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Abstract

The global clinical artificial intelligence (Al) research landscape is constantly evolving,
with heterogeneity across specialties, disease areas, geographical representation, and
development maturity. Continual assessment of this landscape is important for
monitoring progress. Taking advantage of developments in natural language processing
(NLP), we produce an end-to-end NLP pipeline to automate classification and
characterization of all original clinical Al research on MEDLINE, outputting real-time

results to a public, interactive dashboard (https://aiforhealth.app/).

Introduction

Interest in the application of artificial intelligence (AI) to human health problems
continues to grow, but widespread translation of academic research into deployable Al
devices has proven more elusive. There is increasing recognition of limitations in how
clinical Al research is conducted?, from characteristics of data’® to methods for model
development*, heterogeneity between clinical specialties in translation to devices®, and
inadequate inclusion of diverse and global populations®”. Continual quantification of
these features can enable identification of shortcomings in a heterogenous landscape
while allowing progress to be monitored over time. However, the sheer quantity of
published research (more than 150,000 papers on MEDLINE under broad Al-related

terms — see Methods) makes this a significant challenge. Literature reviews can only
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map a portion of the research landscape at a single time-point and are laborious to
conduct and reproduce. Literature database searches cannot directly identify original
research in model development, or pinpoint research that represents advanced stages of

model validation.

In response to tremendous growth in Al research publication, we created an end-to-end
natural language processing (NLP) pipeline that automates on-going identification,
classification, and characterization of original Al research abstracts extracted from the
MEDLINE database (Figure 1). Results are output to an interactive dashboard
(https://aiforhealth.app), creating a live view of global AI development, browsable by
development maturity, medical specialty, data type, algorithm, research location,
publication date, or any combination of attributes. Daily updated datasets are made
available to download, providing a user-friendly aid to literature reviewers, or for

reproducible assessment of research progress.

Methods

Our aims for the dashboard and pipeline were four-fold. Firstly, to identify original
research in clinical Al model development; Second, to identify research at ‘mature’
development stages, describing either evaluation of an Al algorithm vs a reference

standard, or prospective real-world (Figure 2); Third, to track global distribution and
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equity of Al research on a per-author basis; Fourth, to characterise, in detail, the main

disease areas, clinical specialties, algorithms, and data types in Al research.

All development was performed using Python 3.8 and Tensorflow®. All manual

labelling was performed by JZ, JG and SW.

Publication search and metadata collation

A web-scraping application was produced using Entrez API° to obtain titles, abstracts,
metadata, and Medical Subject Heading (MeSH) terms from MEDLINE, for
publications under broad Al search terms. From metadata we extracted publication
date, journal, authors, affiliations, and derived geographical location of affiliations (see

Supplementary Materials).

We used the following search terms for scraping publications from MEDLINE, based

on search terms employed in previous systematic reviews of artificial intelligence:

"((((((((["artificial intelligence") OR ("deep learning")) OR ("machine learning")) OR
("neural net")) OR ("transfer learning")) OR ("supervised learning")) OR (unsupervised

learning)) ) OR (artificial intelligence[MeSH Terms])"""

Author affiliation geo-location

The location embedded in MEDLINE metadata refers to the journal country, rather

than the country where research was conducted. We extracted geographic location of
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author affiliations using Python 3.8 geocoding libraries, including geopy (v2.2.0) for

location, and folium (v0.12.1) for visualization.

BERT-PubMed

We employed a transfer learning approach, using state-of-the-art Bi-directional
Encoder Representations from Transformers (BERT)" NLP models with substantial
pre-training on medical corpuses and academic abstracts (BERT-PubMed)!. BERT,
originally created by Google Al, enables bidirectional text representation to develop a
deeper sense of language context. It is resilient to imbalanced datasets without need
for additional methods for data augmentation'?. Classifier models were fine-tuned on

manually labelled abstracts indexed on MEDLINE between 1998 and 2020.

Each classifier was trained using a 512-sequence length, increasing accuracy at the
expensive of training cost. We used an AdamW optimizer. Training was performed
using Tensorflow and Keras libraries on a local machine with an Nvidia GTX graphics
card. Optimal epochs ranged from 3, for inclusion and maturity classifiers, to 5 for the

multi-classifier. Training data and code hosted at: https://github.com/whizzlab/health ai training.

Inclusion classifier

In determining labelling criteria, we aimed to include all research papers that develop
AT models for human healthcare, focusing on models that provide predictive,

diagnostic, or quantitatively informative outputs that inform decision-making. We
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designed a guide question: “Does the proposed model output have a direct, actionable
effect on patient care, by providing information to a healthcare provider, patient, or
automated system?”. This excludes Al models for pre-processing images or data, or
workflow assistance'®. We aimed to exclude publications using non-human participants,

reviews, and informal publication types.

BERT-PubMed was fine-tuned with a binary classification layer. Training was
initiated on 4000 abstracts from 1998 to 2020 manually labelled for inclusion.
Negligible numbers of positive samples were found prior to 1998. The training set was
augmented actively by manually labelling additional abstracts classified with high
uncertainty, until model performance reached satisfactory metrics. Evaluation was
conducted on a test set (n=1034), and prospectively on abstracts from publications
produced after pipeline completion (n=1000, after September 2021). Classifier
sensitivity against manual review was tested using a curated list of publications

(n=446) from a recent systematic review of deep learning' (Table 1).

Maturity classifier

Previous publications examine Al ‘maturity’ in two separate but parallel contexts'>!0,

The first describes important methodological, data, and reporting characteristics
within model training and testing that contribute to risk of bias and calibration. The
second considers a high-level overview of stages of technological development, with

previous research adapting National Aeronautics and Space Administration (NASA)
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technology readiness. However, these were designed for prototyping engineering devices
and do not necessarily translate to development of heterogenous clinical Al models.
We consider technological development maturity using a novel framework specific to
clinical Al, describing four stages prior to active real-world implementation (Figure 2).
In summary, a “Math-into-Algorithm” stage represents development of novel
algorithmic techniques, an “Algorithm-into-Model” stage represents the testing of
model performance on datasets with ground truth labels, a “Model-into-Device” stage
describes model testing against a non-Al, existing, gold standard (analogous to a
comparative clinical study), and “Device-into-Practice” describes deployment for
validation in a prospective, real-world environment. This framework has been

employed in a recent review of Al in mechanical ventilation'.

We fine-tuned a second BERT-PubMed classifier to identify abstracts fulfilling at least
a “Model-into-Device” stage of model development, initiated on 2500 manually labelled
abstracts from 1998 to 2020 with active augmentation. The maturity classifier was
evaluated on a test set (n=784), prospectively on abstracts from 2021 (n=2494, after
September 2021), and output compared to curated publications from a systematic

review of Al vs clinicians® (n=83) (Table 2).

Study characteristic labelling and classification

We used a Named-Entity-Recognition (NER) NLP model (SparkNLP based on work

by Chiu/Nichols) combined with a dictionary-based text recognition layer to discover
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and classify major entities expressed in abstracts, including clinical specialty,
subspecialty or disease, type of algorithm used, and type of data input into models.
For ease of interpretation, we did not consider Radiology as a ‘clinical specialty’,
instead considering use of radiomics as an input feature. This avoids potential
inconsistencies where, for example, an Al device for stroke diagnosis could either be
classified under Radiology or Neurology. For the purposes of online deployment,
manually validated NER labels were used to train a BERT-PubMed multi-classifier to
label abstracts for major specialties, subspecialties, and data types. Training and

testing were performed in a 3200:800 split dataset. Metrics and classes are shown in

Table 3 and 4.

Dashboard deployment and hosting

The pipeline is deployed to the Google Cloud platform (https://cloud.google.com/) as
Cloud Functions, triggered every 24-hours to discover new papers indexed in the
preceding period. Due to the size of models and time required to label abstracts, the
pipeline is split into two functions which share data via Google Cloud platform
Pub/Sub. Google BigQuery (https://cloud.google.com/bigquery) is used to store

scraped and labelled abstracts.

Deployed pipeline code hosted at: https://github.com/whizzlab/health ai online pipeline
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Results

Performance

The final pipeline (Figure 1) performs a sequence of tasks, feeding into the dashboard.
It uses broad Al-related search terms to identify and extract abstracts and metadata
from MEDLINE, before performing geolocation on affiliations. It then runs through
NLP tasks that (1) label abstracts for inclusion if they represent original research that
develop clinical Al models; (2) identify research at a ‘mature’ development stage which
describe either evaluation of an Al algorithm vs clinicians, or prospective real-world
testing; (3) labels abstracts for research characteristics including clinical specialty,

subspecialty, disease, input data type, and algorithm.

In prospective evaluation of ability to correctly classify publications indexed on
MEDLINE after September 2021, the inclusion classifier (task 1) achieves an F1 of
0.96 and a Matthews correlation coefficient (MCC) of 0.94. The maturity classifier
(task 2) achieves an F1 of 0.91 and MCC of 0.90. The multi-class classifier (task 3) for
abstract characteristics achieves a macro-average F'1 of 0.97 across classes. When
evaluated against a recent systematic review of deep learning', out of 446 publications

identified by review authors, the pipeline correctly included 438 (98.2%).

Compared to a systematic review of comparative studies'®, the pipeline correctly
labelled 81 out of 83 (97.5%) for maturity. Detailed performance metrics are reported

in Tables 1-4.
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Dashboard and global AI landscape

The interactive dashboard updates every 24 hours (https://aiforhealth.app), creating a
live view of the current state of global AI. Dashboard datasets allow any cross-section

of attributes to be extracted, compared, and analysed longitudinally.

To illustrate utility, we examined the entire research landscape before October 2021.
Growth in clinical Al research became explainable by exponential growth functions
from 2016, in total research (R2=0.999, p<0.001) and mature research (R2=0.998,
p<0.001). We discovered 34178 examples of original Al research, with 1562 studies
employing mature validation methods. Development and maturity heterogeneity across
major themes over the past decade is illustrated in Figure 3. Lung, breast cancer, and
retinopathy demonstrate substantial maturity relative to total research production,
while cardiovascular, psychiatry, and infectious disease prediction lag behind. The
distribution of data type usage across major subspecialties are shown in Figure 4 as
heatmaps, demonstrating prevalence of mature validation using radiomics (and other
imaging tasks) across all AT themes. Notably, only 1.3% of all research, and 0.6% of
mature research, involved an author from a low to low-middle income country (per

World Bank definitions), with 93.6% of such research published after 2016 (Figure 5).
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Discussion

Previous bibliometric analyses of Al literature have relied on keywords which provide
poor specificity, with significant limitations in scope of data that can be extracted from
the literature!®®. In real-world deployment, our pipeline excels at identifying original
Al research, and mature Al model development, with high specificity. The pipeline
labels detailed characteristics, allowing longitudinal observation and analysis of

research production and development maturity, across geography, specialties, and data

types.

While demonstrating state-of-the-art NLP performance, classifier limitations include
imperfect accuracy compared to careful human reviewers. This is the trade-off against
time required for substantial manual characterisation. Additionally, we utilise only
MEDLINE due to their supplied application programming interface (API). Finally,
using text from full articles could increase classifier performance, but this was hindered

by paywalled access to most publications.

We plan to continue enhancement of this resource. Code and data are made public
(https://github.com/whizzlab), with the hope that function can be expanded with

input from the global AI community.
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Data Availability

Code, data, and models are hosted online (https://github.com/whizzlab) under an

open-source license.
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Figure 1 — Stages of end-to-end natural language processing pipeline for classifying and

characterising all original clinical Al research as indexed on MEDLINE
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Figure 3 — Horizon charts of relative research output across major specialties and disease
areas for all publications (blue) and mature publications (orange), for each year in the past
decade. Colour density is used in addition to height to represent size, mazximising use of

available space. Design and interpretation as described by Heer et al?.
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Figure 4 — heatmap showing use of input features across subspecialty/disease areas in all (top,

blue) and mature (bottom, orange) studies.
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Figure 5 — global distribution of clinical artificial intelligence research from 1998 to 2021 by
first author, showing all publications (blue, top) and mature publications (orange, below).

Where first author affiliation is not available, last author affiliation is used instead.
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Table 1 — evaluation metrics for BERT-PubMed inclusion classifier

Test set (n=1034)

Precision 0.94
Recall 0.96
Specificity 0.98
Accuracy 0.98
F1-Score 0.95
Matthew’s correlation coefficient 0.94

Prospective 2021 abstracts (n=1000)

Precision 0.95
Recall 0.96
Specificity 0.98
Accuracy 0.98
F1-Score 0.96
Matthew’s correlation coefficient 0.94

Curated papers from systematic reviews of Al (n=446)

Publications correctly labelled by model 438
Sensitivity 0.98
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Table 2 — evaluation metrics for BERT-PubMed maturity classifier

Test set (n=784)

Precision 0.91
Recall 0.96
Specificity 0.99
Accuracy 0.99
F1-Score 0.93
Matthew’s correlation coefficient 0.93
Prospective 2021 abstracts (n=2494)

Precision 0.94
Recall 0.89
Specificity 0.99
Accuracy 0.99
F1-Score 0.91
Matthew’s correlation coefficient 0.90
Systematic review of Al vs clinician (n=83)
Publications correctly labelled by model 81
Sensitivity 0.97
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Table 3 — evaluation metrics for named entity recognition (NER) model, and combined

NER /rules model

Chiu & Nichols 2016 deep learning NER performance (baseline)

Precision (CoNLL-2003) 0.91
Recall (CoNLL-2003) 0.92
F1 (CoNLL-2003) 0.92
Precision (OntoNotes 5.0) 0.86
Recall (OntoNotes 5.0) 0.87
F1 (OntoNotes 5.0) 0.86

NER & rules layer for clinical specialty recognition

Precision 0.93
Recall 0.97
F1 0.95
NER & rules layer for subspecialty or disease recognition
Precision 0.93
Recall 0.96
F1 0.94
NER & rules layer for algorithm recognition
Precision 0.99
Recall 0.99
F1 0.99
NER & rules layer for input feature recognition
Precision 0.95
Recall 0.94
F1 0.94
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Table 4 — evaluation metrics for BERT-PubMed characteristics multi-classifier

BERT-PubMed characteristics classifier

Classification Precision Recall F1-Score
Algorithm

Neural net 0.99 1.00 1.00
Support vector machine 1.00 1.00 1.00
Regression 0.96 0.96 0.96
Decision trees 0.97 0.99 0.98

Feature or data type

X-ray 1.00 0.99 1.00
Computed tomography 0.98 0.96 0.97
Magnetic resonance imaging 0.99 1.00 0.99
Electroencephalogram 0.99 1.00 1.00
Electrocardiogram 0.98 0.99 0.98
Electromyogram 0.99 1.00 0.99
Ultrasound 0.97 1.00 0.99
Echocardiogram 1.00 0.97 0.98
Histology 0.95 0.89 0.92
Optical coherence tomography | 0.99 0.99 0.99
Mammography 1.00 1.00 1.00
Fibreoptic endoscopy 1.00 0.98 0.99
Genomics 0.94 0.99 0.97
Biomarkers and laboratory 0.96 0.95 0.96
Natural language processing 0.99 1.00 0.99
Electronic health record data 0.94 0.98 0.96

Clinical Specialty

Oncology 0.98 1.00 0.99
Neurosciences 0.99 0.99 0.99
Cardiovascular 0.97 0.99 0.98
Respiratory 0.98 0.99 0.99
Gastrointestinal (luminal) 0.96 1.00 0.98
Hepatobiliary 0.99 0.98 0.99
Infectious disease 0.97 0.98 0.98
Psychiatry 0.98 0.98 0.98
Musculoskeletal 0.90 0.94 0.92
Urology 1.00 0.98 0.99
Haematology 0.97 0.96 0.97
Obstetrics and Gynaecology 0.96 0.94 0.95
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Renal medicine 0.98 0.99 0.99
Intensive care 0.97 0.98 0.98
Emergency care 0.94 0.97 0.95
Paediatrics 1.00 0.98 0.99
Clinical subspecialty / disease

area

Diabetes mellitus 0.99 0.99 0.99
Sepsis 0.95 0.97 0.96
Coronavirus disease 2019 0.99 1.00 1.00
Skin cancer 1.00 0.98 0.99
Lung cancer 0.96 0.99 0.98
Brain cancer 0.99 0.98 0.98
Gastrointestinal cancer 0.85 0.98 0.91
Hepatobiliary cancer 0.92 1.00 0.96
Prostate cancer 0.96 0.99 0.97
Gynae-oncology 1.00 0.97 0.99
Haem-oncology 0.96 0.97 0.96
Breast cancer 0.98 0.99 0.99
Pneumonia 0.92 0.98 0.95
Epilepsy 1.00 1.00 1.00
Stroke or haemorrhage 0.96 0.90 0.93
Dementia 0.99 0.99 0.99
Ischaemic heart disease 0.93 0.92 0.93
Heart failure 0.81 0.86 0.84
Arrhythmia 0.95 0.89 0.92
Retinopathy 0.95 0.98 0.97
Summary statistics

Macro 0.97 0.98 0.97
Weighted 0.98 0.98 0.98
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