
Smoking-dependent expression altera3ons in nasal 
epithelium reveal immune impairment linked to 
germline varia3on and lung cancer risk 

Maria Stella de Biase1,*,#, Florian Massip1,2,3,4,*,#, Tzu-Ting Wei1,5, Federico M. Giorgi6,11, Rory Stark6, 
Amanda Stone7, Amy Gladwell7, MarJn O’Reilly6,12, Daniel SchüPe10, Ines de SanJago6,13, KersJn B. 
Meyer6,14 , Florian Markowetz6, Bruce A J Ponder6,#,$, Robert C Rintoul7,8,#,$, Roland F Schwarz10,9,1,#,$ 

1 Berlin InsJtute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the 
Helmholtz AssociaJon, Berlin, Germany 
2 MINES ParisTech, PSL-Research University, CBIO-Centre for ComputaJonal Biology, 75006 Paris, 
France 
3 InsJtut Curie, Paris, Cedex, France 
4 INSERM, U900, Paris, Cedex, France 
5 InsJtute of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität  
Berlin and Humboldt-Universität zu Berlin, Berlin, Germany 
6 Cancer Research UK Cambridge InsJtute, University of Cambridge, UK 
7 Department of Oncology, Royal Papworth Hospital NHS FoundaJon Trust , Cambridge, UK 
8 Department of Oncology, University of Cambridge, Cambridge, UK  
9 BIFOLD - Berlin InsJtute for the FoundaJons of Learning and Data, Berlin, Germany  
10 InsJtute for ComputaJonal Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer 
Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, Univer-
sity of Cologne, Germany 
11 Present address: Department of Pharmacy and Biotechnology, University of Bologna, Italy 
12 Present address: MRC Toxicology Unit , Tennis Court Road, Cambridge CB2 1QR, UK 

13 Present address: e-therapeuJcs plc, 17 Blenheim Office Park, Long Hanborough OX29 8LN, UK 
14 Present address: The Wellcome Sanger InsJtute, Hinxton, UK 
 
# To whom correspondence should be addressed: robert.rintoul@nhs.net, bruce.ponder@cruk.-
cam.ac.uk, roland.schwarz@mdc-berlin.de, florian.massip@mines-paristech.fr, stella.debiase@mdc-
berlin.de 
* These authors contributed equally: Maria Stella de Biase, Florian Massip 
$ These authors conceived and jointly supervised the work: Bruce Ponder, Robert Rintoul, Roland F 
Schwarz 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2023. ; https://doi.org/10.1101/2021.11.24.21266740doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:robert.rintoul@nhs.net
mailto:bruce.ponder@cruk.cam.ac.uk
mailto:bruce.ponder@cruk.cam.ac.uk
mailto:roland.schwarz@mdc-berlin.de
mailto:florian.massip@mines-paristech.fr
mailto:stella.debiase@mdc-berlin.de
mailto:stella.debiase@mdc-berlin.de
https://doi.org/10.1101/2021.11.24.21266740
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

Abstract  
Lung cancer is the leading cause of cancer-related death in the world. In contrast to many 

other cancers, a direct connecJon to modifiable lifestyle risk in the form of tobacco smoke has long 
been established. More than 50% of all smoking-related lung cancers occur in former smokers, oren 
many years arer smoking cessaJon. Despite extensive research, the molecular processes for persis-
tent lung cancer risk are unclear. 

To examine whether risk straJficaJon in the clinic and in the general populaJon can be im-
proved upon by the addiJon of geneJc data, and to explore the mechanisms of the persisJng risk in 
former smokers, we have analysed transcriptomic data from accessible airway Jssues of 487 sub-
jects, including healthy volunteers and clinic paJents of different smoking status. We developed a 
model to assess smoking associated gene expression changes and their reversibility arer smoking is 
stopped, comparing healthy subjects to clinic paJents with and without lung cancer. We find persis-
tent smoking-associated immune alteraJons to be a hallmark of the clinic paJents. IntegraJng previ-
ous GWAS data using a transcripJonal network approach, we demonstrate that the same immune 
and interferon related pathways are strongly enriched for genes linked to known geneJc risk factors, 
demonstraJng a causal relaJonship between immune alteraJon and lung cancer risk. Finally, we 
used accessible airway transcriptomic data to derive a non-invasive lung cancer risk classifier.  

Our results provide iniJal evidence for germline-mediated personalised smoke injury re-
sponse and risk in the general populaJon, with potenJal implicaJons for managing long-term lung 
cancer incidence and mortality. 
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Introduc3on 
Through internaJonal efforts and public health campaigns the prevalence of cigarePe smoking 
worldwide has substanJally decreased during the last 30 years (1). However, lung cancer remains a 
major cause of death in current and former smokers: over 40% of all lung cancers occur more than 
15 years arer smoking cessaJon (2, 3). Low-dose CT screening studies in asymptomaJc smokers and 
former smokers, straJfied for risk by age and smoking history, have shown a reducJon in lung cancer 
related death by up to 26% (4, 5). Although CT lung screening has been demonstrated to be cost-ef-
fecJve (6, 7), improvements in risk straJficaJon of parJcipants could further improve cost-effecJve-
ness thereby making screening more widely accessible and allowing detecJon of at-risk subjects 
overlooked by the current criteria. 

TranscripJonal profiles from normal airway epithelium have been proposed as potenJal molecular 
biomarkers of a personalised smoke-injury response related to increased risk, and as potenJal pre-
dictors of the presence of lung cancer. Early studies of bronchial cells provided a broad characterisa-
Jon of the genes affected by cigarePe smoke exposure (8) and their post-cessaJon reversibility (9), 
and included iniJal aPempts to derive predicJve cancer gene expression signatures (10). Following 
the model of a ‘field of injury’ throughout the airway epithelium, later efforts focused on more ac-
cessible Jssues from the nasal or buccal cavity to assess the personal smoke injury response (11, 12). 
Sridhar et al. (13) and Zhang et al. (14) provided iniJal evidence on 25 paJents that nasal epithelium 
might act as a proxy for smoking-induced gene expression changes in the bronchus. More recently, 
the AEGIS study team presented a large mulJ-centre study in which they showed that a classifier 
based on microarray gene expression data in bronchial epithelium improved the diagnosJc perfor-
mance of bronchoscopy in paJents being invesJgated for suspected lung cancer (15). They followed 
this up with a similar study based on nasal gene expression (16). They showed significant concor-
dance between gene expression in bronchial and nasal epithelium, and that a lung cancer classifier 
based on nasal gene expression together with clinical risk factors had significantly improved predic-
Jve performance over a classifier based on clinical risk factors alone. These studies addressed the 
quesJon of improving the diagnosJc management of current and former smokers in whom lung can-
cer is already suspected due to the presence of pulmonary nodules detected during CT screening. 

To date, no study so far addresses the important quesJon of whether and how the smoke-injury re-
sponse differs in the general populaJon from that observed in individuals with an elevated pre-
screening risk. Accordingly, no molecular risk straJficaJon strategy exists for the general populaJon, 
where any early detecJon measures would arguably reap the greatest benefits. Here, we present a 
cohort which includes current and former smokers with suspected lung cancer based on clinical 
evaluaJon from a physician, as well as a group of never, former and current smoker healthy volun-
teers from the general populaJon (Fig. 1). Our study provides an in-depth characterisaJon of the 
smoke-injury gene expression response in the healthy volunteers, based on accessible nasal Jssue, 
and invesJgates the differences in smoke injury response between the healthy volunteers and the 
group of paJents referred to the clinic. We derive molecular classifiers for assessing cancer risk in the 
clinic populaJon as well as for predicJng risk among the general populaJon of asymptomaJc current 
and former smokers. Using germline genotype data we associate individual differences in smoke in-
jury response with known lung cancer GWAS risk loci, providing strong evidence for causal involve-
ment of inherited variaJon in immune and interferon-related pathways, and for a role of immuno-
suppression in lung cancer development (17, 18).  
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Results 

Study subjects 

We recruited 487 subjects among which were 114 healthy volunteers from the Cambridge Biore-
source (hPps://www.cambridgebioresource.group.cam.ac.uk/) and 373 paJents referred to the out-
paJent clinic at Royal Papworth Hospital (Cambridge, UK) or Peterborough City Hospital (Peterbor-
ough, UK) with symptoms or imaging suspicious for lung cancer  (clinic group). Healthy volunteers 
are here defined as individuals without any prior history or current suspicion for airway malignancy. 
Within the clinic group, 301 paJents were diagnosed with cancer and 72 paJents had a final diagno-
sis of a benign condiJon, the majority of which were inflammatory or infecJous diseases  (Fig. 1, 
Sup. Tab. 1). From these donors we collected a total of 649 samples: 413 nasal epithelial samples by 
mini-curePe from 114 healthy donors and 299 clinic paJents, and 236 bronchial brushings from clinic 
paJents (Fig. 1, Methods). For 162 clinic paJents both nasal and bronchial samples were collected 
(Sup. Tab. 2). Samples from healthy volunteers and clinic paJents were collected and processed by 
the same staff using idenJcal experimental protocols. 

Smoking history was obtained for all subjects, confirmed by coJnine test, and recorded as never 
smokers (NV, n=45), current smokers (CS, n=153) and former smokers (FS, n=289). Former smokers 
were straJfied into 3 categories based on their Jme from smoking cessaJon: former smokers who 
had quit less than one month (n=10), 1 to 12 months (n=45), or more than 1 year (n=234, 
median=168 months) prior to sample collecJon (Fig. 1, Methods). CumulaJve smoke exposure was 
measured in pack-years, and straJfied into 4 categories: none, 0-10, 11-30, >31 pack-years. In addi-
Jon to smoking status, sex, age, lung cancer subtype and stage and presence of chronic obstrucJve 
pulmonary disease (COPD) were recorded according to the GOLD criteria (Vogelmeier et al. 2017) 
(Sup. Tab. 2). While most clinic paJents with cancer were diagnosed with non-small cell lung cancer 
(NSCLC; n=245), 56 subjects presented with metastaJc disease from an extra-thoracic primary (n=8), 
small-cell lung cancer (SCLC, n=31), or a rare pulmonary cancer e.g. carcinoid (n=17). Given the dif-
ferent underlying biology between NSCLC and other types of tumours, these subjects (with cancer 
status marked as Ineligible in Sup. Tab. 2) were included in all analyses invesJgaJng smoke injury re-
sponse, but were excluded for lung cancer risk predicJon. Clinic paJents with a final diagnosis of a 
benign condiJon were followed up for a minimum of 1 year to confirm absence of cancer. 

Airway samples underwent RNA sequencing using standard protocols. Blood samples were taken 
from 467 subjects for germline genotyping with Illumina Infinium Oncoarray pla{orm at 450K tag-
ging germline variants. Total gene expression was quanJfied as variance-stabilised counts and cor-
rected for batch effects in all downstream analyses (Methods). 
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Figure 1: Overview of study subjects and data analysis. (LeG) ReparJJon of the subjects into clinical cate-
gories and smoking status. For each category, we show the number of subjects for which RNA-seq (on nasal 
and bronchial samples) and array-based blood genotyping were performed. Nasal samples from the AEGIS co-
hort were used as a validaJon set. (Right) SchemaJc of the different analyses conducted to straJfy paJents 
and idenJfy dysregulated pathways among clinic paJents. 

Healthy volunteers and clinic pa3ents show widespread differences in gene 
expression 

To invesJgate overall gene expression paPerns, we first tested for gene expression differences be-
tween all clinic paJents (benign and cancer diagnoses) and healthy volunteers using nasal epithelium 
samples from both current and former smokers correcJng for smoking status, pack-years, sex and 
age. We found extensive differences in gene expression between the healthy volunteer and clinic 
groups, with 5359 genes differenJally expressed (FDR < .05, Methods). Genes showing increased ex-
pression in clinic paJents were enriched for cilium assembly and organizaJon, while genes showing 
reduced expression were enriched for oxidaJve phosphorylaJon and several immune-related path-
ways, such as neutrophil acJvaJon, anJgen processing and presentaJon and response to interferon 
gamma (Sup. Tab. 3). When performing the same comparison in current smokers only, similar en-
richment was found in the genes with increased and reduced expression. In former smokers who had 
quit for more than 1 year, there was no increased expression compared to healthy volunteers for 
genes related to ciliary funcJon, but there was reduced expression of genes related to immune 
pathways such as inflammatory response, neutrophil acJvaJon and response to interferon gamma. 
These analyses demonstrate widespread expression differences betweenhealthy volunteers and clin-
ic paJents not solely aPributable to differences in smoke exposure, and suggest that an immunosup-
pressed state can be detected in the nasal epithelium of subjects from the clinic group during acJve 
smoking and for years arer smoking cessaJon. 
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In contrast, comparing gene expression between paJents with and without cancer in the clinic group 
and accounJng for the same confounding (analysing current and former smokers together) yielded 
only 28 significantly altered genes (Padj < .05, Methods) in the bronchus, and no significantly differ-
enJally expressed genes in the nose. Among the 28 differenJally expressed genes in the bronchus, 3 
were up-regulated in paJents with cancer: MMP13, a metalloproteinase known to increase lung can-
cer invasion and metastasis (19), EDA2R, a member of the tumour necrosis factor (TNF) receptor su-
perfamily, members of which modulate immune response in the tumour microenvironment (20), and 
CTSL, a lysosomal cysteine protease involved in epithelial-mesenchymal transiJon (21). The 25 genes 
down-regulated in cancer paJents were enriched in immune related GO terms, in parJcular neu-
trophil-mediated immunity (Sup. Tab. 4), consistent with our finding in the comparison between clin-
ic paJents and healthy volunteers in nasal Jssue.  

In summary, we observe major gene expression differences in nasal epithelium between healthy vol-
unteers and clinic paJents. However, we find no significant signal when comparing paJents with can-
cer with those with a benign diagnosis within the clinic group. This result is in contrast to that ob-
tained in the AEGIS study (16), which reported a notable difference in nasal gene expression be-
tween clinic-referred cancer and benign paJents. However, we found a significant overlap between 
the set of differenJally expressed genes between cancer and no-cancer in AEGIS and the set of dif-
ferenJally expressed genes between our clinic and healthy groups (P = 1.44x10-5). These results may 
be explained by subtle differences in the nature of the benign (non-cancer) diagnoses between the 
two studies.  In our study, the majority of paJents in the clinic group had clinical symptoms/imaging 
highly suspicious for lung cancer.  PaJents with a final benign diagnosis were predominantly due to 
significant typical bacterial infecJon/inflammaJon (pneumonia).  However in the AEGIS cohorts 
many of the benign diagnoses, where known, were due to sarcoidosis, fibrosis, benign tumours or 
atypical infecJons (fungal and mycobacterial).  Therefore, in our cohort the pre-test probablility for 
malignancy in the benign group was higher than in the AEGIS benign group.  

Gene expression response to smoke injury differs between healthy volunteers 
and clinic pa3ents  

Intrigued by these overall expression differences between volunteers and clinic paJents we invesJ-
gated the post-cessaJon dynamics of individual genes using a populaJon-based approach. We first 
employed a Bayesian linear regression model to predict nasal gene expression in healthy volunteers 
as a funcJon of smoking status, accounJng for sex and age (Methods). This model classified genes as 
either unaffected by smoking (US), rapidly reversible (RR; no difference between former and never 
smokers), slowly reversible (SR; intermediate expression levels in former smokers compared to never 
and current), or irreversible (IR; no difference between former and current smokers). AddiJonally, 
genes were classified as cessaIon-associated (CA) if no difference was present between current and 
never smokers, but elevated or reduced expression was observed in former smokers (see Sup. Fig. 1 
for a schemaJc ). 

In healthy volunteers 5755 genes were found to be affected by smoking status, out of which 513 
genes show a strong effect (effect size > 0.4 for rapidly reversible, slowly reversible, irreversible 
genes, > 0.25 for cessaJon acJvated genes, Methods, Sup. Tab. 5). Most genes (485/513) were found 
to be rapidly reversible, in line with previous findings in bronchial Jssue (9). GO pathway analysis of 
these genes revealed up-regulaJon of cellular detoxificaJon, response to oxidaJve stress (e.g. 
CYP1A1, CYP1B1, AHRR, NQO1, GPX2, ALDH3A1) and keraJnizaJon (e.g. KRT6A, KRT13, KRT17, 
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SPRR1A, SPRR1B, CSTA) pathways, and down-regulaJon of cilium organizaJon (e.g FOXJ1, DNAH6, 
IFT81, CEP290, UBXN10), extracellular matrix organizaJon (e.g. FN1, COL3A1, COL5A1, COL9A2) and 
interferon signaling (e.g IFI6, IFIT1, IFI44, RSAD2) in current compared to never smokers. Genes in-
volved in inflammatory response were found both among the up-regulated (IL36A, IL36G, S100A8, 
S100A9, CLU) and down-regulated (SAA1, SAA2, IL33) genes. Principal components analysis using the  
rapidly reversible genes showed a clear separaJon of current smokers from all other subjects. In con-
trast, slowly reversible and irreversible genes placed paJents on a trajectory from never smokers to 
current smokers, as expected (Sup. Fig. 2a). 

We next repeated the above analysis on the clinic subgroup. In the absence of clinic never smokers, 
and since no technical or biological covariates could explain the observed overall expression differ-
ences between the groups (see Methods), we considered the healthy volunteer never smokers as a 
bona fide reference group for this analysis. We found 4112 genes with smoking-dependent expres-
sion changes, 584 of which showed a strong effect (same effect size thresholds as above, see Meth-
ods and Sup. Tab. 5). We evaluated this classificaJon with a principal components analysis on the 
clinic subjects, similar to what was done for healthy volunteers, and found that paJents clustered 
according to their smoking status, as expected (Sup. Fig. 2b). Of the 584 genes idenJfied as dysregu-
lated by smoke in the clinic paJents, 233 were also found in the healthy volunteer analysis (P < .001, 
chi-squared test). However, while 227/233 were rapidly reversible in the healthy volunteers, only 112 
of these 227 genes were also classified as rapidly reversible in the clinic group (Fig. 2a). Of the re-
maining 115 genes, one gene (BPIFA2) was now classified as irreversible and 22 genes as slowly re-
versible, including CYP1B1, a well-known detoxificaJon gene, and BMP7, a gene previously shown to 
have a role in immunoregulaJon (22) (Fig. 2b). Ninety-two of 115 genes that were classified as rapid-
ly reversible in the healthy volunteer group and as cessaJon-associated in the clinic group (e.g. 
UBXN10, Fig. 2b) showed a strong enrichment for cilia structure and funcJon (Sup. Tab. 6). While 
cilia-associated genes were down-regulated in current smokers in both groups (consistent with cig-
arePe smoke damaging airway cilia), the same genes showed increased expression in current and 
former smokers in the clinic group compared to the healthy volunteers. This observaJon in the clinic 
group might be linked to the decreased expression of interferon gamma-related genes in the clinic 
group, as it has been shown that interferon gamma suppresses ciliogenesis and ciliary movement 
(26). 

Lastly, the 351 genes that showed smoking-dependent expression changes in the clinic group but not 
in the healthy volunteers (Fig. 2a) were strongly enriched in extracellular matrix organizaJon and 
immune-related genes (including response to interferon gamma, neutrophil acJvaJon, chemotaxis 
and inflammaJon). For example, GBP6 showed down-regulaJon and slow reversibility in the clinic 
group (Fig. 2b) and is known to be associated with reduced overall survival in squamous cell carci-
noma of the head and neck (27).  

Overall, we observe striking differences in smoke-dependent gene expression in the clinic paJents 
compared to volunteers that could not be explained by comorbidiJes or other covariates, with gen-
erally slower reversibility post-cessaJon  in the clinic group. We hypothesise that some of the 749 
genes with differences in smoke-dependent expression might reflect individual responses to the 
smoke injury and thus refer to them as response genes. 
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Figure 2: Smoke injury dynamics. (a) Plot showing a change of reversibility dynamics for the same genes in the 
healthy volunteer (ler) and clinic (right) donor groups (genes classified as unaffected by smoking in both donor 
groups were removed); (b) Normalized gene expression over smoking status for 4 exemplar response genes 
with different post-cessaJon dynamics in the clinic and healthy groups, with linetype and shape represenJng 
donor status and colors represenJng the genes’ assigned reversibility classes. 

Response gene expression levels predict disease status and may improve risk 
stra3fica3on for popula3on screening 

We postulated that the smoke-injury response genes we idenJfied might provide evidence for a per-
sonalised smoke injury response and be candidate genes for a molecular biomarker of lung cancer 
risk. In the clinic group, where paJents already show evidence of lung disease, such a biomarker 
would help idenJfy paJents with the highest need for further invesJgaJon. In the general smoker 
and former smoker populaJon it could be added to exisJng methods of risk straJficaJon to improve 
the idenJficaJon of individuals who would most benefit from lung cancer screening thereby sparing 
those at lowest risk who would have least to benefit from screening. 

Therefore, we trained two independent classifiers: a ‘clinic classifier’ that predicts the cancer status 
of each sample (cancer vs clinic benign and healthy volunteers: potenJally of use in the clinic), and a 
‘populaJon classifier’ that predicts the donor group that the samples were taken from (clinic benign 
or clinic cancer vs healthy volunteers: potenJally of use in risk straJficaJon for populaJon 
screening). For both classifiers, we used gene expression data from the 749 response genes together 
with clinical informaJon (sex, age, smoking status and pack-years; see Methods) in a lasso-penalized 
mulJvariate logisJc regression, and derived a log-odds score from each classifier. In line with the ob-
served strong expression differences between healthy volunteers and clinic paJents, the ‘populaJon’ 
score clearly separates healthy volunteers from clinic subjects (Fig. 3a). InteresJngly, the ‘clinic’ score 
(Fig. 3b) addiJonally disJnguishes the benign and cancer paJents within the clinic group, placing be-
nign subjects between healthy volunteers and cancer subjects. As expected, the two scores are high-
ly correlated (Pearson correlaJon = 0.8, P < .001, Sup. Fig. 3a). Both scores yielded high area under 
the curve (AUC) values for both precision-recall (clinic score: mean AUC-PR=0.83 arer 10-fold cross 
validaJon; populaJon score: mean AUC-PR=0.85, 10-fold cross validaJon, Fig. 3c-d) and receiver-op-
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erator characterisJcs (clinic score: mean AUC-ROC=0.84, 10-fold CV; populaJon score: mean AUC-
ROC=0.92, 10 fold CV, see also Methods) and performed significantly bePer than a model using the 
same number of randomly selected genes (Sup. Fig. 4). In pracJce, to reach a sensiJvity of 95% for 
the populaJon score, one would use a score threshold of 2.69, that would result in an average false 
posiJve rate of 42.8%, while to reach a similar sensiJvity using clinical data alone would result in a 
false posiJve rate of 74.5%. For the clinic score, a score threshold of -1.46 gives a 95% sensiJvity and 
false posiJve rate of 62.1%, while similar sensiJvity with clinical data alone would result in a false 
posiJve rate of 67.8% (Fig. 3c-d). These results indicate that models incorporaJng gene expression 
data of the response genes defined above performed significantly bePer than models built on clinical 
covariates alone (see also inset of Fig. 3c-d for a comparison of the performance of models based on 
gene expression data alone, clinical covariates alone or a combinaJon of gene expression data and 
clinical covariates). In addiJon, both scores retained their ability to separate the paJent groups arer 
regressing out all potenJal confounders, confirming that gene expression data improves classificaJon 
compared to using clinical covariates alone (Sup .Fig. 3b-c).  

We also assessed the performance of the trained populaJon and clinic risk score models separately 
on current and former smokers. We found that the populaJon risk score is equally applicable to cur-
rent and former smokers: a significant difference in the risk score of the healthy volunteers and clinic 
subjects can be observed, even arer regressing out clinical covariates and confounding (Sup. Fig. 5). 
While the clinic risk score performs well on both groups, the added value from gene expression data 
appears less important in the clinic score, in parJcular in former smokers (Sup. Fig. 5). Finally, we find 
that our classifiers are efficient at separaJng subjects regardless of their cancer stage, cancer type 
(squamous carcinoma or adenocarcinoma), and COPD status (Sup. Fig. 6), and that our classifiers 
capture differences in risk that persist for more than 10 years arer smoking cessaJon (Sup. Fig. 7). 

Finally, we validated our classifiers by applying them to an independent cohort. No publicly available 
cohort matches the composiJon of our cohort, in parJcular because of the absence of a healthy 
group of current and former smokers disJnct from the clinic-referred paJent group. However, the 
AEGIS cohort (28) includes nasal samples from clinic-referred paJents with pulmonary nodules and a 
diagnosis of lung cancer or benign disease. We applied our two classifiers to this cohort, and found a 
good separaJon between subjects with and without cancer, despite the different gene expression 
quanJficaJon technologies and populaJons of origin of the paJents (Fig. 3e, Sup. Fig. 8). We found a 
stronger separaJon between paJents with and without cancer  using the AEGIS nasal classifier from 
Perez-Rogers et al (2017) (16) on the AEGIS data (Sup. Fig. 8a). However, we note that the AEGIS clas-
sifier (16), when applied to our data, mostly differenJates healthy volunteers and clinic paJents 
while the difference between the scores of the cancer and no-cancer paJents is only modest (Sup. 
Fig. 8b). These results confirm the ability of our classifier to straJfy paJents, even when applied to 
paJents from different clinical contexts. 

Overall, our results demonstrate that classifiers based on nasal gene expression have the potenJal to 
improve risk straJficaJon of current and ex-smokers in both a populaJon screening context and a 
clinic context. 
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Figure 3: Disease status predic3on based on response genes. (a & b) Risk score distribuJon for the populaJon 
test (a) and the clinic test (b) predicted from the clinical variables and the expression of the response genes 
using a penalized regression (See Methods). The risk distribuJons are presented separately for healthy volun-
teers (green), clinic paJents without cancer (orange) and clinic paJents with cancer (purple) (c & d) ROC curves 
for the populaJon (c) and clinic (d) scores. For each case, we present the ROC curve for the model trained on 
clinical data (triangles) or on gene expression and clinical data (squares). Each curve is an average obtained 
across 100 cross validaJon (CV) experiments and the grey area surrounding the curve gives the standard error. 
The color of the curve represents the test threshold corresponding to the represented SensiJvity / False Posi-
Jve Rate compromise. (Inset) Area under the ROC curve, in 100 CV rounds, for a clinical-only model (red) the 
model constructed on the response genes (blue) and a model constructed on a combinaJon of clinical informa-
Jon and response genes (green) for the populaJon (c) and clinic (d) classifiers. (e) The populaJon and clinic 
classifiers applied to nasal samples from the AEGIS cohort. 
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Figure 4: Pathway analysis and contribu3on to risk. (a) Comparison of geneset metascore over smoking status 
for 4 immune-related GO terms in healthy and clinic subjects. (b) CorrelaJon between the populaJon or clinic 
risk score and geneset metascore for the 8  gene sets represenJng biological funcJons altered by smoking; 
correlaJon is shown separately for current and former smokers (> 12 months); Spearman correlaJon values are 
reported, as well as the associated p-values (*: P <= 0.05, **: P <= 0.01, ***: P <= 0.001). 

Altera3ons in immune pathways underlie the lung cancer risk classifica3on 

To gain insights into the mechanisms of risk, we asked which genes robustly contributed most to the 
classifiers by idenJfying genes selected in more than 80% of the cross validaJon (CV) rounds (Sup 
Fig. 9). Among the 46 genes selected most oren in either of the risk predicJon models, we found 
genes that were previously idenJfied as important players in lung cancer development, e.g. SAA2 
[18], HAS2 (29), (30, 31) or TGM3 (32–35), in line with the current literature. 

However, the genes used as predictors of risk in our model reflect a wide variety of smoking-associ-
ated alteraJons. In order to gain some mechanisJc insight, we invesJgated risk contribuJon at the 
pathway level. First, we performed GO enrichment analysis on the list of smoke injury genes (both 
the ones idenJfied in the healthy volunteers and in the clinic group) to idenJfy the main pathways 
affected by smoke. We found that the smoke injury genes are mainly involved in xenobioJc me-
tabolism and response to oxidaJve stress, extracellular matrix organizaJon, keraJnizaJon, ciliary 
structure and mobility, and immune response (Sup. Tab. 7). We then chose 8 GO terms as represen-
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taJves of these alteraJons: KeraInizaIon, Extracellular matrix organizaIon, XenobioIc metabolism, 
Cilium organizaIon, Inflammatory response, Neutrophil mediated immunity,  Response to interferon 
gamma, and AnIgen processing and presentaIon. We calculated geneset metascores for each of 
these GO terms (Fig. 4a and Sup. Fig. 10). For some of these pathways, such as KeraJnizaJon, we 
observed a similar, rapidly reversible dynamic in healthy volunteers and clinic paJents (Sup. Fig. 10a). 
For most pathways, however, the dynamics were different in the two donor groups. Cilium organiza-
Ion appeared to be rapidly reversible in healthy volunteers, while in clinic paJents it showed in-
creased expression in former smokers, with no difference between current and never smokers. 
XenobioIc metabolism showed a slower reversibility in clinic paJents than healthy volunteers (Sup. 
Fig. 10a). For all immune-related pathways, we observed reduced expression in current smokers, and 
a slow reversibility dynamic, uniquely in clinic paJents  (Fig. 4a); we also observed that their acJvity 
does not revert to healthy never-smoker level even long arer smoking cessaJon (Sup. Fig. 10b). 

To idenJfy which of these pathways contributed most to increased risk, we then calculated the corre-
laJon between geneset metascore in each subject and subjects’ risk scores from the populaJon and 
clinic classifiers. We calculated these correlaJons for current and former smokers (> 12 months) sep-
arately, to be able to idenJfy differences in geneset contribuJon to risk in the two groups that might 
reflect differences between acute smoke injury response and the long-term consequences of past 
smoke exposure (Fig. 4b). In current smokers, while KeraInizaIon and Extracellular matrix organiza-
Ion did not significantly correlate with either risk score, the remaining four genesets tested showed 
moderate but significant correlaJon with both risk scores, poinJng to alteraJons of the xenobioJc 
detoxificaJon pathways, ciliary funcJon and immune response as major contributors to paJent-spe-
cific differences in risk. In former smokers, the populaJon risk score correlated with the same 4 GO 
terms indicaJng that detoxificaJon pathways, ciliary funcJon and immune response are the main 
contributors to overall risk of lung disease. In contrast, only pathways related to immune alteraJons 
(Response to interferon gamma, Neutrophil-mediated immunity, AnIgen processing and presenta-
Ion) correlated with the clinic risk score in former smokers, while no correlaJon was observed with 
XenobioIc metabolism, and only a very weak correlaJon with Cilium organizaIon (Fig. 4b). These 
results indicate that immune alteraJons are significant contributors to the risk of cancer in both cur-
rent and former smokers in the clinic group. 

Pa3ent-specific gene3c background modulates the smoke injury response 

Germline geneJc variaJon may influence individual differences in response to airway smoke injury, 
and hence, risk of smoking-related lung cancer. To invesJgate this, we first conducted an eQTL analy-
sis on nasal and bronchial epithelium separately and jointly to idenJfy variants that affect the ex-
pression of neighbouring genes (Methods). We obtained 990 (bronchial), 1316 (nasal) and 1695 
(combined) eQTL effect genes (e-genes) at 1% FDR. We found a significant overlap between the nasal 
and bronchial e-genes (Sup. Fig. 11a), with 574 genes in common (corresponding to 58% and 44% of 
the bronchial and nasal eQTL respecJvely, Fisher’s exact test P < .001). Similarly, we found a correla-
Jon of 0.56 between the adjusted p-values of the lead variants between both sets (Sup. Fig. 11b), 
confirming shared cis-regulaJon between the nasal and bronchial epithelium.  

To further study the interacJon between subject-specific geneJc background and environmental fac-
tors we next leveraged this eQTL catalogue to search for geneJc variants within the 749 response 
genes that might modulate gene expression differently depending on subjects’ smoke exposure. We 
idenJfied 78/749 genes with at least one lead eQTL variant with genome wide significance at 10% 
FDR, (Sup. Tab. 8). We then tested for an interacJon effect between smoking status and genotype for 
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all 78 lead eQTL variants on gene expression. We idenJfied 11 genes (CH25H, LHX6, WNT5A, DRAM1, 
SULF1, LGALS7B, HAPLN4, FXYD5, EFCAB2, TOX and SPRR1A, see Sup. Fig. 12) whose expression 
changes in response to smoke are modulated by the presence of geneJc variants (nominal P < .1, 
Sup. Tab. 8), suggesJng that those geneJc variants might modulate the response to smoke injury and 
to lung cancer risk. For example, up regulaJon of FXYD5 has been shown to correlate with tumor size 
(36) and poor survival (37) in NSCLC and to be implicated in many cancer types as FXYD5 enhances 
NFκ-B transcripJonal acJvity,  promotes angiogenesis and increases tumor cell’s migraJon and inva-
sion abiliJes (38). Finally, this protein also promotes inflammaJon in epithelial cells, notably in lung 
Jssues (39). Analysing the expression of this gene in our cohort, we find that subjects with a ho-
mozygous reference genotype at the 19:35660670:G:A locus have similar levels of expression both 
in never, ex, and current smokers (Fig. 5a). On the contrary, subjects that have a heterozygous or 
homozygous alternaJve genotype present higher levels of expression of this gene in response to 
smoke (Fig. 5a), which might increase their lung cancer risk. We observe similar trends for the 10 
other response genes stated above (Sup. Fig. 12, Sup. Tab. 8). This finding demonstrates how sub-
jects’ specific geneJc background can influence their reacJon to cigarePe smoke and in turn might 
affect their risk of developing lung cancer. 

Common germline variants regulate interferon gamma genes and are linked 
to known lung cancer risk loci 

We next idenJfied GWAS hits that were in strong linkage disequilibrium in the UK populaJon to SNPs 
that we found to be regulaJng the expression of nearby genes in our eQTL analyses (Methods). 
Among the 1261 GWAS lung cancer risk loci, our analysis idenJfied 63 GWAS risk loci from 13 differ-
ent studies with variants that significantly affect the expression of a nearby gene at a 5% FWER 
threshold (Sup. Tab. 10). These 63 eQTL/GWAS variants were linked to the expression of 41 genes, 
notably including 10 genes implicated in the interferon gamma signalling pathway. Pathway enrich-
ment confirmed a strong enrichment for genes involved in response to interferon gamma (hyperge-
ometric test, Padj = 7 x 10-13), as well as for other immune-related funcJons (e.g. innate immune re-
sponse, anIgen processing and presentaIon of exogenous pepIde anIgen, regulaIon of immune 
response, T cell receptor signalling pathway; see Sup. Tab. 11 for the full list of enriched GO terms).  

To bePer understand the mechanisms by which GWAS variants might increase lung cancer risk, we 
looked for a link between 41 genes linked to a GWAS risk locus and transcripJonal regulatory net-
work in bronchial Jssue. To do so, we inferred a TF-target interacJon network from bronchial expres-
sion data (see Methods) and searched for TFs whose targets were enriched for the 41 genes. We 
found 4 TFs showing a strong enrichment (hypergeometric test, Padj <  .05, see Methods), ETV7, 
SPIB, IRF1 and CIITA (Fig. 5b), all of which are known players in the interferon gamma mediated sig-
nalling pathway (40–43). We further confirmed the enrichment of GWAS genes in these 4 TFs by us-
ing a wider list of GWAS genes with a relaxed eQTL cut-off (nominal P < .05), and sJll found a 2- to 3-
fold enrichment in all 4 TFs (Table 1). Analyzing the acJvity of those 4 TFs in the nasal samples, we 
found significant differences between healthy volunteers and clinic paJents, in parJcular a lower 
acJvity in clinic paJents, confirming the importance of these 4 TFs in the progression toward a dis-
ease status (Fig. 5c, and see Sup. Fig. 13 for the acJvity of the same 4 TFs in the bronchial samples of 
clinic paJents with and without cancer). In contrast, we found that the levels of acJvity of those 4 
TFs were similar in clinic paJents with and without cancer (Fig. 5c and Sup. Fig. 13). We further test-
ed whether our set of response genes was enriched within the targets of those TFs and indeed found 
that all 4 TFs are enriched for response genes (2 to 3-fold enrichment, nominal P < .05, Table 2).  

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2023. ; https://doi.org/10.1101/2021.11.24.21266740doi: medRxiv preprint 

https://paperpile.com/c/U3M2nb/9YYBG
https://paperpile.com/c/U3M2nb/9YYBG
https://paperpile.com/c/U3M2nb/9YYBG
https://paperpile.com/c/U3M2nb/sFmn8
https://paperpile.com/c/U3M2nb/sFmn8
https://paperpile.com/c/U3M2nb/sFmn8
https://paperpile.com/c/U3M2nb/sJz6F
https://paperpile.com/c/U3M2nb/sJz6F
https://paperpile.com/c/U3M2nb/sJz6F
https://paperpile.com/c/U3M2nb/vHIyR
https://paperpile.com/c/U3M2nb/vHIyR
https://paperpile.com/c/U3M2nb/vHIyR
https://paperpile.com/c/U3M2nb/ySV67+8JJe4+0a4gf+StsLJ
https://paperpile.com/c/U3M2nb/ySV67+8JJe4+0a4gf+StsLJ
https://paperpile.com/c/U3M2nb/ySV67+8JJe4+0a4gf+StsLJ
https://paperpile.com/c/U3M2nb/ySV67+8JJe4+0a4gf+StsLJ
https://paperpile.com/c/U3M2nb/ySV67+8JJe4+0a4gf+StsLJ
https://doi.org/10.1101/2021.11.24.21266740
http://creativecommons.org/licenses/by-nc-nd/4.0/


Altogether, these findings suggest that the effects of inherited variaJon on lung cancer risk may be 
exerted in part through a different immune response following smoke injury, creaJng an immuno-
suppressed environment that favours the final steps to the emergence of a cancer. 

Figure 5: Genotype background influences lung cancer risk (a) Combined environmental and geneJc effect on 
the expression of the FXYD5 gene in nasal Jssues. For each nasal sample, we present the expression level of 
the gene FXYD5 separately for never (pink), former (green) and current (blue) smokers. Samples are further 
straJfied depending on the genotype of the subject at the 19:35660670:G:A  locus (Ref/Ref: homozygous ref-
erence; Ref/Alt: heterozygous; Alt/Alt homozygous AlternaJve). The p-value gives the significance level of an 
interacJon effect of the smoking status and the genotype at the 19:35660670:G:A on the expression of the 
FXYD5 gene (see Methods). GWAS enrichment analysis: (b) Network representaJon of the 4 bronchial regu-
lons enriched in GWAS genes. The 4 TFs are shown as squares and their targets in the bronchial network as 
circles. Color of the nodes indicates whether the gene/TF is a smoke injury risk gene (blue), a gene that co-lo-
calizes with a GWAS hit (i.e. no threshold on eQTL significance) (red) or both (green). The level of overrepre-
sentaJon for genes in the network of those TFs can be found in Table 2 (for the GWAS) and Table 3 (for the 
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response genes); (c) AcJvity level of each of the 4 TFs in nasal Jssue, depending on the disease status of the 
paJent. 

Table 1: OverrepresentaJon of GWAS associated genes in the regulatory network of four TFs. Regulon size: the 
number of genes in the regulatory network for each TF; # hit: number of genes, among each TFs regulatory 
network that we annotate as a GWAS-linked gene (in parenthesis: expected number of GWAS genes in the reg-
ulatory network of the TF); FDR: False discovery rate of the overrepresentaJon of GWAS hits in the TF regulato-
ry network (hypergeometric test, see methods). Each test is performed for 3 sets of genes defined using a hard 
( P <1e-06; 44 genes); lenient (P < .05; 569 genes) or no threshold (3181 genes) on eQTL significance levels. 

Table 2: OverrepresentaJon of the response genes in the regulatory network of four TFs. Regulon size: the 
number of genes in the regulatory network for each TF; # hit: number of genes, among each TFs regulatory 
network that we annotate as a risk gene (in parenthesis: expected number of GWAS genes in the regulatory 
network of the TF); P-value: the p-value of the overrepresentaJon of response genes in the TF regulatory net-

work (hypergeometric test, see methods). 

GWAS Genes

Hard Threshold Lenient Threshold No Threshold

TF Regulon 
Size

# Hit FDR # Hit FDR # Hit FDR

IRF1  318 10 
(1.5)

2.9 1e-07 34 (12.5) 2.0 1e-
07

83 (60) 0.07

CIITA 372 9 (1.5) 2.4e-08 26 (13) 0.08 83 (69) 1

SPIB 174 6 (0.5) 2.9e-04 14 (5.8) 0.6 43 (30.7) 1

ETV7 171 4 (0.8) 0.088 14 (5.4) 0.5 35 (28.7) 1

Response Genes

TF Regulon 
Size

# Hit P-value FDR

IRF1  318 37 (11.5) 5.19 
1e-11

7.67 1e-08

CIITA 372 45 (13.2) 1.31 
1e-13

1.96 1e-10

SPIB 174 14 (6.16) 0.0013 NS

ETV7 171 14 (6.08) 0.0011 NS
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Discussion 

In this study, we demonstrate that gene expression data from nasal epithelium has the potenJal to 
improve lung cancer risk straJficaJon within the general populaJon of current and former smokers. 
Using healthy never smokers as a baseline, we have compared smoking-dependent paPerns of gene 
expression between healthy volunteers and clinic paJents under invesJgaJon for lung cancer. We 
have developed gene-expression-based classifiers to separate these groups, thereby revealing strik-
ing differences in the long-term persistence of gene expression paPerns arer smoking cessaJon. Us-
ing pathway analysis, we have inferred the mechanisms that underlie these differences. We found 
that known lung cancer risk loci regulate the expression of genes that are enriched in specific path-
ways that were also deregulated in response to smoking. These pathways include neutrophil mediat-
ed immunity and response to interferon gamma, suggesJng that immune dysregulaJon is causally 
involved in the aeJology of non-small cell lung cancer. Our results are consistent with recent studies 
linking immune-related geneJc variants to a variety of lung-related phenotypes (44). Together, they 
support and extend the model in which geneJcally influenced differences in immune regulaJon in-
teract with smoking and other injuries, including air polluJon (45), to create an airway cellular envi-
ronment which is associated with impaired lung funcJon and an increased risk of lung cancer. Our 
populaJon classifier is, to our knowledge, the first gene-based classifier to address specifically risk 
straJficaJon for lung cancer in the healthy smoker populaJon. With an average cross-validated AUC 
(ROC) of 0.92 (Fig. 3a,c), the classifier idenJfies 95% of high risk individuals with a false posiJve rate 
of around 40%. The gene expression data adds to the power of the classifier over clinical data alone 
(Fig. 3c). If confirmed, these results suggest potenJal value from including gene expression data in 
such a classifier as populaJon-based lung cancer screening becomes more widely adopted. 

It is important that the classifier be validated in the precise clinical context in which it will be applied. 
However, no suitable data set for validaJon is currently available.  We suggest that our results are 
sufficient to support inclusion of a confirmatory study, possibly including both rederivaJon and vali-
daJon, in the lung cancer screening iniJaJves currently under development. In such studies, the 
contribuJon of gene expression data should be assessed alongside other potenJal predictors. 

Support for the validity of our classifiers and thus for these further studies comes from two sources. 
First,  our cross-comparisons with the AEGIS dataset (16) which showed that our classifiers have 
power to discriminate paJents with and without cancer within that dataset (Fig. 3e), even though 
the cohort was microarray-based, and the samples derived from a different clinical context. Second, 
we show (Fig. 4) that the genes that contribute most to the classifiers belong to pathways related in 
parJcular to inflammatory and immune funcJon, which are in turn linked to geneJc variaJon at lung 
cancer GWAS loci. This is evidence for a causal role of these genes in lung cancer risk. Consistent with 
this, our classifiers are equally efficient at idenJfying individuals with early or late stage disease (Sup. 
Fig. 5c), and in predicJng squamous or adenocarcinoma (Sup. Fig. 5b). The classifiers are effecJve in 
both current and former smokers, and the clinic paJents (cancer and benign) conJnue to show an 
elevated risk score ten years and more arer stopping smoking (Sup. Fig. 8), consistent with the 
known persisJng cancer risk in former smokers. This may allow idenJficaJon of those former smok-
ers most at risk, and in Jme, open up approaches to lowering that risk based on the mechanisms 
involved in that individual. 

Using a geneset metascore analysis, we idenJfied immune-related pathways, in parJcular response 
to interferon gamma and anJgen processing and presentaJon, as the pathways that contribute most 
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to our lung cancer risk scores (Fig. 4b) in both current and former smokers. IFN-𝛄 is a molecule that is 

involved in anJ-tumor immune response by acJvaJng cellular immunity and exhibiJng anJ-prolifera-
Jve, pro-apoptoJc and anJ-angiogenic properJes within the tumour microenvironment (46). An 

immunosuppressive state favoured by the decreased expression of genes involved in IFN-𝛄 signalling 

and anJgen presentaJon was observed both in lung cancer and in bronchial premalignant lesions, 
and suggested to promote the progression to invasive disease (18, 47). We observe these alteraJons 
in healthy-appearing nasal Jssue affected by the smoking-associated field of injury, suggesJng that 
this immunosuppressive, cancer-promoJng, state is present at even earlier steps of carcinogenesis. 

Our analysis based on the known NSCLC GWAS risk loci provides the criJcal causal links between risk 
variants and the acJvity of four transcripJon factors known to be acJve in interferon gamma sig-
nalling (CIITA, ETV7, IRF1, SPIB). We also idenJfied 10 genes whose response to smoke differed be-
tween healthy and clinic subjects and whose expression was regulated by a gene-by-environment 
interacJon between the geneJc background of subjects and their smoking behaviour (Fig. 5a, Sup. 
Fig. 12). While these results demonstrate how geneJc background can affect individual response to 
smoke injury, and so lung cancer risk, larger cohorts will be needed to explore systemaJcally the in-
teracJon between smoking behaviour and individual geneJc background genome-wide. This may in 
Jme uncover differences in mechanisms of risk between individuals, and allow risk-lowering inter-
venJons to be tailored  appropriately.  

Together, our results suggest a model for smoking-related lung cancer risk in which geneJcally de-
termined differences in the immune and inflammatory responses to cigarePe smoke and other envi-
ronmental exposures modulate the bronchial cellular environment and increase the probability of 
progression towards cancer. The persisJng risk in former smokers is, at least in part, driven by the 
persistence of this altered cellular environment. Individuals exhibiJng altered cellular environments  
are both at higher risk and more likely to be symptomaJc and to aPend the respiratory clinic than 
others, whether they have cancer or not; hence the incomplete separaJon between benign and can-
cer within the clinic group. 

Recent papers (17, 18, 48) have invesJgated the role of altered immune responses in the progression 
of preneoplasJc airway lesions. Their findings will lead to bePer predicJon and intervenJon in the 
management of paJents already deemed at sufficient risk to jusJfy bronchoscopic surveillance. Our 
study adds to that of Kachuri et al (44) by extending knowledge of the mechanisms that link risk to 
impaired lung funcJon at the earlier stages of smoking-related lung cancer development, with impli-
caJons for risk predicJon, screening, and eventually strategies for risk reducJon. 

 Methods 
Availability of the code and data: 
Scripts that were used to conduct the analysis presented in this paper are available in the bitbucket 
repository accessible with the following link: 
 hPps://bitbucket.org/schwarzlab/paper-debiase-massip-2021 
Raw and processed data will be available upon acceptance of the paper on the EGA website. 

Cohort and sample collec3on 
487 donors were recruited into the CRUKPAP cohort at Royal Papworth Hospital, Cambridge (UK), 
including 114 healthy volunteers (HV) and 337 paJents being invesJgated for suspicion of lung can-
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cer. The eligibility criteria for healthy volunteers were: age 18 or above; current or former smokers 
must have smoked at least 100 cigarePes in their lifeJme; exclusion of individuals with previous his-
tory or current suspicion of airway or lung cancer; exclusion of individuals with ‘bleeding disorders’. 

All parJcipants were straJfied into smoking cessaJon categories as follows: 45 never smokers (NV), 
289 former smokers (FS) and 153 current smokers (CS). Former smokers were further divided into 
categories: > 1 year arer cessaJon (FS1, n=234), 1-12 months arer cessaJon (FS2, n=45) and < 1 
month arer cessaJon (FS3, n=10). Smoking status for all subjects was confirmed via blood coJnine 
test. CumulaJve smoke exposure measured in pack years was recorded and straJfied into four cate-
gories: ‘none’ (PY1), < 10 years (PY2), 10-30 years (PY3) and > 30 years (PY4). For suspected lung can-
cer paJents, both COPD status and final cancer diagnosis (lung cancer / no lung cancer) were record-
ed.  

From these donors 413 nasal epithelial curePages were collected using Arlington ScienJfic ASI Rhino-
pro nasal curePes. Briefly, the nostril is opened with a nasal speculum to idenJfy the inferior 
turbinate. Under direct vision the Jp of the nasal curePe is gently scraped over the turbinate to ob-
tain a 'peel or curl' of epithelial Jssue. The curl of Jssue is then removed by flicking the curePe while 
the Jp is submerged in RNAlater™ collecJon medium and presence of the curl floaJng in the medi-
um is confirmed by visual inspecJon. This procedure is repeated twice for each nostril per donor. 
RNA integrity (RIN) was checked for all samples and we found >80 % of samples to have RIN 6 or bet-
ter.  

Bronchial brushings were collected using 2.0mm brush diameter cytology brushes (Olympus Medical, 
UK) from 236 paJents undergoing flexible bronchoscopy as part of invesJgaJons for suspected lung 
cancer.  

For 162 donors, both nasal and bronchial samples were available. Sample collecJon and diagnosis 
took place contemporaneously. All samples underwent short-read RNA sequencing using Illumina 
TruSeq library generaJon for the Illumina HiSeq 2500 pla{orm. Blood samples were taken from 467 
donors and germline genotyped using the Illumina Infinium Oncoarray pla{orm at 450K tagging 
germline variants. Total gene expression levels (TPM and variance stabilised) were determined for 
18,072 protein coding genes for all samples using DeSeq2.  
Research ethics approvals for sample collecJon from parJcipants in this study were given by East of 
England Cambridge Central REC 13/EE/0012 and the NaJonal Research Ethics Service CommiPee 
South East Coast – Surrey 13/LO/0889. 

RNA extrac3on and sequencing 
Tissue samples from bronchial brushings and nasal curePes were stored in 500μl RNALater overnight 
at 4oC, and then at -80oC for longer-term storage. RNA was extracted using Qiagen MiRNeasy col-
umns according to the manufacturer's protocols. Briefly, bronchial brushes were rinsed in PBS, 
brushes transferred into 700μl Qiazol and cells lysed by vortexing twice for 30 seconds. For nasal 
samples the RNALater containing nasal Jssue (500μl) was diluted with 2ml of PBS and spun at 10,000 
rpm for 10 min. The cell pellet was lysed by resuspension in 700μl Qiazol. For both types of samples, 
the Qiazol lysate was applied to a QiaShredder tube (#217004) and spun at 13,000 rpm for 2 mins. 
The homogenate was kept at room temperature for 5 mins, followed by chloroform extracJon using 
PhaseLock tubes. Nucleic acids in the aqueous phase were precipitated using 1.5 volumes of 100% 
ethanol and DNA was digested using DNAse I. Finally, RNA was isolated from the mixture using 
RNAeasy mini spin columns. RNA was quanJfied using a Qbit measurement and quality assessed us-

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2023. ; https://doi.org/10.1101/2021.11.24.21266740doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.24.21266740
http://creativecommons.org/licenses/by-nc-nd/4.0/


ing an Agilent Bioanalyzer. For samples with a RIN greater than 7, a total of 500ng of RNA was used 
for Illumina TruSeq Library generaJon. Sequencing was carried out on HiSeq 2500 Illumina se-
quencers. Sequencing was carried out in two separate mulJplexed experiments. 

RNA sequencing data processing 
Quality control using FastQC showed good sequence quality and no adapter contaminaJon for all 
samples. Alignment was carried out with TopHat2, using as reference the human genome version 
GRCh37. Read counts were computed for all protein-coding genes with subread featureCounts 
v1.6.0. The data was produced in 2 experimental batches, producing a strong batch effect that can be 
observed in the raw data. Moreover, a group of samples from one of the batches has lower total 
counts compared to the other samples (Sup. Fig 14a). 
Raw counts were normalized using DESeq2’s variance-stabilizing transformaJon, which had the ad-
vantage of partly correcJng the previously menJoned batch effects (Sup. Fig 14a). Genes with 
across-samples log variance smaller than -4 were discarded from further analysis. Total gene expres-
sion levels (variance stabilised) were determined for 18,072 protein coding genes for all samples. To 
ascertain that experimental batch did not covary with any clinical covariate, we computed the 
strength and significance of associaJon between batch and the other covariates using Cramer’s V 
and chi-square test. We did not observe a significant associaJon between batch and age, sex, COPD, 
smoking status, pack-years and donor populaJon of origin (healthy volunteer/clinic paJent). We only 
observed a weak but significant associaJon with cancer status (Sup. Fig 14b). 
To assess the overall contribuJon of clinical and environmental variables to gene expression in the 
nasal epithelium, we also extracted variance components using a linear model, regressing donor 
populaJon of origin (healthy volunteer/clinic paJent), cancer status, smoking status, pack-years, sex, 
age, COPD and experimental batch against total gene expression across all genes (Sup. Fig 14c). We 
found that donor populaJon of origin and smoking status contribute most to gene expression vari-
ability (28.8 and 25.4% of total explained variance. Notably, donor populaJon of origin sJll con-
tributes significantly to the explained variance arer accounJng for all other clinical and technical co-
variates. 

Differen3al expression analysis 
All differenJal expression analyses were performed with DESeq2 v1.26.0. Age, experimental batch, 
sex and pack-years were included as confounding variables. Genes with mulJple-tesJng-adjusted 
(Benjamini-Hochberg) p-values < 0.05 were considered differenJally expressed. For differenJal ex-
pression between clinic cancer and clinic benign in bronchial samples, 8 genes had arJficially high 
(>20) absolute fold-change, due to their very low average expression across samples. These genes 
were removed from the list of differenJally expressed genes. 

Modelling 3me-dependent dynamics of smoke injury in nasal 3ssue 
Gene expression dynamics 
To idenJfy genes affected by smoke and characterize their post-cessaJon expression dynamics, we 
applied Bayesian linear regression and model selecJon (R package BAS v1.5.3). We modeled the ex-
pression of each gene on smoking status, where smoking status is encoded in 3 variables: 

- CS (0/1) indicaJng current-smoker status 
- FSS (0/1) indicaJng former-smoker status 
- FS (0/1/2/3) indicaJng Jme since smoking cessaJon 

AddiJonally, the model includes age, sex and experimental batch as confounding variables. 
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We tested for inclusion of each of the variables into our model and inferred posterior probabiliJes 
for all eight possible models to retrieve the most likely Jme dynamic of gene expression changes for 
each gene individually. Each combinaJon, or group of combinaJons, corresponds to a gene class 
among unaffected by smoking, rapidly reversible, slowly reversible, irreversible and cessaIon-associ-
ated (Sup.Fig.1). Each gene is assigned to the class with the highest posterior probability. To idenJfy 
genes for which smoking has the strongest effect, we applied a threshold on the beta coefficient, and 
retained only genes with a beta CS greater than 0.4 for rapidly reversible, slowly reversible and irre-
versible genes, and beta FSS greater than 0.25 for cessaJon-associated genes. 

Deriva3on of popula3on and clinic risk scores 
L1-penalized mulJvariate logit regression was performed with R package glmnet 3.0-2 using only the 
nasal gene expression data. PaJents status was encoded with a binary variable (cancer: 1; no cancer 
0 for the clinic classifier; Clinic paJent: 1, Healthy Volunteer: 0 for the populaJon classifier), and pa-
Jents with Ineligible status were excluded from the analysis. In the gene expression classifiers, the 
status of each paJent was predicted based on the expression of the 749 response genes and 4 clini-
cal covariates, namely sex, age, smoking status and packyears, all of which were encoded as numeri-
cal variables (smoking status encoding: Never smokers: 0, Ex >1year: 1; Ex 1-12months: 2; Ex <1m: 3, 
current smokers: 4). For the clinical classifier we also used a lasso regression, using only sex, age, 
smoking status and packyears as predictors. The lasso shrinkage parameter (λ) was chosen to mini-
mize the mean cross-validated error (“lambda-min” opJon in the cv.glmnet funcJon). Area under the 
receiver operaJng characterisJc curve and precision recall curves were computed using the PRROC 
package, arer 10 rounds of 10-fold cross validaJon experiments. To compare performances of the 
response genes to performances on random genes, we randomly drew 20 sets of 749 genes among 
the 18,072 protein coding genes retained for all analyses, and cross validaJons experiments were 
conducted on the same test and training set as the one used with the response genes. 

Gene ontology analysis and pathway analysis 
All Gene Ontology (GO) enrichment analyses were performed using clusterProfiler v3.14.3. GO terms 
with adjusted (Benjamini-Hochberg) p-values < 0.05 were considered enriched. 
Pathway metascores were calculated by averaging vst-normalized gene expression of genes belong-
ing to the selected genesets, arer regressing out experimental batch effect. 

Genotyping data pre-processing 
SNP phasing and imputaIon: We phased the 450,000 germline genotypes using a staJsJcal phasing 
algorithm (eagle v2.4.1) and populaJon data from the 1000 genome project. For each haplotype, we 
then imputed missing genotypes using the minimac4 pipeline. This allowed us to impute the geno-
type of each subject at 46,000,000 posiJons. Arer filtering out SNPs with low imputaJon quality 
(Rsq<0.8) , we were ler with 7,650,214 SNPs in total for each sample. 

LD Pruning: First, we only considered SNPs that have a minor allele frequency greater than 1% in our 
cohort, reducing the number of SNPs to 5,772,170. Next, we removed SNPs in strong LD. To do so, we 
filtered out SNPs with a Variant inflaJon frequency larger than 20, with VIF= 1/(1-r^2). This threshold 
thus corresponds to removing SNPs with a mulJple correlaJon >0.95. VIFs are calculated on 50 SNPs 
sliding windows over the enJre chromosomes. With this threshold, 4,728,931 (81.9 %) of the total 
5,772,170 SNPs were filtered out, and 1,043,239 (18.0%) were retained. 

gxp ∼ CS + FS + FSS + con foundings
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eQTL Analysis 
We computed the eQTL tests for the set of 18,072 protein coding genes for which we have sufficient 
coverage (see filter criteria for RNAseq data above). For each gene, we tested all SNPs in a 500kb cis 
window (500kb upstream from the TSS, 500kb downstream from the transcripJon terminaJon site). 
For each test, we model the effect of known clinical and technical covariates (Sex, Age, Batch, Smok-
ing Status and PacksYear) using a fix effect. All clinical covariates were encoded as numerical values 
(0-4 for smoking status, 0-3 for age and packYears, and binary 0-1 for sex and batch), and genotypes 
are encoded as a numeric variable (0: Ref/Ref; 1: Alt/Ref; 2: Alt/Alt). P-values were computed using 
the R package Matrix eQTL (49). We used a two step mulJple tesJng correcJon procedure, as de-
scribed in (50). First, for each gene, we correct for the number of tests using Bonferroni correcJon. 
Second, we performed a global correcJon across the lead variants, that is, the most significant SNPs, 
per eQTL, using a Benjamini-Hochberg procedure. 

Gene environment interac3on test 
To test for a combined effect of genotype and environment on the gene expression level of the 
smoke injury gene, we conducted an interacJon test between the genotype background and the 
smoking status of the paJent, encoded in a 0/1/2 form (Never/Ex/Current). For each of the 749 
smoke-injury gene, we retrieved the lead eQTL variant idenJfied in the genome-wide eQTL analysis, 
and tested for an interacJon effect between the genotype encoded in a 0/1/2 numeric and the 
smoking status, correcJng for the effect of age, sex, smoking status, packyears, and genotype. 

Iden3fica3on of GWAS-linked genes 
To study the mechanisms by which germline genotype background influences the lung cancer risk, 
we adopted the approach developed by (51). We downloaded a curated set of 1261 GWAS lung can-
cer risk loci from the GWAS catalog (52) (see Sup. Tab. 9) and mapped genotyped and imputed SNPs 
of all paJents to the nearest GWAS risk locus as follows. For each GWAS risk locus, we retrieved a list 
of variants in our cohort within a 500kb cis-window using a linkage disequilibrium (LD) cutoff of 
R^2>0.8 in the UK populaJon using the Linkage Desiquilibrium Calculator of the ensembl website 
(53), yielding 9,739 candidate variants and 135,513 gene-SNP pairs. 3,455 of those 9,739 variants 
had a significant effect to their corresponding e-gene at a 5% FDR threshold. Many of those 3,230 
hits were in LD with the same GWAS variant, such that all eQTL variants mapped to 67 unique GWAS 
risk loci (Sup. Tab. 8) from 10 different studies and were linked to the expression of 44 genes.  

 Transcrip3on factor network and ac3vity 
A context-specific protein-protein interacJon network for nasal and bronchial epithelium was built 
using ARACNe-AP (54) on the vst-normalized expression data and a list of 1988 human transcripJon-
al regulators, compiled using informaJon available on public databases, from (55). ARACNe-AP was 
able to infer context-specific interacJons across 1548 nasal and 1535 bronchial regulators. AcJvity of 
each of these regulators in each nasal and bronchial sample was inferred using VIPER v1.20.0 (56). 
Network representaJons of TF-TF and TF-targets interacJons were produced with Cytoscape v3.8.1. 
To find TFs that had an overrepresentaJon of GWAS genes in their target network, we used a con-
text-specific TF-TF interacJon network built using ARACNe-AP on bronchial vst-normalized gene ex-
pression data and a list of 1988 human transcripJonal regulators (see above). For each TF i, we first 
counted the number ( ) of genes in its target network that were idenJfied as a GWAS gene. We 
then compared the proporJon of GWAS genes in each TF target network to the expected number 

NG(i )
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that would be found for a similar number of randomly selected genes with a one-tailed hypergeo-
metric test using the phyper funcJon in R with the following parameters: 
m: total number of genes in the network of TF i; n: 18,062 - m; k= the number idenJfied of GWAS 
genes and q = , the number of GWAS genes in the target network of the TF i. Obtained p-val-

ues where adjusted for mulJple tesJng using a Benjamini-Hochberg correcJon. We applied the same 
procedure to test for the enrichment of response genes in the 4 idenJfied GWAS TFs, although we 
did not correct the p-values for mulJple tesJng this Jme since we conducted only 4 tests. 
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Healthy volunteers Clinic group

Without Cancer With Cancer

Sex

Male 60 52 193

Female 54 20 108

Age

(24.9, 41.5] 9 2 1

(41.5, 58] 38 18 44

(58, 74.5] 64 39 176

(74.5, 91.1] 3 13 80

Smoking status

never 37 5 3

> 12 months 36 33 165

1-12 months 6 8 31

< 1 month 0 1 9

current 35 25 93

Pack-years

None 37 5 3

0-10 19 14 20

11-30 35 20 72

> 30 22 32 206

Unknown 1 1 0

Tissue

Nasal 114 13 125

Bronchial 0 16 58

Both 0 43 119

Cancer status and subtype

No cancer 114 72 0

Adenocarcinoma 0 0 126

Squamous cell carcinoma 0 0 99

Not specified 0 0 20

Ineligible 0 0 56

Cancer Stage

None 114 72 0
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Sup. Table 2: Clinical and demographic characteris3cs of the study subjects.

Stage 1 0 0 50

Stage 2 0 0 38

Stage 3 0 0 79

Stage 4 0 0 62

Mix or Unknown 0 0 16

Ineligible 56

COPD

None 93 25 103

Mild 9 7 47

Moderate 4 18 66

Severe 2 6 32

Past history 0 5 17

Unknown 6 11 36
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