuracy [23].  
 To address the gaps in prior studies, including cross-sectional analyses, lack of 
metabolomic data, and potentially confounding comorbidities or antibiotic use, we conducted a 
prospective study in which we collected longitudinal stool samples from participants without IBD 
or immunocompromise, from the time of CDI diagnosis prior to initiation of antibiotic treatment, 
and up to eight weeks post-treatment (or until the time of recurrence). Samples were interrogated 
via broad LC/MS metabolomic profiling, 16S rRNA amplicon sequencing, and targeted short-
chain-fatty-acid (SCFA) analysis. We used univariate and multivariate statistical techniques to 
investigate how microbial composition and metabolomes of recurrers vs. non-recurrers changed 
and diverged over time. Further, we used cross-validated machine learning/statistical methods to 
quantify the capability of the data sources to predict future recurrences.  
 
Results 
 
Longitudinal study of recurrent CDI measuring gut microbiome and 
metabolome 

We conducted a prospective, longitudinal study of 53 participants on inpatients at  Brigham 
and Woman’s Hospital’s, as well as two surrounding community hospitals (Figure 1). Non-
immunocompromised participants experiencing uncomplicated CDI were followed for up to eight 
weeks after completion of their CDI antibiotic treatment or until recurrence. During this time, 19 
participants were diagnosed with recurrent CDI, with all recurrences within the first three weeks 
post-CDI antibiotic treatment. Diagnosis used a two-step testing algorithm, glutamate 
dehydrogenase (GDH) reflexed to enzyme immunoassay (EIA) toxin testing. Table 1 provides 
demographic information on participants’ sex, race, smoking status, age, and BMI; there were no 
significant differences in any of these variables with respect to CDI recurrence status. 

Fecal samples were collected at the time of diagnosis (if available), one week after 
antibiotic treatment, and every week or half week for up to eight weeks, or until recurrence (Table 
2). Because all participants who recurred did so within the first three weeks after initial treatment, 
we focused our subsequent analyses primarily on data-points prior to week three. This time 
window provides a sufficient number of recurrent samples for statistical testing and also, in the 
context of developing diagnostic testing in the future, represents a relevant time period for 
clinically actionable decision-making. Each sample was analyzed with: (1) 16S rRNA amplicon 
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sequencing, (2) liquid-chromatography/mass-spectrometry (LC/MS) untargeted metabolomics, 
and (3) targeted short chain fatty acid (SCFA) analyses. For amplicon analyses, this yielded 
4,605,740 total sequencing reads (average of ~10K/reads per sample) and subsequent 
bioinformatic processing with dada2 produced 2509 unique amplicon sequence variants (ASVs). 
The LC/MS untargeted metabolomics platform quantified 1387 unique and annotated metabolites. 
SCFA analyses quantified nine metabolites: acetate, propionate, isobutyrate, butyrate, 
isovalerate/2-methylbutyrate (indistinguishable by the platform used), valerate, isocaproate, 
caproate, and heptanoate. However, heptanoate and caproate were only present in one or two 
samples, respectively, and were thus removed from subsequent analyses. 

 
Fig 1. Prospective study of Clostridioides difficile infection (CDI) measured gut 
microbiome composition and metabolomes for developing predictors of recurrence. Fifty-
three participants with first-time CDI were followed for up to eight weeks after initial CDI antibiotic 
treatment. Fecal samples were collected prior to CDI antibiotic treatment, one week post-
treatment, and then weekly or bi-weekly until recurrence or end of the study period. Microbial 
composition within fecal samples was analyzed with 16s rRNA gene amplicon sequencing. 
Metabolites in fecal samples were measured with liquid chromatography/mass spectrometry 
(LC/MS) broad metabolomics and targeted short chain fatty acid profiling. 
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Table 1. Participant demographics. Statistical testing was performed using Fisher’s exact test 
for binary variables, the chi-squared test for categorical variables, and the Wilcoxon rank-sum 
test for continuous variables.  

 

 

 

 

 

 

 

 

 

Table 2. Number of samples available from non-recurrers and recurrers at each time-point.  
 
Participants who recurred exhibited slower recovery of gut microbiome 
diversity and composition post-CDI antibiotic treatment 

We first investigated differences in overall ecological diversity of the gut microbiome using 
alpha and beta diversity measures. As expected, alpha diversity [24] significantly decreased pre- 
to one week post-CDI antibiotic treatment within both recurrent (p=0.04) and non-recurrent 
(p=2x10-4) groups (Figure 2; Table S1), consistent with depletion of gut microbes during antibiotic 
treatment for CDI. Interestingly, over the following week, alpha diversity recovered significantly 

 Non-Recurrers Recurrers p-value 

Sex  
Male 13 5 

0.226 
Female 21 14 

Race 
Black 7 1  

White 25 15 0.824 

Hispanic 2 3  

Smoking status 
Never 31 13 

0.612 Former 20 5 

Current 2 1 

 

Age  

Mean 57.6 ± 15.6 

 

 

Median 57 0.636 

Range 22-93  

BMI 
Mean 28.9 ± 8.49 

 

 

Median 26.3 0.875 

Range 19.4-66.7  

Week Non-recurrers Recurrers 
Pre-CDI 
antibiotics 

18 8 

1 34 14 

1.5 10 3 

2 34 6 

2.5 10 2 

3 33 3 

3.5 4 0 

4 34 0 
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only within the non-recurrent group (p=3x10-5). Comparing alpha diversity between the recurrent 
and non-recurrent groups at each time-point, we found only a significant difference at week two 
post-CDI antibiotic treatment, with higher diversity in the non-recurrent group (p=2x10-3). We 
evaluated beta diversity using the Bray-Curtis dissimilarity measure and found a similar pattern 
(Figure S1). Significant changes in beta diversity from pre- to one week post-CDI antibiotic 
treatment were seen in both recurrers (p=5x10-3) and non-recurrers (p=10-3), but only non-
recurrers had significant changes in beta diversity after CDI antibiotic treatment from week one to 
week two (p=10-3) (Table S1). Taken together, these results suggest that recurrent and non-
recurrent participants both had expected declines in gut microbiome ecological diversity with 
antibiotic treatment for CDI, but recurrent subjects exhibited delayed recovery of microbial 
diversity. 

 

Fig 2. Ecological diversity of gut microbiomes of CDI recurrent participants recovered 
significantly more slowly than for non-recurrent participants. Alpha diversity (Chao index), 
a measure of species richness, significantly decreased pre- to one week post-CDI antibiotic 
treatment within both recurrent and non-recurrent groups. From one week to two weeks post-CDI 
treatment, alpha diversity recovered significantly only within the non-recurrent group. Alpha 
diversity only differed significantly between the recurrent and non-recurrent groups at two weeks 
post-CDI antibiotic treatment, with higher diversity in the non-recurrent group. R=Recurrers, 
NR=Non-recurrers. 

We next examined differences in microbiome composition at the level of ASVs. After 
filtering low abundance/rare taxa, we obtained 237 ASVs, which we used for subsequent DESeq2 
fold-change analyses. Analyzing changes in composition over time, we found that in non-
recurrers, 12 ASVs significantly differed in abundance between week one to week two. Among 
these 12 ASVs, 10 exhibited significant increases (Table S2). This set of ASVs was significantly 
enriched for ASVs in the Lachnospiraceae family (Fusicatenibacter saccharivorans [ASV 83], 
Roseburia inulinivorans [ASV 205], a species within the Ruminococcus genera [ASV 212], and 
three Clostridium cluster XIa taxa [ASVs 90, 98, and 214]) (FDR=0.04), which are generally strict 
anaerobes with specialized niches and associated with normal microbiome function. In recurrers, 
8 ASVs were significantly different in abundance from week one to week two; 5 of these ASVs 
significantly decreased, including Akkermansia muciniphila (ASV 10), which significantly 
increased in the non-recurrers over the same time-period. Comparison of microbial composition 
between recurrers and non-recurrers revealed that non-recurrers had significantly higher 
abundances of 10 ASVs pre-CDI treatment, 8 ASVs at week one post-CDI treatment, and 29 
ASVs at week two (Figure 3A; Table S2). The set of ASVs at increased abundance at week two 
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was significantly enriched for taxa in the Ruminococcaceae (FDR=0.03) family, and border-line 
significant for enrichment of Lachnospiraceae (FDR=0.06), and Bacteroidaceae (FDR=0.06). 
Many taxa in these families have been associated with normal microbiome function, including 
Faecalibacterium (ASV 4), Subdoligranulum (ASV 1), Anaerotruncus (ASV 110), Oscillibacter 
(ASV 173), and Clostridium cluster IV (ASVs 59, 66) taxa in the Ruminococcaceae family; Blautia 
(ASVs 102, 76, 77, 82), Roseburia (ASVs 205), Clostridium cluster XIVa taxa (ASVs 214, 99), 
Anaerostipes (ASVs 72), and Fusicatenibacter (ASV 83) taxa within the Lachnospiraceae family; 
and Bacteroides (ASVs 33,34, 29, 26) within the Bacteroidaceae family. Interestingly, one of the 
Clostridium cluster XIVa taxa at higher abundance in non-recurrers (significant at week two and 
with a trend toward higher abundance at other time-points) was Clostridium scindens (ASV 99), 
which has been shown to provide host resistance to C. difficile [12], [13]. A number of the other 
genera found to be at higher abundance in non-recurrers have been previously linked to 
protection against CDI in human studies, including Bacteroides (ASVs 26, 29, 33) and Veillonella 
(ASV 154) [18], [25]. Taken together, these results suggest a picture of broader depletions of the 
normal microbiome in recurrers, evident even pre-CDI antibiotic treatment, but with increasingly 
more pronounced differences over time, consistent with slower recovery of recurrers’ 
microbiomes. 
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Fig 3. Gut microbiome taxa and metabolite levels differed significantly between CDI 
recurrent and non-recurrent participants. (A) Univariate analyses of 16S rRNA gene amplicon 
sequencing data found 39 out of 237 amplicon sequencing variants (ASVs) (post-filtering to 
remove rare or low-variance taxa), were significantly differentially abundant between recurrers 
versus non-recurrers. (B) Univariate analyses of LC/MS untargeted metabolomics found 23 out 
of 1387 metabolites (post-filtering to remove rare or low-variance metabolites), were significantly 
differentially abundant between recurrers versus non-recurrers. Metabolite levels shown are log-
transformed and standardized. R=Recurrers, NR=Non-recurrers. Arrows denote the direction of 
the statistically significant effect. Participants (columns) were ordered in the figure via hierarchical 
clustering. 

 
Participants who recurred exhibited an altered gut metabolome indicative of 
reduced gut microbiome function, and host inflammation and reduced 
immune modulatory capabilities 

We first performed ordination analyses to evaluate overall changes and differences in 
broad gut metabolomic profiles between recurrers and non-recurrers (Figure S2). Paralleling our 
findings on changes in microbial diversity, ordination analyses on metabolomic data (760 
metabolites after filtering) showed that the metabolomes of non-recurrers changed significantly 
from pre-CDI treatment to week one post-CDI treatment (p=10-3), and from week one to week two 
post-CDI treatment (p=10-3), but the metabolomes of recurrers only changed significantly from 
pre-CDI treatment to week one post-CDI treatment (p=10-3) (Table S1). Comparing recurrers to 
non-recurrers at each time-point, differences were only significant at week two (p=0.001), which 
recapitulated our findings in microbiome alpha diversity (Table S1). Taken together, we saw 
parallel patterns for overall gut metabolomic profiles and microbial diversity, with recurrers and 
non-recurrers initially exhibiting similar gut metabolomes that only significantly diverge by week 
two post-CDI antibiotic treatment, due to a slower recovery in the recurrent group. 
 To determine which gut metabolites contributed to these overall patterns of metabolome 
recovery or non-recovery, we performed univariate analyses, both across time and between 
recurrers and non-recurrers on broad metabolomic data (Figure 3B, Table S2) and targeted SCFA 
data (Figure S3, Table S2). Changes in metabolites over time were significant only for non-
recurrers from week one to week two, with 121 metabolites significantly changing over the week. 
These metabolites were significantly enriched for secondary bile acids (FDR=0.04), primary bile 
acids (FDR=0.04), and hydroxy acyl carnitines (FDR=0.04), and borderline significant for 
glucuronidated corticosteroids (FDR=0.07) and metabolites involved in hemoglobin and porphyrin 
metabolism (FDR=0.07). Changes in SCFAs over time (Table S2) were similarly only significant 
for non-recurrers, from week one to week two, with six SCFAs significantly higher: acetate 
(FDR=9x10-5), isovalerate/2-methylbutyrate (FDR=4x10-4), butyrate (FDR=10-3), valerate 
(FDR=0.03), and isobutyrate (FDR=0.03). Comparison between levels of gut metabolites in 
recurrers versus non-recurrers  showed increasing differences over the study. At pre-treatment 
and week one post-treatment, no metabolites were found to be significantly different between 
recurrers and non-recurrers. However, at week one post-CDI treatment, two metabolites were at 
higher abundances in recurrers with borderline significance: vanillylmandelate (FDR=0.08) and 
N-carbamoylaspartate (FDR=0.08). At week two, abundances of 23 metabolites differed 
significantly between recurrers and non-recurrers (Table S2), with 20 of these metabolites 
showing higher levels in recurrers. This pattern of increasing divergence over time between gut 
metabolomes of recurrers and non-recurrers parallels the pattern seen with microbiome 
composition, suggesting slower recovery of the gut metabolome in recurrers.  

The specific changes or differences in metabolites observed can generally be organized 
into three categories indicative of: (1) host inflammation or intestinal damage, (2) lack of microbial 
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deconjugation activity, (3) host alterations in immune and inflammatory capability. 
Vanillylmandelate (VMA), higher in recurrers at week one post-CDI treatment, is an end product 
of catecholamine metabolism and has been previously reported as a biomarker of inflammation 
[26]. By week two post-CDI treatment, biomarkers of cell death were significantly elevated in 
recurrers. The overall set of metabolites differentiating recurrers and non-recurrers at week two 
was significantly enriched for sphingomyelins (FDR=5x10-4), including lignoceroyl sphingomyelin 
d18:1/24:0, sphingomyelin d18:2/24:1, d18:1/24:2, sphingomyelin d18:1/20:0, d16:1/22:0, and 
behenoyl sphingomyelin d18:1/22:0. In additional to sphingomyelins, two phospholipids, 
palmitoyl-2-stearoyl-GPC 16:0/18:0 and 2-stearoyl-GPE 18:0, were also significantly higher in 
recurrers. Elevated sphingomyelin and phospholipid metabolites have previously been associated 
with active intestinal epithelial damage, such as in murine models of CDI and in humans with CDI 
or IBD [10], [17].  

At week two, evidence of impaired microbial function in the gut was also present in 
recurrers’ metabolomes. Glucuronide and sulfate conjugates were significantly higher in 
recurrers, including five steroid conjugates (pregnanediol-3-glucorinide, estrone 3-sulfate, 11 
beta-hydroxyetiocholanolone glucuronide, etiocholanolone glucuronide, and 
tetrahydrocorticosterone glucuronide) and four additional glucuronidated compounds (three 
glucuronides of piperine metabolite C17H21NO3 and salicyluric glucuronide). Gut microbes are 
critical for deconjugation activities [27], [28]; thus, elevated levels of conjugated metabolites in 
recurrers may indicate significantly blunted recovery of this normal microbiome function. The 
microbiome is also critical for transforming bile acids. Indeed, two bile acids, taurocholate 
[FDR=0.005] (a primary bile acid) and taurochenodeoxycholic acid 3-sulfate [FDR=0.02] (a 
primary bile acid conjugate), were significantly higher in recurrers, again suggesting delayed 
recovery of microbiome function. Interestingly, taurocholate and other cholate derivatives have 
been demonstrated to promote C. difficile germination in vivo, though their role in pathogenesis 
in vitro is less clear [1], [11], [13], [29], [30]. Bilirubin metabolism is another major function of the 
gut microbiota [31]. D-urobilin, the end product of bilirubin metabolism, was significantly lower in 
recurrers [FDR=0.01]. Higher levels of SCFAs indicate active microbiota metabolism in the gut 
[14]. Consistent with the picture of gut microbial dysbiosis seen with the other metabolites 
discussed above, levels of acetate (FDR=0.07) and isovalerate/2-methylbutyrate (FDR=0.7) were 
borderline significant for being lower in recurrers.  

At week two, levels of metabolites involved in host immune or inflammatory modulation, 
predominately conjugated anti-inflammatory compounds and endocannabinoids, also differed 
significantly between recurrers and non-recurrers. The observed lower levels of conjugated 
corticosteroids in non-recurrers not only indicates greater microbial deconjugation activities, but 
may also indicate increased host anti-inflammatory activity: unconjugated corticosteroids, such 
as tetrahydrocorticosterone, are key anti-inflammatory compounds, and unconjugated sex 
steroids have also been shown to act as important modulators of inflammation in the gut [28], 
[32]. Other conjugated compounds found to be significantly higher in recurrers, specifically 
glucuronides of piperine, salicyluric glucuronide and apigenin sulfate, have also been shown to 
have unconjugated forms with anti-inflammatory effects [33]–[36]. Levels of the 
endocannabinoids behenoyl ethanolamide and lignoceroyl ethanolamide were also significantly 
lower in recurrers. Endocannabinoids have been shown to maintain gut homeostasis through 
modulating the immune system and gut motility; additionally, endocannabinoids have been found 
to increase in the presence of Akkermansia muciniphila, a taxa we found to be significantly more 
abundant in non-recurrers at week two [37]–[39]. Taken together, these results suggest a picture 
of reduced capability to modulate inflammation in recurrers. 
 
Predictive models of recurrence achieved highest accuracy using 
metabolomic data  
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 To estimate how well our data can predict CDI recurrence in patients, we built supervised 
machine learning/statistical models and evaluated them using cross-validation. This approach 
fundamentally differs from the univariate statistical tests presented in the previous sections in two 
ways: (1) univariate approaches evaluate one variable at a time, and thus cannot find combined 
effects (e.g., increased risk if multiple metabolites are elevated), and (2) statistical testing 
approaches cannot provide an estimate of predictive accuracy, or how well the model might 
perform on unseen data. Both these capabilities are necessary for developing a clinically useful 
diagnostic, which is an important objective in the field. For prediction tasks, we evaluated three 
standard methods in the field: lasso-logistic regression (LR), random forests (RF), and lasso-Cox 
regression (CR). The first two methods predict binary outcomes (recurrence or non-recurrence), 
whereas CR predicts the time to recurrence. We evaluated these methods based on their ability 
to predict outcomes using a cross-validation methodology (training the models on subsets of the 
data and predicting on held-out data). For the two methods predicting binary outcomes, we used 
the area under the receiver operator curve (AUC) score as the evaluation metric, and for CR we 
used the concordance index (CI). 

We applied LR, RF, and CR to participants’ pre-CDI treatment, week 1, and week 2 
samples, using the following information: (1) clinical variables found to be associated with 
recurrence in prior studies (age, previous PPI use, treatment regiment, and diagnosis method), 
(2) ASVs from 16S rRNA amplicon sequencing, (3) LC/MS untargeted metabolomics, (4) SCFAs, 
and, (5) all sources of data (1-4) combined. Overall, we found that the LC/MS metabolomic data 
at weeks one and two had the highest predictive accuracy (Fig 4; Table S4). For predicting 
recurrence/non-recurrence, at week one, LR on metabolomic data achieved the highest AUC 
(0.77; [0.71, 0.86] 95% interval), and at week two, RF on metabolomic data achieved the highest 
AUC (0.77; [0.69, 0.85] 95% interval). None of the other data sources or time-points achieved 
AUC scores greater than 0.7, which is generally considered the threshold for an acceptable 
clinical test (with 0.8 to 0.9 considered excellent). Models predicting recurrence using all available 
data sources combined achieved essentially equivalent AUCs to models using only metabolomics 
data (Figure 4); moreover, these models only consistently selected metabolites as the significant 
features needed to make predictions (Table S5). Prediction of survival time using CR followed 
similar trends, as all models that achieved CIs > 0.7 selected only metabolites to make 
predictions. Both ASVs and SCFAs at pre-CDI treatment achieved median AUCs close to 0.7 
(0.68 using LR for ASVs, and 0.68 using RF for SCFAs). However, the 95% cross-validated 
intervals for these AUCs were large, with their lower ranges extending toward values near 0.5 
(random chance). Thus, these predictors lack robustness or generalizability. The lack of accurate 
pre-treatment predictors may have been limited by sample sizes in our study, as fewer samples 
were available pre-CDI treatment (N=26), compared to weeks one and two (N=48 and N=40, 
respectively). 
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Fig 4. Predictive modeling of CDI recurrence achieved the highest accuracy using 
metabolomic data. The performance of predictive models was assessed using leave-one-out 
cross-validation (N=26 at pre-CDI treatment, N=48 at week one, and N=40 at week two). Data 
sources input to models were: (1) clinical variables associated with recurrence in prior studies 
(age, previous PPI use, antibiotic treatment regimen, and CDI diagnostic test used), (2) 
untargeted gut metabolomics, (3) amplicon sequencing variants (ASVs) of the gut microbiome, 
(4) gut short chain fatty acids (SCFAs), (5) data sources 1-4 combined. Performance of (A) logistic 
regression with lasso and (B) random forests, which predict binary labels (recurrence/no 
recurrence), were assessed with the area-under-the-curve (AUC)metric. (C) Cox regression, 
which predicts survival time, was assessed with the concordance index (CI). Models achieving 
median ≥0.70 AUC or CI scores (adequate performance) are denoted with red dashed rectangles. 
The “All Data” models with ≥0.70 AUC or CI were found to select only metabolomic features. 
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To determine which metabolites were predictive in models with median AUCs > 0.7, we 

assessed cross-validated odds ratios and Gini feature importance measures. At week one, LR, 
RF and CR all selected N-carbamoylaspartate and vanillylmandelate as the top predictors, both 
of which favored recurrence when at higher levels (Figure 5). Of note, these metabolites were 
also found in univariate analysis to be borderline-significantly increased in recurrers at week one. 
At week two, RF robustly identified lignoceroyl sphingomyelin as an important feature; this 
metabolite was also found to be significantly more abundant in recurrers in univariate analyses. 
RF also identified features with borderline significance that were found in the univariate analyses, 
including sphingomyelins, primary bile acids, and a phosphorylated lipid (Figure 5). The predictive 
models also identified features that were not detected in univariate analyses: 4-hydroxyhippurate 
and bilirubin in the week one LR model were identified as predictive of recurrence when at higher 
levels. 4-hydroxyhippurate is a product of microbial degradation of polyphenols found in fruits and 
other plant-based foods [40]. Bilirubin is the product of host heme catabolism and is further 
reduced to urobilinoids/urobilinogens by the gut microbiome, so its higher levels in recurrers’ gut 
metabolomes is consistent with subpar microbiome function [31].  Because the predictive 
methods employed make different underlying assumptions (e.g., logistic regression is a 
generalized linear model whereas random forests is a black-box nonlinear model), metabolites 
selected by multiple models are more likely to be robust [41]. Thus, the set of predictive 
metabolites identified by multiple methods (Figure 5) may serve as strong candidates for future 
trials to validate biomarkers for recurrence prediction in larger, independent cohorts. 
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Figure 5. Integration of results of multiple analysis methods revealed that alterations in gut 
metabolites mapping to distinct host or microbiome-associated processes presaged CDI 
recurrence. Thirty-seven metabolites were significant in at least one analysis method for 
distinguishing CDI recurrent versus non-current status. These metabolites fell into one of three 
categories, reflecting altered host or microbiome activities. Dark orange or green colors indicate 
significance (FDR<0.05 in univariate analyses; 95% cross-validated log-odds/feature importance 
interval not containing 1.0 for predictive models). Light orange or green colors indicate borderline 
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significance (0.05<FDR≤0.10 in univariate analyses; 75% log-odds/feature importance cross-
validated interval not containing 1.0 for predictive models).  

Discussion 
To our knowledge, our work represents the largest prospective study of CDI recurrence 

employing both microbiome sequencing and untargeted metabolomics analyses. Although prior 
studies have investigated some aspects of the relationship between the microbiome and CDI, our 
study design and analysis methods allowed us to probe further. The longitudinal nature of our 
study allowed us to investigate how rates of microbiome recovery relate to recurrence. Past 
studies [15]–[17] were cross-sectional or did not sample systematically in the period following 
antibiotic treatment for CDI, which is when we observed the most marked divergence between 
recurrers and non-recurrers. Importantly, the prospective nature of our study allowed us to build 
predictive models of CDI recurrence, which are not possible with cross-sectional designs. 
Moreover, by collecting broad gut metabolomic data, we were able to establish that this data can 
predict CDI recurrence more accurately than microbial composition data. The limited predictive 
capability of microbial sequencing data could be due to several factors, including lack of data 
about the status of host processes, poor sensitivity for detecting important low abundance 
organisms, and the inability to find common signal from diverse bacterial species that perform 
similar functional roles in the gut. However, it is also possible that predictive computational models 
specifically tailored to combining microbial compositional and metabolomic data could yield 
additional information and improve predictive accuracy. 

Our findings have implications for design of diagnostic tests and therapeutic interventions 
for recurrent CDI. We did not find clear differences between recurrers and non-recurrers at the 
time of CDI diagnosis. Rather, we found that the rate of recovery from dysbiosis was substantially 
slower in recurrers, with incomplete recovery still evident at two weeks post-CDI antibiotic 
treatment. Further, we found that at one-week post-CDI antibiotic treatment, increased levels of 
specific metabolite biomarkers associated with host inflammation accurately predicted future 
recurrence. Taken together, these findings suggest that diagnostic tests targeting specific 
metabolites in the first one to two weeks post-CDI treatment may be most accurate and clinically 
useful. Moreover, by identifying a small set of metabolites that accurately predict recurrence, we 
have laid the groundwork for developing a feasible clinical test based on a limited biomarker panel 
that could be cost-effectively measured through targeted LC/MS or other platforms that already 
exist in clinical laboratories. Our study also uncovered complex and dynamic differences in gut 
metabolomes, both across time and between recurrers and non-recurrers, which could suggest 
new avenues for preventing or treating recurrent CDI. For example, we found increased levels of 
sphingomyelins, sphingolipids, and phospholipids in recurrers prior to the onset of symptoms. 
These lipids have been found in the guts of late-stage acute CDI in mice, as well as children with 
IBD and CDI+IBD [10], [17], and may indicate early markers of gut inflammation as C. difficile 
begins to exert pathogenic effects that do not yet cause frank diarrhea or other symptoms. 
Interestingly, these lipids have recently been shown to be synthesized by common gut bacteria 
and affect vascular endothelium function and inflammatory responses [42], [43]. Thus, it is 
possible that rises in these metabolites seen in recurrers at least partially reflect metabolic activity 
of the microbiome, which could exacerbate development of CDI through modulation of host 
inflammatory and immune processes. Reduced endocannabinoids in recurrers could similarly 
involve an interplay between the host and microbiome, as recent evidence suggests that gut 
microbes regulate endocannabinoids in order to control energy metabolism and gut functions in 
the host [37].  
 
Conclusions 
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We found in our prospective, longitudinal, multi-omic study of CDI recurrence that the 
microbiomes and metabolomes of participants, while similar immediately before and after initial 
treatment, diverged rapidly as non-recurrers recovered normal microbiota and metabolic functions 
and recurrers remained dysbiotic. Our analyses uncovered specific metabolic derangements in 
participants who experienced subsequent recurrence, including evidence of loss of normal 
metabolic activities of the gut microbiome, host gut inflammation and cell death, and decreases 
in anti-inflammatory and immune-modulating compounds. Moreover, we found that differences in 
specific metabolites in the first two weeks post-CDI antibiotic treatment accurately predicted future 
recurrence, while microbiome sequencing data did not yield high predictive accuracy. These 
results suggest that metabolomics may be the more robust modality for evaluating recovery of 
microbial function. By providing specific candidate predictive biomarkers and expanding our 
knowledge of the complex metabolic changes preceding recurrence, our findings have 
implications for development of diagnostic tests and treatments for CDI recurrence 

 
Methods 
Study design 

This prospective, longitudinal cohort study was conducted to study microbiome and 
metabolome predictors of CDI recurrence. Participants with primary, uncomplicated CDI were 
identified by positive test results from the Brigham and Women’s Hospital (BWH) Clinical 
Microbiology Laboratory and recruited from BWH’s inpatient service, as well as two surrounding 
community hospitals. Participants who were being treated for primary CDI, diagnosed with 
diarrhea symptoms, and a positive C. difficile test by either glutamate dehydrogenase (GDH) and 
enzyme immunoassay (EIA) toxin or polymerase chain reaction (PCR), were eligible for inclusion. 
Primary CDI was defined as no episodes of CDI within the past 6 months. Exclusionary criteria 
included inflammatory bowel disease, inherited or acquired immunodeficiencies, severe or 
fulminant CDI, or ongoing non-CDI antibiotic use that continued past the CDI antibiotic course. 53 
participants were followed from initial diagnosis until recurrence, or for 8 weeks post-treatment if 
they did not recur. Samples at diagnosis (before initiation of antibiotic treatment for CDI) were 
available for only 26 participants because of the difficulty in obtaining viable fecal samples from 
the clinical laboratory workflow. Samples were taken at diagnosis (if available), weekly or bi-
weekly for 2 weeks after diagnosis, and then weekly for another 6 weeks, or until recurrence. 
Recurrence was defined as diarrhea (Bristol stool scale 6 or 7), at least 3 bowel movements daily 
for 3 days, and a positive GDH and EIA test, in keeping with current guidelines. Because all 
participants recurred before week 4, samples after week 4 were not analyzed.  
 
Participant demographics and clinical data 

Demographic variables were collected for the 53 participants (Table 1). Weight and height 
were collected individually and used to calculate participants’ BMI. Significance testing for 
demographic variables was conducted using Fisher’s exact test for binary variables (sex), the chi-
squared test for categorical variables (race, smoking status), and the Wilcoxon-rank-sum test for 
continuous variables (age, BMI). 
 
16S rRNA gene amplicon sequencing 

For DNA extraction, all fecal samples were processed with the Zymo Research 
ZymoBIOMICS DNA 96-well kit according to manufacturer instructions with the addition of bead 
beating for 20 minutes. The extracted DNA was used for 16S rRNA gene Amplicon sequencing 
and 16S rRNA qPCR for total bacterial concentration estimation. Amplicon sequencing of the v4 
region of the 16S rRNA gene was performed using the previously described protocol in [44] using 
515F and 806R primers for PCR along with: 
5’-[Illumina adaptor]-[unique bar code]-[sequencing primer pad]-[linker]-[primer] 
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Read 1 (forward primer): AATGATACGGCGACCACCGAGATCTACAC-NNNNNNNN-
TATGGTAATT-GT-GTGCCAGCMGCCGCGGTAA 
Read 2 (reverse primer): CAAGCAGAAGACGGCATACGAGAT-NNNNNNNN-AGTCAGTCAG-
CC-GGACTACHVGGGTWTCTAAT 
 
LC-MS untargeted metabolomics 

LC-MS untargeted metabolomics was performed by Metabolon (Durham, NC USA). After 
delivery to Metabolon, samples were homogenized in methanol to extract metabolites and then 
centrifuged to separate the supernatant from debris and precipitates. The supernatant was 
divided into five aliquots for four analyses plus one extra and then dried using a TurboVap 
(Zymark). Dried samples were stored overnight under nitrogen gas. Samples were reconstituted 
and measured with Waters ACQUITY ultra-performance liquid chromatography (UPLC) and 
Thermo Scientific Q-Exactive high resolution/accurate mass spectrometry (MS), heated 
electrospray ionization source (HESI-II) and Orbitrap pass analyzer (35,000 mass resolution). 
Samples were analyzed in the following four different ways: (1) elution w/ C18 column (Waters 
UPLC BEH C18-2.1x100mm, 1.7um) in positive-ion mode with water/methanol gradient mobile 
phase containing 0.05% perfluorpentanoic acid (PFPA) and 0.1% formic acid (FA), (2) as in (1), 
except w/ water/acetonitrile/methanol gradient mobile phase containing 0.05% PFPA and 0.01% 
FA, (3) elution w/ a separate C18 column in negative-ion mode w/ water/methanol gradient mobile 
phase containing 6.5 mM ammonium bicarbonate, pH 8, and (4) elution w/ HILIC column (Waters 
UPLC BEH amide 2.1x150mm, 1.7um) in negative-ion mode w/ water/acetonitrile gradient mobile 
phase containing 10 mM ammonium formate, pH 10.8. The MS analysis was performed as 
dynamic exclusion, altering between MS and data-dependent MSn scans with a scan range of 70-
1000 m/z. Data extraction, peak identification, quality control, and annotation were performed by 
Metabolon’s proprietary software. 
 
Short chain fatty acid profiling 

Volatile SCFAs were quantified as described in [45]. Acidified internal standards with 
100uL of either ethyl anhydrous or boron trifluoride-methanol was added to 100uL of supernatant 
from homogenized cecal contents. Chromatographic analyses were carried out on an Agilent 
7890B system with a flame ionization detector (FID). Chromatogram and data integration were 
done using the OpenLab ChemStation software (Agilent Technologies, Santa Clara, CA). SCFAs 
were identified by comparing their specific retention times relative to the retention time in the 
standard mix. Concentrations were determined as mM of each SCFA per gram of sample for the 
raw cecal/fecal material. The Agilent platform cannot discriminate between isovalerate and 2-
methylbutyrate, and so these are reported as a single peak value.  
 
16S rRNA gene amplicon data analysis 
 
Bioinformatics 

Sequencing generated 4,605,740 total reads and 97,994 average reads per sample. The 
paired-end Fastq files were truncated, filtered, denoised, and merged using the dada2 pipeline 
and filtering parameters identical to the dada2 tutorial [46]. Our analysis found 2509 unique 
amplicon sequencing variants (ASVs) in the dataset, and taxonomy was assigned using the 
dada2 RDP and Silva reference databases [47], [48]. If taxa assignments between the two 
databases disagreed, the taxa assignment from the RDP database was used. 

 
Alpha and beta diversity 

Prior to calculating alpha and beta diversity, relative ASV abundance was calculated by 
dividing each ASV’s counts by the total number of counts in a sample. Using ASV relative 
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abundance, we calculated the alpha diversity (Chao1) at pre-treatment, week one, week two, 
week three, and week four using scikit-bio (skbio.diversity.alpha.chao1) [24]. Significant 
differences in intra-group alpha diversity over time and inter-group alpha diversity at pre-
treatment, week one, and week two were tested using the Mann-Whitney U test. A one-sided test 
was used to test the hypothesis that alpha diversity of both groups decreased during antibiotic 
treatment and then recovered, and the hypothesis that non-recurrent participants would have 
higher alpha diversity. Beta diversity was calculated at pre-treatment, week one, week two, week 
three, and week four from the Bray-Curtis dissimilarities (calculated using 
scipy.spatial.distance.pdist) of relative ASV abundances between each subject. To visualize the 
dissimilarity of outcome groups at each timepoint and the intra-group dissimilarity between 
timepoints, we performed multi-dimensional scaling (using scikit-learn.manifold.MDS) on the 
Bray-Curtis dissimilarities . We used permutational multivariate analysis of variance 
(PERMANOVA) (skbio.stats.distance.permanova) with 999 permutations to assess the 
significance of inter and intra group dissimilarities at pre-treatment, week one, and week two. 

  
Filtering 

Prior to differential abundance analysis, ASVs were filtered to remove rare taxa. We 
included ASVs present with >10 counts and in ≥10% of participants in either pre-treatment, week 
one, or week two. This resulted in 237 ASVs post-filtering.  
 
Differential abundance analysis 

After filtering, differential abundance analyses between recurrers and non-recurrers at pre-
treatment, week one, and week two were performed using the DESeq function within the DESeq2 
package [49]. Because every ASV in the dataset contained zeros, we pre-computed the geometric 
means and then the size factors using the estimateSizeFactors function within DESeq2. Intra-
group differential abundance analysis was also performed between pre-treatment and week one, 
and between week one and week two, for both recurrers and non-recurrers using the same 
procedure in DESeq2. All differential abundance analyses were followed by the Benjamini-
Hochberg correction for multiple hypotheses [50]. The relative abundances of ASVs that were 
significantly different between recurrers and non-recurrers at pre-treatment, week one, or week 
two are shown in Figure 2 on a logarithmic scale, along with the phylogenetic relationships of 
these ASVs (found  with methods detailed below). In this figure, recurrers and non-recurrers at 
each timepoint are clustered hierarchically using scipy.cluster.hierarchy with optimal ordering and 
‘average’ distance. 
 
Phylogenetic placement 

To further clarify phylogenetic relationships between ASVs of interest, we built a reference     
tree and then performed phylogenetic placement of ASVs. For the reference tree, all typed, 
isolated strains of good quality that were longer than 1200 base pairs were downloaded from the 
RDP bacteria and archaea datasets [47]. Reference sequences were then aligned using the RDP 
aligner. The reference sequences were then filtered to remove: (1) sequences with unaligned 
lengths ≥1600 bp and, (2) sequences with rare insertions (defined as a base pair in a position 
where there were 5 or less sequences with un-gapped base pairs in that position). Filtered 
reference sequences were then realigned using the same RDP aligner. A reference tree was 
constructed using FastTree version 2.1.7 SSE3 with the general-time-reversible maximum 
likelihood option [51]. Pplacer v1.1.alpha19 with default settings [52] was then used to place query 
ASVs onto the reference tree. 
 
Enrichment analysis 
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Enrichment analyses were performed on the ASVs found in each differential abundance 
analysis with FDRs<0.05 (Table S3). For a given family A, we tested if the family was significantly 
overrepresented in differentially abundant ASVs using the hypergeometric probability distribution: 

  

𝑃𝑃(𝑋𝑋 = 𝑘𝑘)  =  
�𝐾𝐾𝑘𝑘� �

𝑁𝑁 − 𝐾𝐾
𝑛𝑛 − 𝑘𝑘 �

�𝑁𝑁𝑛𝑛�
                           (1) 

Here, N is the total number of (post-filtering) ASVs, K is the subset of N in family A, n is the number 
of differentially abundant ASVs, and k is the subset of n in family A. To prevent false positives 
due to small family sizes, we did not test (1) families that had too few ASVs in the total post-
filtering set (K≤3) or (2) families that had too few ASVs in the differentially abundant subset (k≤2). 
For all families large enough to pass the filter, p-values were computed using the hypergeometric 
test, and the Benjamini-Hochberg procedure was using to correct for multiple hypothesis testing 
[50]. 
 
LC-MS untargeted metabolomics data analysis 
 
“OrigScale” data returned by Metabolon was used in all analyses described in this manuscript; 
these data represent values normalized in terms of raw area counts. 
 
Ordination analyses 

To assess inter-group dissimilarity at each timepoint and intra-group dissimilarity between 
timepoints, we computed matrices using Spearman rank correlation on the unfiltered and 
untransformed metabolomic data. We used PERMANOVA (skbio.stats.distance.permanova) with 
999 permutations to test the significance of differences (Table S1).  
 
Filtering 

LC-MS untargeted metabolomics measured 1387 metabolites. To retain only metabolites 
with sufficient prevalence and variance across time or participants, we included metabolites with: 
(1) non-zero values in ≥25% of participants in either pre-treatment, week one, or week two 
samples, and (2) co-efficient of variations in the top 50th percentile in either pre-treatment, week 
one, or week two samples. These criteria resulted in 760 metabolites post-filtering.  

  
Univariate analysis 

Before univariate analyses, metabolite values were log transformed (after adding a small 
positive number, 10% of the minimum non-zero value in the dataset) to all values, and 
standardized to have a mean of zero and a standard deviation of one. After filtering and 
transforming the metabolic data, we performed statistical testing using Student’s t-test followed 
by Benjamini-Hochberg correction for multiple hypotheses testing [50].  
 
Enrichment analysis 

Enrichment analyses were performed on the metabolites found in univariate analysis with 
FDRs<0.05, with an analogous method as used for enrichment analysis of the ASVs. We used 
the hypergeometric test with Benjamini-Hochberg [50] multiple hypothesis correction to assess 
whether pre-specified groups (super pathways and sub-pathways) were significantly  over-
represented in the differentially abundant metabolites. As with the ASV enrichment analysis, we 
did not perform hypothesis testing on super and sub-pathways with: (1) too few metabolites in the 
total post-filtering set (K≤3) or, (2) too few metabolites in the differentially abundant subset (k≤2). 
 
Short chain fatty acid data analysis 
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SCFA profiling found eight SCFAs in the analyzed samples: acetate, propionate, 
isobutyrate, butyrate, isovalerate/2-methylbutyrate, valerate, heptanoate, isocaproate, and 
caproate. Heptanoate was removed from subsequent analyses due to only being present in one 
sample. Caproate was present in only two samples and was also removed from further analyses. 
The remaining seven SCFAs were log transformed and standardized analogously to the 
untargeted metabolomics data prior to univariate analysis; univariate analyses were also 
performed analogously to those on the untargeted metabolomics data. 
 
Predictive modeling 

The following data sources were used as input to predictive modeling methods: (1) clinical 
variables found to be associated with recurrence in prior studies (age, previous PPI use, antibiotic 
treatment regiment, and CDI diagnostic test), (2) 16S rRNA amplicon sequencing (ASVs) from 
pre-treatment, week 1, or week 2 samples, (3) untargeted metabolomics data from pre-treatment, 
week 1, or week 2 samples, (4) SCFAs profiles from pre-treatment, week 1, or week 2 samples, 
and (5) data sources 1-4 combined. In each predictive model, training datasets were filtered with 
the same criteria described for univariate analyses. Metabolites and SCFAs were log-transformed 
and standardized, and ASV relative abundances were transformed with the centered log ratio and 
then standardized. Continuous clinical variables (i.e., age) were log-transformed and 
standardized. 

Relevant predictive features were identified through a nested leave-one-out cross-
validation procedure (described in detail below for each method). To summarize the results for 
each feature, we report the median and 95% interval over the folds (i.e., regression coefficients 
for logistic and cox regression, feature importances for random forests). We deem features 
significant if the 95% cross-validated odds-ratio/feature-importance intervals did not contain 1.0, 
and marginally-significant if the 75% cross-validated interval did not contain 1.0. The code to 
reproduce these analyses can be found in https://github.com/gerberlab/cdiff_paper_analyses. 

  
Logistic regression 

Logistic regression models were fit using scikit-learn’s (v0.24.2) logistic regression 
function with L1 lasso regularization, balanced classes, and a liblinear solver. We used nested 
leave-one-out cross validation to find the optimal L1 hyperparameter, performing a grid search 
over a range of 200 values from the maximum lambda value (i.e., the value that resulted in all 
zero coefficients) to 0.1% of the maximum lambda value. Performance in the inner loop was 
evaluated by area under the receiver operator curve (AUC) score calculated from the predictions 
of all the held-out samples. To reduce overfitting, the inner loop performances were smoothed 
using a n=5 moving average, and the optimal L1 hyperparameter was that which resulted in the 
highest value on the smoothed performance curve. After choosing the best L1 hyperparameter, 
the model’s predictive capability was evaluated by its leave-one-out cross validated AUC score. 
Variance estimates of model performance and regression coefficients were calculated from the 
cross-validation folds. 

  
Random forest 
 Random forest models were fit using scikit-learn’s (v0.24.2) random forest classifier. We 
performed a nested leave-one-out cross validation procedure with grid search, to determine the 
number of estimators (50 or 100), the maximum features to subsample at each split (the total 
number of features or the square root of the number of features), the minimum samples required 
to split an internal node (2 or 9) and the minimum samples required to split a leaf node (1 or 5). 
All other parameters were set to their default values except for class weight (‘balanced’) and out 
of box score (True). The feature importances were calculated with the impurity-based feature 
importance, or the Gini importance, using the feature_importance attribute of the fitted model. 
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Model performance and feature importance statistics were calculated from the cross-validation 
folds. 
 
Cox regression 
 Cox regression models were fit using scikit-survival’s (v0.15.0) Coxnet Survival Analysis 
function with L1 regularization. We used a similar nested cross validation as described for our 
logistic regression analyses to optimize the L1 parameter, searching over a range of 200 values 
from the maximum lambda value (i.e., the value that resulted in all zero coefficients) to 0.01% of 
the maximum lambda value. We evaluated both the inner and outer loops of the survival analysis 
using the concordance index (CI). Rather than leave-one-out cross validation, we used a leave-
two-out method, where all left out pairs had at least one recurrer, to calculate the CI. In this 
formulation (mathematically equivalent to the standard definition of CI), CI is computed by dividing 
the number of times a pair was ordered correctly by the number of times a pair ordering was 
attempted. Variance estimates of model performance were calculated from the cross-validation 
folds. 
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Supplemental Figures 

 
Supplemental Figure S1: Gut microbiome community structure significantly changed over 
time within recurrers or non-recurrers and was significantly different between the groups 
at week two. Beta diversity with the Bray-Curtis dissimilarity measure was used to assess overall 
microbiome community structure; Principal Coordinate Analysis (PCoA) was used to visualize 
results. (A) Beta diversity changed significantly over time within groups. Differences were 
significant for non-recurrers from pre-treatment to week one (p=10-3) and from week one to week 
two (p=10-3). For recurrers, differences were significant from pre-treatment to week one (p=3x10-

3). (B) Beta diversity was significantly different between recurrers and non-recurrers at week two 
(p=10-2); differences at other time-points were not significant. 
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Supplemental Figure S2: Gut metabolome structure significantly changed over time within 
recurrers or non-recurrers and was significantly different between the groups at week two. 
Ordination analysis using Spearman rank correlation was used to assess overall metabolome 
structure; Principal Coordinate Analysis (PCoA) was used to visualize results. (A) Metabolome 
structure changed significantly over time within groups. Differences were significant for non-
recurrers from pre-treatment to week one (p=10-3) and from week one to week two (p=10-3). For 
recurrers, differences were significant from pre-treatment to week one (p=10-3). (B) Metabolome 
structure was significantly different between recurrers and non-recurrers at week two (p=10-3); 
differences at other time-points were not significant. 

 

 
Supplemental Figure S3: A border-line significant trend was observed of higher levels of 
fecal acetate and isovalerate short-chain fatty acids at week two in participants who did 
not recur with C. difficile. Log-transformed and standardized concentrations of the short-chain 
fatty acids measured in fecal samples are shown. Levels of acetate (FDR=0.07) and isovalerate/2-
ME butyrate (FDR=0.07) were higher in non-recurrent (NR) versus recurrent (R) participants. 
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