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ABSTRACT 

Background 

Electronic health records (EHR) are useful tools for understanding complex medical 
phenotypes, but they have been underutilized for opioid use disorders (OUD). Patterns of 
prescription opioid use might provide an objective measure of OUD risk.  

Methods 

We extracted data for over 2.6 million patients across three health registries (Vanderbilt 
University Medical Center, Mass General Brigham, Geisinger) between 2005 and 2018. We 
defined three groups based on levels of opioid exposure: No Prescription, Minimal Exposure 
(2 prescriptions within 90 days at least once, but never 3 prescriptions <90 days apart), and 
Chronic Exposure (≥10 opioid prescriptions in a year), and compared them to the full 
registries and to patients with OUD diagnostic codes. We extracted demographic and clinical 
characteristics known to co-occur with OUD, including psychiatric and substance use 
disorders, pain-related diagnoses, HIV, and hepatitis C.  

Results 

The prevalence of substance (alcohol, tobacco, cannabis) use disorders was higher in 
patients with OUD and Chronic Exposure than those with No Prescription or Minimal 
Exposure. Patients in the OUD and Chronic Exposure groups had more psychiatric (anxiety, 
depression, schizophrenia, bipolar disorder) and medical comorbidities (pain, hepatitis C, 
HIV) than those in the Minimal Exposure group. Notably, patients in the Minimal Exposure 
group had different comorbidity profiles (higher rates of substance use and psychiatric 
disorders, more pain conditions) than those in the Unscreened or No Prescription groups, 
highlighting the value of including opioid exposure in studies of OUD.  

Conclusions 

Long-term opioid prescription use may serve as an additional tool to characterize OUD risk. 
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1. INTRODUCTION 

The opioid epidemic is a significant public health challenge in the United States, with 
continued high rates of hospitalizations and mortality as a result of misuse and abuse of 
prescription or illicit opioids (Gostin et al., 2017; Shipton et al., 2018) . Opioid use disorder 
(OUD) evolves from a series of opioid consumption transitions, starting with exposure and 
continuing through regular use, misuse, abuse, dependence, and relapse (Kaye et al., 2017; 
Strang et al., 2020). Prevalence estimates for these phenotypes vary widely, in part due to 
variation in ascertaining and defining them (Freda et al., 2021). Indeed, one key challenge to 
defining opioid use phenotypes is the need to differentiate individuals across this spectrum 
of overlapping features.  

Electronic health records (EHR) offer novel solutions for capturing opioid use 
behaviors in real-world healthcare settings, as they contain rich medical data relevant to 
OUD. Most OUD case definitions rely on diagnostic codes, but this approach is problematic, 
as OUD tends to be underdiagnosed (Guy and Zhang, 2018). Several opioid phenotype 
definitions have been developed to date that extend beyond diagnostic codes to include 
other sources of data, including prescription data available in the EHR (see Supplementary 
Material; Brummett et al., 2017; Butler et al., 2007; Calcaterra et al., 2018; Canan et al., 
2017; Cochran et al., 2014; Coyne et al., 2021; Hylan et al., 2015; Karhade et al., 2019; 
Knisely et al., 2008; Sun et al., 2016; Webster, 2017; Webster and Webster, 2005). 
However, little is known about patterns and correlates associated with different levels of 
prescription opioid exposure, including which factors distinguish patients across clinically 
distinct categories of exposure, and whether these patterns are consistent across different 
health systems. A better understanding of opioid use phenotypes and comorbidities across 
different levels of opioid exposure is beneficial in various data-driven research, including 
clinical prediction, treatment outcomes, diagnosis, prevention, epidemiology, and genomics. 
The work described here furthers our understanding of the clinical correlates of OUD and 
opioid use behaviors across three health systems, as part of the PsycheMERGE consortium. 
PsycheMERGE, which is an extension of eMERGE (McCarty et al., 2011), leverages EHR 
and genomic data for mental health research (Zheutlin et al., 2019), including substance use 
disorders (SUD).  

In the present study, we characterized three opioid risk groups based on patterns of 
prescription opioid use and a fourth group based on International Classification of Diseases 
(ICD) diagnostic codes for OUD. Using data from three large health systems, we sought to: 
1) evaluate and compare demographics and psychiatric and medical comorbidities across 
the four groups; 2) assess how the four groups differ in comparison with patients with no 
prescription data, and the general population of patients from each system; and 3) compare 
consistencies and differences in results across the three healthcare systems.  
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2. METHODS 

2.1 Data Sources 

Our data sources spanned three health systems: Vanderbilt University Medical 
Center (VUMC), Mass General Brigham (MGB), and Geisinger. Details of each registry, 
including demographics and data sources, are listed in the Appendix in the Supplement. We 
acquired Institutional Review Board approval (VUMC: 201767, MGB: 2018P002642); 
consent was not required for review of deidentified medical records. The Geisinger 
Institutional Review Board deemed this research exempt because all variables were 
extracted and summarized using an approved data broker. 

Patients were included in the analyses if they had at least three years of medical 
history available between 2005 and 2018 and were 18 years of age or older on 12-31-2018. 
A minimum of three years of medical history was chosen to increase the likelihood that 
patients had enough prescription data to detect opioid prescription patterns. Patients 
younger than 18 years were excluded to reduce the likelihood of including individuals who 
had not yet developed OUD. We excluded patients with a cancer diagnosis (Supplementary 
Table 1) due to potential for long-term analgesia for cancer-related pain. We extracted 
relevant ordered (VUMC, MGB, Geisinger) or filled (Geisinger) opioid prescriptions using a 
list of commonly prescribed opioids (Supplementary Table 2). There were 627,396 patients 
from VUMC, 1,272,880 patients from MGB, and 733,637 patients from Geisinger who met 
the inclusion and exclusion criteria. 

2.2 Prescription opioid phenotyping and group definitions 

Five groups were included in the study (Table 1). First, we identified all patients from 
each health system who met inclusion/exclusion criteria (described above), which we refer to 
as the “Unscreened” group (aka the overall study sample). From this group, we next defined 
three sub-groups using inpatient and outpatient medication records based on prescription 
opioid exposure levels, derived from previously published work (Calcaterra et al., 2018; Sun 
et al., 2016). Patients in the “No Prescription” group had no documented opioid prescriptions 
during the period of observation. Patients in the “Minimal Exposure” group received two 
opioid prescriptions within 90 days at least once and no additional prescriptions within 9 
months, but did not have 3 or more prescriptions no more than 90 days apart at any point 
during the period of observation (Katzman et al., 2020). Patients in the “Chronic Exposure” 
group received 10 or more opioid prescriptions within a 12-month period (Calcaterra et al., 
2018; Sun et al., 2016). The final “OUD'' group included patients with at least one ICD code 
for OUD (Supplementary Table 3). The definition of this group did not incorporate 
prescription data; therefore, patients in this group could overlap with the three prescription-
based groups (code used to determine group membership available here: 
https://github.com/sanchezroigelab/OUD_spectrum_PsycheMERGE). The No Prescription, 
Minimal Exposure, Chronic Exposure and OUD groups cover only a subset of the patients in 
the Unscreened group. 

2.3 Outcome Measures 

Within each group, we characterized the length and density of EHR, demographics, 
opioid use patterns, and OUD diagnoses (Supplementary Material). Density was defined 
as the total number of non-unique ICD codes a patient received between 2005-2018 divided 
by the number of years included in the analysis. We also identified diagnoses previously 
identified as comorbid with OUD, including other SUD (Jones, 2019), psychiatric disorders 
(Jones, 2019), and other medical conditions, including HIV, hepatitis C, and pain-related 
diagnoses (Volkow et al., 2019) relevant ICD codes in Supplementary Tables 4-16).  

To further examine patterns of prescription opioid use, we defined periods of 
exposure or “bouts” as at least two opioid prescriptions that occurred no more than 90 days 
apart. A bout was considered to end when there were more than 90 days between opioid 
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prescriptions for a particular patient. We calculated the average number and length (in days) 
of bouts. 

2.4 Statistical analyses 

Descriptive statistics (frequency, percent, mean [M], standard deviation [SD]) were 
used to describe and qualitatively compare the different groups (Supplementary Table 17). 
Throughout the text, we present ranges (e.g., in percentages) across the three registries. 
Demographic characteristics and outcomes across the three prescription-based groups were 
compared using Chi-square tests for categorical outcomes, and independent t-tests or 
Kruskal-Wallis tests for continuous outcomes. We regarded both a p<0.05 and a 5% 
difference in prevalence between any of the three prescription opioid groups clinically 
important. Given the large sample sizes, with only a few exceptions, outcomes were 
statistically different across groups and therefore only qualitative descriptions are provided in 
the results section. Full statistical results are described in Supplementary Table 18.  
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3. RESULTS 

3.1 Demographics 

The demographic composition for age and sex was similar across the Unscreened 
groups from different health system registries (Supplementary Table 17). Average age at 
the time of the analysis was 50.8-53.3 years, with 23.1-27.0% patients under age 35, and 
41.3-44.6% male patients. Race/ethnicity varied within the registries, reflecting the 
geographic regions from which each health system draws. Yet the majority of the patients 
were identified in the EHR as White (74.1-95.4%), while only 3.2-12.6% were identified as 
Black or African American, 2.3-7.5% as Hispanic, 0.6-4.5% as Asian, and 0.4-9.0% as other 
race/ethnicity. 

A higher proportion of patients in the OUD group were male (44.8-60.7%) compared 
to the prescription-based groups (30.9-46.2%); this sex difference was largest in the MGB 
registry (Supplementary Table 17). Patients in the OUD group were 5-8 years younger, on 
average, than the Unscreened group, and 12-15 years younger than patients in the Chronic 
Exposure group. Only 5.7-7.6% of the patients in the Chronic Exposure group were under 
the age of 35, compared to 15.3-33.7% for the OUD, No Prescription, and Minimal Exposure 
groups. The Chronic Exposure and OUD groups were predominantly composed of patients 
identified as Whites (81.7-96.8%) and Blacks/African Americans (2.3-13.9%), with lower 
proportions of Hispanics (1.0-5.0%) and Asians (0.1-0.9%) in comparison to the other groups 
(71.1-96.5% Whites, 2.7-16.0% Black/African Americans, 0.3-7.4% Hispanics, and 0.1-1.1% 
Asians).  

Length of EHR was greater for the Minimal Exposure (11.0-13.9 years), Chronic 
Exposure (11.4-14.6 years) and OUD (11.7-13.0 years) groups compared to patients in the 
Unscreened (9.9-11.9 years) and No Prescription (9.3-11.0 years) groups. Density of EHR 
was highest for the Chronic Exposure group (24.9-59.3), followed by the OUD group (15.5-
33.1). 

3.2 Prevalence of OUD diagnoses 

The overall prevalence of an OUD diagnosis in the Unscreened group was 1.2-1.7% 
(Figure 1); this number fluctuated during the study period (Supplementary Figure 1), with a 
steeper increase around 2013 in VUMC and MGB and a later peak (2017) in Geisinger. 
OUD diagnoses were higher in non-Hispanic Whites and increased with exposure to 
prescription opioids - from 0.3-0.6% for No Prescription, to 1.6-2.7% for Minimal Exposure, 
and 9.0-24.4% for Chronic Exposure. These patterns were consistent across health 
systems. 82.1-96.8% of the patients in the OUD group were non-Hispanic Whites, which was 
higher than other racial/ethnic groups (0.1-10.4%).  

3.3 Opioid prescription patterns 

Average age at first opioid prescription ranged from 45.7 to 46.2 years in the 
Unscreened group across health systems, with the youngest average age of first prescription 
observed in the OUD group (34.8-39.0) and oldest among the Chronic Exposure group 
(46.8-52.5).  

The duration and number of periods of opioid exposure (“bouts”) increased as 
exposure to prescription opioids increased, with the Chronic Exposure group having the 
highest number (3.3-4.1) and length (224.1-566.5 days) of bouts. The OUD group had the 
second highest number (1.4-3.0) and length of bouts (135.8-185.0 days). In the Unscreened 
and Minimal Exposure groups, patterns of use diverged. For example, in the Unscreened 
group, the average number of bouts ranged from 0.4-1.8, and length of bouts ranged from 
12.6-97.0 days. In contrast, the Minimal Exposure group had a higher number of bouts (1.5-
1.8) but the length of use was shorter (10.0-15.9 days).  
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3.4 Substance use disorders 

The prevalence of SUDs was highest in the OUD group (alcohol: 15.2-28.8%, 
tobacco: 47.0-68.6%, cannabis: 9.1-13.0%; Figure 1). In contrast, the No Prescription group 
showed dramatically lower rates of SUDs (alcohol: 0.9-1.5%, tobacco: 2.3-6.8%, cannabis: 
0.2-0.5%) than any other group, including the Minimal Exposure (alcohol: 3.1-4.1%, tobacco: 
8.6-28.1%, cannabis: 0.8-1.2%) and the Chronic Exposure (alcohol: 6.1-13.2%, tobacco: 
26.6-49.2%, cannabis: 1.9-5.1%) groups. 

3.5 Psychiatric disorders 

Prevalence of psychiatric disorders was highest in the Chronic Exposure and OUD 
groups (Figure 2). For example, the prevalence of anxiety, one of the most common 
psychiatric disorders observed, was 19.3-37.2% and 25.7-36.6%, respectively, for the 
Chronic Exposure and OUD groups, compared to 8.0-17.3% for the Minimal Exposure 
group, 4.2-7.2% for the No Prescription group, and 6.5-11.5% for the Unscreened group. 
Depression prevalence was higher (36.4-50.4%) in the Chronic Exposure and OUD groups 
compared to the other groups (6.3-20.0%). 

Bipolar disorder prevalence was highest in the OUD group (13.1-21.1%), higher than 
the Chronic Exposure group (5.2-8.0%), and dramatically higher than the Minimal Exposure 
(2.0-2.6%), No Prescription (1.0-1.3%) and Unscreened (1.6-1.9%) groups. Schizophrenia 
prevalence in the OUD group was slightly elevated (1.2-2.4%) compared to all other groups. 

Suicidal behavior prevalence was only higher in the OUD group (8.0-11.5%), 
compared to all other groups (0.2-3.1%). 

3.6 Pain and other medical conditions 

As expected, a large percentage of patients exposed to opioids had pain conditions 
(Minimal Exposure: 63.9-76.0%; Chronic Exposure: 92.2-96.6%; Figure 3), more so than the 
No Prescription or Unscreened groups (30.8-33.9% and 48.8-51.6%, respectively).  

The prevalence of HIV and hepatitis C was highest in the Chronic Exposure and 
OUD groups, particularly for hepatitis C (2.6-6.7% and 9.7-18.6%, respectively), compared 
to the other groups (0.1-1.2%).  
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4. DISCUSSION 

Detecting OUD in EHR analyses is notoriously challenging. Diagnostic codes can be 
insufficient because OUD tends to be underdiagnosed (Hallgren et al., 2021; Kirson et al., 
2015). Furthermore, models often focus on extreme opioid use in service of predicting 
case/control classifications and thus miss the full spectrum of opioid use behaviors (Palumbo 
et al., 2020). Our approach overcame these limitations by examining a continuum of opioid 
use behaviors. This approach is particularly important for opioid use phenotypes because 
behaviors range from appropriate medical use of prescribed opioids to abuse of prescription 
and illegal opioids. 

Our study is the first to systematically identify patterns and correlates of short and 
long-term prescription opioid use and OUD across health systems, which facilitated 
important observations. First, we found that the OUD group had unique characteristics 
compared to the other groups, the most salient of which included comorbid psychiatric 
(anxiety, depression) and substance use disorders, particularly tobacco use disorders, in line 
with previous findings (Barry et al., 2016; Edlund et al., 2010; Nazarian et al., 2021; Volkow 
et al., 2019). Prior studies estimated that 45-57% of individuals with OUD had at least one 
psychiatric disorder and reported that polysubstance abuse was exceedingly common 
(Freda et al., 2021), comparable to our findings. In addition, average age at first opioid 
prescription among the OUD group was approximately 10 years younger than that of other 
groups, highlighting the importance of age at first exposure to prescribed opioids and onset 
of OUD (Phillips et al., 2017). The demographic factor most noticeably associated with the 
OUD group was EHR-identification as Non-Hispanic White. This finding is consistent with 
previous literature suggesting that the opioid epidemic in the United States has historically 
primarily affected rural and suburban Non-Hispanic Whites (CDC, 2019; Keyes et al., 2014).  

Second, our findings emphasize the value of including opioid prescriptions in 
assessing risk for OUD (Rentsch et al., 2019; Naumann et al., 2019). For example, with the 
exception of age at first opioid prescription, patients in the Chronic Exposure group most 
closely resembled the OUD group across most of the characteristics evaluated and may 
therefore represent the group with highest risk of having or developing OUD (Klimas et al., 
2019; Volkow et al., 2019). Consistent with this finding, the Chronic Exposure group also had 
a higher rate of OUD diagnosis than the No Prescription or Minimal Exposure groups. In 
addition, OUD diagnoses increased from the No Prescription to the Minimal Exposure group, 
providing further evidence for the relevance of assessing opioid prescriptions when 
determining risk for OUD (Vowles et al., 2015).  

Although findings were generally consistent across sites, we did observe some 
heterogeneity. This may have been due to, in part, differences in underlying patient 
populations, as evidenced by the differences in race/ethnicity proportions in the Unscreened 
groups; prior studies have documented varying correlates of prescription opioid misuse by 
race/ethnicity (Nicholson, 2018). Differences across sites can also be due to a more rural 
population at Geisinger compared to MGB and VUMC (Buettner-Schmidt et al., 2019) and 
the challenges of access to behavioral health services and treatment in serving rural 
populations. Nonetheless, the overall consistency in findings suggests that correlates of 
opioid use phenotypes are shared between healthcare systems despite differences in data 
recording and patient populations, and that opioid prescription EHR-based studies from 
different systems can be compared to one another, if using similar definitions. 

Our findings have relevance for future EHR-based OUD research. First, our work re-
emphasizes the importance of incorporating opioid prescriptions when defining the spectrum 
of opioid misuse and OUD. Prior algorithms have incorporated opioid prescriptions to identify 
opioid misuse (e.g., Calcaterra et al., 2018; Canan et al., 2017; Rough et al., 2019), but 
additional efforts could place patients on a spectrum of problematic opioid use behaviors. 
For example, to identify individuals at risk for developing OUD, phenotype risk scores 
(Bastarache et al., 2019; Ruderfer et al., 2020) could be constructed by agnostically training 
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and testing a risk model using diagnosis codes (for OUD and other relevant predictors) and 
prescriptions. Such a strategy would not only acknowledge OUD risk in the absence of an 
OUD diagnosis, but could also allow for modeling of OUD risk trajectories over time (Elmer 
et al., 2019). Second, our descriptive data confirms the relevance of several predictors of 
opioid misuse (e.g., age, substance and psychiatric comorbidities) that have been previously 
incorporated (but not necessarily validated; Canan et al., 2017; Schirle et al., 2021) into 
algorithms identifying opioid misuse. Third, the depth and breadth of data in EHR registries 
can be leveraged to clarify the phenotypic structure of OUD phenotypes. Future studies 
could use data-driven methods to integrate additional EHR components (e.g., prescriptions 
for other controlled substances, types of pain diagnoses, opioid dosages and types) and 
implement cluster-based methods such as latent profile analysis, k-means clustering, or 
principal component analysis to explore OUD sub-phenotypes (Nylund et al., 2007). 

Lastly, our work has implications for genetic studies, in particular informing selection 
of individuals for genetic analyses (Sanchez-Roige & Palmer, 2020). A major roadblock in 
conducting genome-wide association studies (GWAS) of opioid use phenotypes is the lack 
of opioid exposed controls, resulting in the frequent use of unscreened individuals as 
controls. Consistent with previous work showing that using unscreened controls can 
introduce biases in genetic analyses (Polimanti et al., 2020), our work demonstrates that a 
Minimal Exposure group has a different set of clinical characteristics than an Unscreened or 
No Prescription group. 

4.1 Limitations 

This study is subject to several limitations. We lacked information about the reasons 
for prescribing opioids, which could help differentiate patients with problematic opioid use. 
Similarly, we did not have complete information on opioid dosages (Morasco et al., 2010) 
(and therefore, morphine milligram equivalents) or information on use of illicit opioids, and 
we were not able to differentiate between opioid types, which would have helped identify 
additional misuse phenotypes, such as rapid dose escalation trajectories (Rentsch et al., 
2019). Further, we relied on opioid prescriptions to index opioid use, but this is likely an 
imperfect proxy for actual use. In addition, we did not include buprenorphine as a qualifying 
opioid for the opioid prescription groups due to its use in treating OUD; a similar case could 
be made for methadone, but we included it because it is often used to treat pain. These 
decisions could have led to misclassification of patients. Reliance on OUD diagnosis for the 
OUD group could also have led to misclassification given the underdiagnosis of OUD 
(Palumbo et al., 2020); this may have been particularly problematic in earlier years included 
in the study. Furthermore, the associations observed represent correlations and not 
causation; future studies may include sequences of events to disentangle potential 
trajectories of effect between the groups and the outcomes. Lastly, it is not known whether 
these results are generalizable to other populations, but the external validity of our findings is 
supported by consistencies observed across the three health systems, which serve diverse 
patient populations. 

5. CONCLUSION 

This work can inform the selection of cases and controls for epidemiologic and 
genetic studies, demonstrates the utility of using levels of prescription opioid use in 
elucidating different aspects of OUD pathophysiology, and supports the appropriateness for 
future meta-analyses across health systems.  
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Table 1. Description of each group used in the analyses. Only patients >= 18 years of age, with no history of cancer, 
and over 3 years of medical record history were included in the analyses. We avoid referring to the patients in the 
“No Prescription” group as having “no exposure” because exposure status is defined with prescription data and not 
verified by patient self-report.

Group Description 

Unscreened Every patient with available data in EHR who met inclusion/exclusion criteria 

No Prescription No opioid prescription data   

Minimal Exposure 2 prescriptions no more than 90 days apart at least once and no third prescription 
within 9 months, and no 3 prescriptions more than 90 days apart  

Chronic Exposure >= 10 prescriptions in a 12-month period 

OUD At least 1 ICD code for OUD 
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Figure 1. Rates of substance use disorders across the three registries (VUMC, MGB, Geisinger) by levels of opioid exposure (Unscreened, N[range 
across registries]=627,396-1,272,880; No Prescription, N= 251,546-582,542; Minimal Exposure, N= 50,112-70,510; Chronic Exposure, N= 14,373-
27,507; OUD, N= 8,673-21,489). Full, Unscreened group; No Presc, No Prescription group; CUD, cannabis use disorders; AUD, alcohol use disorders, 
SUD, substance use disorders; TUD, tobacco use disorders; OUD, opioid use disorders. Note that OUD as outcome pertains to having two or more OUD 
ICD codes on separate occasions. 
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Figure 2. Rates of psychiatric disorders across the three registries (VUMC, MGB, Geisinger) and levels of opioid exposure (Unscreened, No Prescription, 
Minimal Exposure, Chronic Exposure, and OUD). Full, Unscreened group; No Presc, No Prescription group. 
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Figure 3. Rates of medical conditions (HIV, hepatitis C, pain) known to be comorbid with opioid use disorders across the three registries 
(VUMC, MGB, Geisinger) and levels of opioid exposure (Unscreened, No Prescription, Minimal Exposure, Chronic Exposure, and OUD 
diagnosis). Full, Unscreened group; No Presc, No Prescription group. 
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