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ABSTRACT
BACKGROUND: Gender diverse individuals are at increased risk for mental health problems, but it is
unclear whether this is due to shared environmental or genetic factors.
METHODS: In two SPARK samples, we tested for 16 polygenic scores (PGS) effects on quantitative
measures of gender diversity and mental health. In Study 1, N = 639 independent adults (59% autistic)
reported their mental health with the Adult Self Report and their gender diversity with the Gender Self
Report (GSR). The GSR has two dimensions: Binary (degree of identification with the gender opposite that
implied by sex designated at birth) and Nonbinary (degree of identification with a gender that is neither
male nor female). In Study 2 (N = 5, 165), we used categorical gender identity.
RESULTS: In Study 1, neuropsychiatric PGS were positively associated with mental health problems. Ex-
ternalizing was positively associated with ADHD PGS (ρ = 0.12, p < 0.001, FDR = 0.10), and Internalizing
was positively associated with PGS for depression (ρ = 0.08, p = 0.04, FDR = 1) and neuroticism (ρ = 0.11,
p = 0.01, FDR = 0.41). Interestingly, we found no associations between gender diversity and neuropsychi-
atric PGS (80% powered to detect ρ > ±0.11). However, the GSR was positively associated with cognitive
performance PGS (Binary ρ = 0.11, p < 0.001, FDR = 0.23 and Nonbinary ρ = 0.12, p < 0.001, FDR
= 0.13). Binary was also positively associated with PGS for non-heterosexual sexual behavior (ρ = 0.09,
p = 0.03, FDR = 0.69). In Study 2, the cognitive performance PGS effect replicated; transgender and non-
binary individuals had higher PGS: t = 4.16, p < 0.001, FDR < 0.001. They also had higher risky behavior
and anorexia PGS.
CONCLUSIONS: We show that while gender diversity as a trait is positively associated with mental
health problems, the strongest PGS associations with gender diversity were with cognitive performance, not
neuropsychiatric conditions.
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1 INTRODUCTION
Sex and gender can have major impacts on health [1] (see Table 1 for our definitions). This stems from both
extrinsic factors (e.g., healthcare barriers [2, 3]) and biological factors, with sex and gender modulating the
underlying molecular mechanisms of disease and well-being [4]. In health research, sex is a more objective
and well-defined variable than gender. This is because gender is often experienced on a continuum [5] and is
multidimensional with binary and nonbinary dimensions. Gender can be reported through self-endorsement
of categorical gender identity labels, like transgender, cisgender, nonbinary, and genderqueer. However,
categorical gender identity labels may not be ideal for health research. Gender identity labels are contextually
and culturally dependent (i.e., not accessible by all), and they are often nonspecific in their meanings [6].
Furthermore, gender diversity, a fundamental aspect of human diversity, is not only expressed by individuals
with gender-diverse identities. People who identify as cisgender also exhibit some variation in dimensional
gender diversity [7], but this diversity would be lost in studies that only use categorical gender identity labels.
Therefore, parsing datasets based on numerous and nonspecific gender identity labels would erode statistical
power for research studies. A continuous, multidimensional characterization of gender that uses simple and
widely accessible language will enable health researchers to appropriately incorporate gender diversity.

Gender diversity is a crucial variable to include in mental health research. Previous studies have
reported higher rates of mental health problems in groups that express more gender diversity than the
cisgender proportional majority, such as LGBTQ+ individuals [8, 9]. One study found LGBQ+ individuals
had higher rates of anxiety, depression, and attempted suicide [10]. Recent work leveraging the All of Us
cohort (N = 329, 038) found that the LGBQ+ participants had a higher prevalence of neuropsychiatric
diagnoses [11]. The exact mechanisms are not fully understood. However, research has shown that poorer
mental health is at least partially due to factors related to the experienced adversity from sexual orientation
and/or gender diversity. One study found that discrimination and resilience partially mediated negative
mental health outcomes in LGBTQ+ college students [12]. Another study found that access to gender-
affirming hormone therapy for transgender and gender nonbinary youth was associated with reduced risk of
depression and suicidality [13]. To our knowledge, no study has used genetic data, so any possible genetic
mechanisms are unknown.

Most behaviors are somewhat heritable, so we and others have hypothesized that gender identity
and gender diversity are also susceptible to genetic influences. [14]. One twin study of N = 4, 426 females
estimated the heritability of adult gender expression (i.e., self-reported masculinity and femininity) at 11%,
and retrospective childhood gender typicality at 31% [15]. However, the searches for specific loci have been
underpowered for gene discovery [16, 17]. Genome-wide association studies (GWAS) of human behavior
often uncover many associated loci that each have a small effect size and contribute additively [18]. Loci
associated with one trait are often associated with other traits, which suggests that the two traits have a
degree of pleiotropy. However, the predictive power of the PGS depends on the GWAS power, which is driven
chiefly by sample size. Among the well-powered GWAS, the most proximal trait to gender diversity is the
non-heterosexual sexual behavior (NHSB) GWAS [19] performed in N = 408, 995 UK Biobank participants.
The trait was defined as yes/no response to ever having sex with someone of the same sex (the nuance
between same-sex versus same-gender is lost due to the nature of the question). The estimated heritability
of NHSB ranged from 8% to 25%. It was positively genetically correlated with several neuropsychiatric
conditions and personality traits. However, the interpretation of these genetic correlations is limited because
of the confounding with experienced adversity and psychiatric diagnoses.

In this study, we investigated whether gender diversity, like NHSB, is genetically associated with other
behaviors and if this plays a role in mental health. We invited a subset of participants from SPARK [20]
to complete surveys about their mental health and gender identity. SPARK is a national genetic study
totalling more than 300,000 participants with and without autism. Previous studies have shown that there
is an enrichment of gender diversity in autism [21], and gender diverse individuals were found to have
increased levels of clinically relevant autistic traits and increased likelihoods of autism diagnoses [22]. This
makes SPARK a logical choice for investigating this topic. In our sample of N = 696 (N = 639 of European
genetic ancestry), we calculated PGS for 16 behavior traits. We also administered two psychometrically valid
self-report tools. The first, the Adult Self Report (ASR) [23], measures several mental health outcomes and
adaptive behaviors. The second, the Gender Self-Report [24] captures two quantitative dimensions of gender
diversity: Binary Gender Diversity, the extent one experiences themselves as the other binary gender (i.e.,
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different from their sex designated at birth), and Nonbinary Gender Diversity, the extent one experiences
themselves as neither female nor male. We then sought to answer the following questions: First, are the
ASR scores phenotypically associated with the GSR scores? Second, are behavior-related PGS associated
with ASR and GSR scores? How are the PGS associations different for the ASR versus the GSR? Lastly, do
the PGS findings broadly replicate in a larger sample with a categorical gender identity phenotype instead
of the GSR? See Figure 1 for an overview of the study.

2 RESULTS
2.1 Phenotypic associations between gender diversity and mental health
The demographic characteristics of the SPARK Research Match participants are shown in Table 2. The final
sample size was N = 696 with N = 639 of European genetic ancestry. Approximately one third of the cohort
identified as transgender or gender nonbinary (TGNB). Fifty-eight percent of the participants were autistic
and 22% were male.

The two gender diversity scores, Binary and Nonbinary Gender Diversity, were from the Gender
Self Report (GSR) factor analysis [24] . GSR scores range from 0 (no gender diversity) to 1 (high gender
diversity), with the modes near 0(Figure S1. The scores were adjusted for age, sex designated at birth, and
autism by linear regression residualization, and then Z-scaled (µ = 0, σ = 1). The distributions of these two
scores are shown in Figure 2A and are colored by sexual orientation and gender identity. The general trend
shows higher gender diversity in LGBQ+ and TGNB participants. Binary and Nonbinary were positively
correlated: ρ = 0.57, p < 0.001 (Figure 2B).

The two mental health scores, Externalizing and Internalizing, were from the Adult Self Report (ASR)
[23]. The scores were adjusted for age, sex designated at birth, and autism by linear regression residualization
and then Z-scaled. Externalizing and Internalizing were positively correlated: ρ = 0.61, p < 0.001 (Figure
2C). The ASR scores were positively correlated with the GSR scores (Figure 2D). Binary was more correlated
with Internalizing (ρ = 0.14, p < 0.001) than Externalizing (ρ = 0.10, p = 0.01). Nonbinary was also more
correlated with Internalizing (ρ = 0.18, p < 0.001) than Externalizing (ρ = 0.13, p < 0.001).

2.2 Polygenic score associations with gender diversity and mental health
We next assessed the associations between GSR and ASR scores with 16 polygenic scores (PGS) of behavior
(Figure 3). The PGS were adjusted for the 20 principal genetic components and then age, sex designated at
birth, and autism. Correlations were run in the European subset (N = 639). The sample size of N = 639
has 80% power at α = 0.05 to detect effects ρ > ±0.11, meaning that the absence of significant effects must
be carefully interpreted. In addition to these partial correlations, we ran linear regression with age, sex, and
autism included as covariates (Table S1). Multiple testing corrections for the 16 PGS were performed with
the Benjamini and Yekutieli method [25], which is a conservative method for multiple testing correction.

The ASR scores had unsurprising correlations with psychiatric PGS. Externalizing was positively
correlated with ADHD PGS (ρ = 0.12, p < 0.001, FDR = 0.10). Internalizing was positively correlated with
depression PGS (ρ = 0.08, p = 0.04, FDR = 1) and neuroticism PGS (ρ = 0.11, p = 0.01, FDR = 0.41).

As expected, non-heterosexual sexual behavior (NHSB) PGS was positively correlated with Binary:
ρ = 0.09, p = 0.03, FDR = 0.69. NHSB PGS was also positively correlated with Nonbinary, although
the correlation did not reach nominal significance: ρ = 0.06, p = 0.14, FDR = 1. Strikingly, cognitive
performance PGS was significantly positively correlated with Binary (ρ = 0.11, p < 0.001, FDR = 0.23) and
Nonbinary (ρ = 0.12, p < 0.001, FDR = 0.13), meaning that the polygenic propensity for higher cognitive
performance was associated with elevated binary and nonbinary gender diversity. No psychiatric PGS were
significantly correlated with the GSR scores, although autism PGS approached nominal significance with
Binary (ρ = 0.05, p = 0.17, FDR = 1).

The results were comparable when not filtering on genetic ancestry (N = 696, see Figure S2). Cog-
nitive performance PGS was positively correlated with Binary ρ = 0.09, p = 0.02, FDR = 0.66) and
Nonbinary (ρ = 0.11, p < 0.001, FDR = 0.16). NHSB PGS was positively correlated with Binary:
ρ = 0.09, p = 0.02, FDR = 0.66. Autism PGS was positively correlated with Binary: ρ = 0.08, p =
0.05, FDR = 0.82. We tested whether the correlations trended in the same direction when run separately
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in the autistic subset (N = 376), versus those without an autism diagnosis (N = 263) (Figure S3). These
tests were not well powered, but cognitive performance PGS was positively correlated with Binary in the
autistic subset (ρ = 0.10, p = 0.04, FDR = 1) and the non-autistic subset (ρ = 0.13, p = 0.04, FDR = 1),
as well as Nonbinary in the autistic subset (ρ = 0.12, p = 0.02, FDR = 1) and the non-autistic subset
(ρ = 0.08, p = 0.19, FDR = 1).

2.3 Replication of polygenic score associations with categorical gender identity
We next tested if the PGS associations with the GSR were similar in a larger sample (N = 5, 388, N =
5, 165 of European genetic ancestry) with a categorical gender identity phenotype (Study 2). We used the
background history files provided by SPARK to label individuals as cisgender or TGNB by using discordance
between the participant’s designated sex at birth (options: Male or Female) and their gender (options: Male,
Female, or Other) to categorize the participants as TGNB or cisgender. We merged this with Study 1 for
a final sample size of N = 5, 388, with N = 590 from Study 1 and the remaining N = 4, 798 from the
background history reporting. The mean age for Study 2 was 25 years and 88% of the participants were
autistic (Table 2).

We tested for PGS differences between the two gender identity groups with t-tests (Figure 4). The
strongest effect was observed for cognitive performance PGS, with the TGNB group being significantly
higher (xd = 0.26 [0.14, 0.39], t = 4.16, p < 0.001, FDR < 0.001). The TGNB group also had significantly
higher PGS for risky behavior (xd = 0.12 [0.01, 0.23], t = 2.12, p = 0.03, FDR = 0.67) and anorexia
(xd = 0.12 [0.01, 0.24], t = 2.09, p = 0.04, FDR = 0.67). NHSB PGS was close to nominal significance
(xd = 0.11 [−0.01, 0.23], t = 1.86, p = 0.06, FDR = 0.84).

We repeated the tests not filtering on genetic ancestry (N = 5, 388) (Figure S4). The strongest effect
was still cognitive performance PGS, which was higher in the TGNB group (xd = 0.24 [0.12, 0.36], t =
3, 86, p < 0.001, FDR = 0.01). The TGNB group was also higher for risky behavior PGS (xd =
0.12 [0.01, 0.23], t = 2.09, p = 0.04, FDR = 0.79) and NHSB PGS (xd = 0.12 [0, 0.23], t = 2.02, p =
0.04, FDR = 0.79). We repeated the tests by adjusting the PGS for only age (Figure S5A) and not adjusting
the PGS for age, sex, or autism (Figure S5B).

2.4 Interactions between gender diversity, mental health, and polygenic scores
Although our smaller sample size was not well-powered for interactions, having found little evidence for
main effect PGS associations that explained the mental health associations with gender diversity, we decided
to investigate interactions between PGS and gender diversity that could potentially explain mental health
outcomes. We tested for PGS-by-GSR interactions with three linear models and performed correlations
stratified by PGS (Figure S6). The first model included the covariates (age, sex, and autism) as main
effects and interactions with PGS and GSR, as recommended by [26]. For the second model, we maintained
consistency with the previous analysis that adjusted for covariates prior to tests. For the third model, we
binarized the PGS into the upper quartile (coded as 1) and the lower quartile groups (coded as 0), with
N = 160 in each group and the middle 50% removed. From the third model, we identified three nominally
significant PGS-by-GSR interactions, specifically the schizophrenia and depression PGS. The most prominent
interaction was Nonbinary and schizophrenia PGS interaction on Internalizing (β = 0.32, [0.1, 0.53], p <
0.001, FDR = 0.20). Within the entire sample of N = 639, Nonbinary and Internalizing were positively
correlated: ρ = 0.18, p < 0.001. However, this apparent main effect appears to be driven by a context-specific
interaction with PGS: in the subset at highest schizophrenia PGS (e.g., the upper quartile, N = 160), the
correlation between Nonbinary and Internalizing was ρ = 0.36, p < 0.001. While in the lowest risk group
(e.g. the lower quartile, N = 160), there was no correlation: ρ = 0.02, p = 0.81. The interaction between
depression PGS and Nonbinary on Internalizing was also similar (β = 0.23, [0.02, 0.45], p = 0.04, FDR =
0.97).

3 DISCUSSION
Our analyses were the first to address the relationships of multidimensional gender diversity with mental
health and genetics. We used two quantitative measures of gender diversity, Binary and Nonbinary Gender
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Diversity, from the Gender Self-Report (GSR) in a neurodiverse sample of N = 696 adults in SPARK [20].
In our sample, we found greater gender diversity in female, autistic, and LGBTQ+ participants. Due to the
structure of SPARK recruitment, we were only able to collect data from independent adults with autism or
non-autistic immediate family members of someone with autism (mainly parents). Therefore, the elevated
gender diversity in the autistic participants should be interpreted with the caveat that the non-autistic
participants were older and presumed to adhere to more traditional gender roles. However, these results are
in line with previous research showing the enrichment of gender diversity in autism [21]. Intriguingly, while
our results showed higher gender diversity in LGBTQ+ participants, many people who were cisgender also
showed evidence of gender diversity, though not enough to report TGNB identities. This underscores the
value of the GSR in capturing dimensional gender diversity beyond self-endorsed identities alone.

We tested 16 behavior-related PGS for association with the two GSR dimensions, and strikingly, the
strongest association was cognitive performance PGS positively associated with both Binary and Nonbinary
(Figure 3A). This finding was validated in our larger sample of N = 5, 165 with categorical gender identity;
cognitive performance PGS was higher in the TGNB group compared to the cisgender group (Figure 4).
This suggests that cognitive capacity may be an important component in the development of more complex
and nuanced gender identities. Beyond cognitive performance, non-heterosexual sexual behavior (NHSB)
PGS was positively correlated with Binary. Although gender identity and sexual orientation are distinct, the
NHSB GWAS is a well-powered GWAS that is adjacent to gender diversity. Recent research has found that
just within heterosexuals, the NHSB PGS is positively associated with an increased number of partners [27]).
Building on this, our results suggest that gender diversity may be part of a pleiotropic ensemble of traits
with adaptive advantages (e.g., cognitive performance).

We expected neuropsychiatric PGS to also be positively correlated with the GSR, considering NHSB
is positively genetically correlated with several neuropsychiatric conditions [19]. Our sample size was on the
low end for PGS associations: N = 639 provides 80% power for detecting ρ ± 0.11, meaning we are not
powered to detect small effects. However, in light of this previous research, it was surprising that we found
no strong significant positive associations of neuropsychiatric PGS with the GSR. This suggests that, within
the statistical power limits of our sample, gender diversity may not have a strong direct genetic relationship
with adult-onset psychiatric disorders. Instead, in our sample higher gender diversity had the strongest
genetic relationships with higher cognitive ability and NHSB.

The lack of a main genetic effect that links psychiatric conditions and gender diversity, combined with
our observation that the GSR scores nevertheless show numerous significant correlations with poorer self-
reported mental health prompted us to examine the possibility of a relationship between gender diversity and
mental health that depends on the level of genetic risk (i.e., an interaction between polygenic risk and gender
diversity). We observed differences in correlations when stratifying by schizophrenia and depression PGS
(Figure S6D). Groups with high depression and schizophrenia PGS had the strongest GSR-ASR correlations,
whereas the GSR-ASR correlations in the low PGS groups were absent (i.e., not nominally significant).
This suggests that PGS for depression and schizophrenia might interact with gender diversity (or related
environmental factors such as discrimination and/or minority stress), ultimately affecting mental health.
In other words, the observed relationship between gender diversity and mental health may not be solely
environmental or genetic, but rather an interaction of the two. However, our sample size limits the ability
to detect PGS main effects, let alone interactions, and therefore the interaction effects must be interpreted
with the understanding that they are small and not significant after multiple testing correction.

Our results and their interpretations have several limitations. The primary limitation is the small
sample size, and we were only powered to detect strong PGS effects. In addition, age, sex designated at
birth, and autism are entangled with other variables of interest. Autism is confounded at the genetic level, as
observed in previous work showing educational attainment [28] and cognitive performance [29] are positively
genetically correlated with autism. However, we repeated our analyses without adjusting the PGS and
phenotypes for autism (Table S1 and Figure S5) and also stratifying by autism (Figure S3) and found the
results to be robust against the inclusion or omission of autism.

In summary, our findings show that gender diversity, as captured by the GSR, has dimensional prop-
erties that share common genetic factors with cognitive performance and NHSB. In agreement with previous
studies, we find that higher gender diversity is correlated with poorer mental health, but our results suggest
that any polygenic contribution of psychiatric risk alleles to gender diversity, if such contributions exists, are
not large. Rather, one’s polygenic background may function as a risk/resilience mechanism that interacts
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with gender diversity (and/or the adversity that comes with it) in shaping mental health outcomes.

4 METHODS AND MATERIALS
4.1 Sample description
SPARK [20] is a nationwide autism study in the United States involving more than 300,000 participants, with
genetic data available for many of the participants. SPARK is approved by the Western IRB (#20151664).
For Study 1, independent adults, with or without autism, were invited to participate in our SPARK Research
Match. The Research Match was approved by the University of Iowa Institutional Review Board (IRB
#201611784). Those consented to participate were asked to complete the Gender Self Report (GSR) [24],
the Adult Self Report (ASR) [23], and additional questions on sexual orientation, gender identity, and gender
expression. The sample size was N = 818. We removed nine individuals who had withdrawn from SPARK
since the Research Match based on Version 8 (N = 809). N = 696 was the final sample size after genetic
data availability and quality control filtering. For Study 2, we used the Version 8 background history files.
The independent adult data was self-report, whereas the child and siblings data were parent report. We kept
children 14 years or older and whose cognitive impairment status at enrollment was not significantly below
age.

4.2 Study 1 phenotypes
Labels of gender identity and sexual orientation: Participants were able to select as many labels for
gender identity and sexual orientation they found applicable. Selections of nonbinary, demigender, gender
fluid, third gender, agender, gender neutral, pangender, bigender, and gender queer were categorized as
nonbinary/neutral. Cisgender and transgender were each categorized separately. Participants who did not
endorse any of the listed gender identities were excluded from analyses using gender identity labels (N = 66
of N = 696). For sexual orientation, participants selecting lesbian, gay, bisexual, pansexual, homosexual,
queer, and/or polysexual were grouped as LGBQ+ and heterosexual orientation was classified separately.
Participants who did not select any of the listed sexual orientation labels were excluded from analyses using
sexual orientation labels (N = 73 of N = 696).

Gender Self Report (GSR): The GSR itemset was developed through an iterative multi-input commu-
nity driven process with autistic cisgender, autistic gender-diverse, and non-autistic cisgender and gender-
diverse collaborators [24]; Open Science Framework Development Summary: https://osf.io/qh25d/?view_
only=c0ce41d07bca4af1b792e074d51b7ded. The final GSR itemset is composed of 30 questions. The GSR
factor analysis and generation of Binary and Nonbinary factor scores are described in [24]. In the genetic
sample of N = 696, the GSR scores were adjusted for age, sex designated at birth, and autism by linear
regression residualization and then Z-scaled.

Adult Self Report (ASR): The ASR [23] is a questionnaire of 129 items assessing a range of adaptive
behaviors and mental health outcomes. From N = 809, five participants were removed because they had 12
(approximately 10%) or more missing ASR items. In the remaining N = 804, 0.2% of the data was missing,
with no item having more than five missing data points. The missing data was imputed to the median. The
two ASR subscales were Externalizing and Internalizing. Externalizing is a composite score of aggressive,
rulebreaking, and intrusive behavior, and Internalizing is a composite score of anxious, withdrawn depressed,
and somatic complaints. In the genetic sample of N = 696, the ASR scores were adjusted for age, sex
designated at birth, and autism by linear regression residualization and then Z-scaled.

4.3 Study 2 phenotypes
If the participant’s designated sex at birth (options: Male or Female) did not match their gender (options:
Male, Female, or Other) then the participant was classified as TGNB. We then merged with our Research
Match gender identity labels. The final sample size was N = 5, 388 with N = 590 from the Research Match
and the other N = 4, 798 from the background history.
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4.4 Genotype quality control and imputation
We used the genotype array data from SPARK integrated whole-exome-sequencing (iWES1) 2022 Release
and the SPARK whole-genome-sequencing (WGS) Release 2, 3, and 4. iWES1 (N = 69, 592) was quality
controlled on release, including removing samples due to heterozygosity or high missingness, so no further
quality control was performed by us before genotype imputation. iWES1 provided genetic ancestry assign-
ments based on the 1000 Genomes populations [30]. WGS Release 2 (N = 2, 365), Release 3 (N = 2, 871),
and Release 4 (N = 3, 684) were not quality controlled on release, so we performed quality control using
PLINK [31] before genotype imputation. First, we removed participants from the WGS releases if they were
in iWES1. Second, we removed variants with missingness higher than 0.1 and participants with missingness
higher than 0.2. Third, we merged the three releases and removed any participant whose heterozygosity (F
statistic) was not within 3 standard deviations of the mean heterozygosity across the three releases. We
then used the TopMed reference panel [32] to identify strand flips. The final sample size for WGS 2-4
was N = 8, 152. iWES1 and WGS 2-4 were then imputed to the TopMed [32] reference panel using the
Michigan Imputation Server [33] with the phasing and quality control steps included and to output vari-
ants with imputation quality r2 > 0.3. After imputation, the variants were filtered to only the HapMap
SNPs (N = 1, 054, 330 variants) with imputation quality r2 > 0.8 using bcftools [34]. They were lifted over
from hg38 to hg19 using the VCF-liftover tool (https://github.com/hmgu-itg/VCF-liftover) and the
alleles normalized to the hg19 reference genome. Finally, the files were merged and only variants with 0%
missingness were retained (N = 914, 328).

4.5 Genetic ancestry
Genetic principal components (PCs) were calculated using the bigsnpr package [35], specifically following
the author’s recommendations [36] and their tutorial: https://privefl.github.io/bigsnpr/articles/
bedpca.html. In summary, we 1.) used the snp_plinkKINGQC function to identify and remove related
participants at the KING threshold of 2−3.5, 2.) performed PC analysis using the bed_autoSVD on just
the unrelated participants, 3.) detected PC outliers and removed them, 4.) recalculated the PCs, and 5.)
projected the PCs onto the entire cohort using the bed_projectSelfPCA function. We used the 40 PCs
and performed k-means clustering with K = 5 (for the five populations of 1000 Genomes [30]) and used the
genetic ancestry labels from iWES1 to assign labels to the genetic population clusters.

4.6 Relatedness
For Study 1, from the N = 809 Research Match participants whom completed the GSR, N = 804 completed
the ASR and N = 727 had genetic data. This subset was pruned to remove related participants using
GCTA [37] with a relatedness threshold of 0.125, corresponding to approximately third-degree relatives
(N = 31 removed). For Study 2, we retained only one participant from each family, with prioritization
towards TGNB identities and then removed related participants at the same threshold.

4.7 Polygenic scores
PGS were calculated using LDpred2 [38] and the bigsnpr tools [35] in R [39]. Because SPARK is family-based,
an external LD reference based on N = 362, 320 in the UK Biobank (provided by the authors of LDpred2)
was used to calculate the genetic correlation matrix, estimate heritability, and calculate infinitesimal beta
weights. PGS were calculated from the following genome-wide association studies (GWAS): ADHD [40],
anorexia nervosa [41], autism [28], bipolar disorder [42], major depression [43], OCD [44], schizophrenia [45],
cognitive performance [46], educational attainment [46], and non-heterosexual sexual behavior (NHSB) [19].
The public LDpred2 beta weights from the Polygenic Index Repository [47] were used to calculate PGS
for extraversion [48], neuroticism [49], openness [50], risky behavior [51], number of children ever born
(men) [52], and number of children ever born (women) [52]. To account for genetic ancestry, we residualized
the 20 genetic PCs from the PGS. We also accounted for age, sex designated at birth, and autism using
linear regression residualization. Lastly, the PGS were Z-scaled. We performed PGS processing separately
for Study 1 (N = 696) and Study 2 (N = 5, 388).
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PGS were correlated with the GSR and ASR scores using Spearman correlations. We used the
pwr.r.test() function from the pwr package [53] to determine the statistical power of the correlations.
Multiple testing corrections for the 16 PGS were performed with the Benjamini and Yekutieli method [25].
We tested for PGS-by-GSR interactions with three linear models and then performed stratified correlations.
The first model included the covariates (age, sex, and autism) as both main effects and interactions with the
PGS and GSR scores, as recommended by [26]. The model was specified as: ASR ∼ PGS +GSR+PGS ×
GSR+age+sex+autism+PGS×age+PGS×sex+PGS×autism+GSR×age+GSR×sex+GSR×autism.
For the second model, we wanted to be consistent with the previous analyses. We tested for interactions
with the variables adjusted for covariates prior to model input. This model was specified as: ASR ∼
PGS + GSR + PGS × ASR, with the ASR, PGS, and GSR adjusted for age, sex, and autism. For the
third model, we binarized the PGS into the upper quartile (coded as 1) and the lower quartile groups
(coded as 0), with N = 160 in each group and the middle 50% removed. This model was specified as:
ASR ∼ PGSgroup+GSR+PGSgroup×GSR, with the ASR and GSR scores adjusted for covariates prior
to model input. To further investigate the interactions from the third model, we ran ASR-GSR correlations
stratified by PGS groups.
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FIGURES AND TABLES

Table 1. Working definitions for the gender-related terms used in this study.
Some definitions are from [7] and [54].

Term Definition
Sex Sex recorded around the time of birth based on physiological and anatomical sex

characteristics; also referred to as designated sex, natal sex, assigned sex, or recorded sex;
unless otherwise indicated, instances of “sex” in this work should be understood to mean
sex at birth

Gender identity An individual’s own inner experience and personal sense of their gender–– being a
boy/man/male; girl/woman/female; or another gender (e.g., gender queer, gender fluid)

Transgender A gender identity describing an individual whose gender is different from their sex at
birth

Cisgender A gender identity describing an individual whose gender identity aligns with their sex at
birth

Nonbinary An umbrella term encompassing those whose gender identity cannot be adequately
described in a male-female axis; In some nomenclatures, this may include identities such
as genderqueer, agender, gender fluid, third gender, and many others

Transgender and gender
nonbinary (TGNB)

A term to describe individuals whose gender differs from their sex at birth (i.e., not
exclusively cisgender)

Gender expression The way an individual expresses aspects of their gender through physical appearance,
clothing choice, accessories, and behavior

Gender diversity An umbrella term used to describe divergence from gender identities, norms, and/or
expressions often prescribed to those of the designated sex; this may be measured either
in a categorical or a continuous manner

Gender dysphoria Clinically relevant distress resulting from an incongruence between one’s gender identity
and designated sex at birth

Sexual orientation The self-endorsed community labels(s) one finds representative of the gender(s) of their
sexual and/or romantic attractions

Table 2. Participant Demographics.
Study 1 used the two continuous measures of gender di-
versity from the Gender Self Report, and Study 2 used
categorical gender identity.

Study 1 Study 2
Variable N % N %
Total sample size 696 5,388
Age 37 25
Male 153 22% 3,271 61%
Autistic 403 58% 4,731 88%
Cisgender identity 424 61% 5,089 94%
TGNB identity 206 30% 299 6%
No gender identity label(s) 66 9%
Overlap with Research Match 590 11%
Africa genetic pop’l 0 0% 0 0%
Americas genetic pop’l 27 4% 100 2%
East Asia genetic pop’l 4 1% 4 0%
Europe genetic pop’l 639 92% 5,165 96%
South Asia genetic pop’l 26 4% 119 2%

12/23

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 6, 2023. ; https://doi.org/10.1101/2021.11.22.21266696doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.22.21266696


Figure 1. Overview of the study.
In N = 696 (N = 639 of European genetic ancestry), dimensional
gender diversity was measured using the Gender Self Report (GSR)
and mental health was measured using the Adult Self Report (ASR).
The GSR and ASR scores were then tested for associations with 16
polygenic scores (PGS) for psychiatric diagnoses, personality, and
cognition. We then used categorical gender identity in N = 5, 388
(N = 5, 165 of European genetic ancestry) to test for the replication
of these PGS associations in the larger sample.
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Figure 2. Distributions and correlations of the Gender Self Report and Adult Self Report scores.
(A) Distribution of the two dimensional gender diversity measures from the Gender Self Report (GSR) GSR: Binary
and Nonbinary Gender Diversity. The sample size was N = 696. The GSR scores were adjusted for age, sex, and
autism. The histograms are colored by self-endorsed sexual orientation labels (top panel) and gender identity labels
(bottom panel). Distributions of the GSR scores before adjusting for age, sex, and autism are shown in Figure S1.
(B) Correlation of the two GSR scores.
(C) Correlation of the two mental heath measures from the Adult Self Report (ASR): Externalizing and Internalizing
problems. The ASR scores were also adjusted for age, sex, and autism.
(D) Correlations between the GSR scores and ASR scores.
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Figure 3. Polygenic score associations with the Gender Self Report and
Adult Self Report scores.
Polygenic score (PGS) associations with the (A) Adult Self Report (ASR) scores and
(B) Gender Self Report (GSR) scores. The PGS, as well as the GSR and ASR pheno-
types, were adjusted for age, sex, and autism prior to correlations by linear regression
residualization. The correlations shown here were run in the European subset (N = 639).
Correlations were also run stratified by autism (Figure S3). The PGS linear model as-
sociations with age, sex, and autism included as covariates (as opposed to residualizing
the covariates from the variables) are shown in Table S1. The partial correlations not
filtered on genetic ancestry (N = 696) are shown in Figure S2. Multiple testing correc-
tions for the 16 PGS were performed with the Benjamini and Yekutieli method [25].
PGS abbreviations: risky = risky behavior, NEB = number of children ever born, non-het = non-
heterosexual sexual behavior, SCZ = schizophrenia.
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Figure 4. Replication of polygenic score associations with categorical gender
identity in a larger sample (Study 2).
Polygenic score (PGS) difference in means (t-tests) between gender identity groups in
the larger cohort of European genetic ancestry (N = 5, 165). The two gender identity
groups are cisgender (N = 4, 879) versus transgender and gender nonbinary (TGNB,
N = 286). The PGS were adjusted for age, sex, and autism prior to performing the
t-tests. The results with the PGS not adjusted for age, sex, and autism are shown in
Figure S5. The results not filtered on genetic ancestry (N = 5, 388) are shown in Figure
S4. Multiple testing corrections for the 16 PGS were performed with the Benjamini and
Yekutieli method [25].
PGS abbreviations: risky = risky behavior, NEB = number of children ever born, non-het = non-
heterosexual sexual behavior, SCZ = schizophrenia.
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SUPPLEMENTARY
Table S1. Polygenic score associations with the Gender Self Report and Adult Self Report
scores using linear regression with covariates. Linear regressions to test for the polygenic (PGS)
associations with the Gender Self Report (GSR) and Adult Self Report (ASR) scores with age, sex, and
autism as covariates in the model: phenotype ∼ PGS+age+sex+autism. The ASR and GSR phenotypes
and PGS were not adjusted for covariates prior to model input, but they were Z-scaled (µ = 0, σ = 1).
The regression were ran in the European subset (N = 639).
PGS abbreviations: risky = risky behavior, NEB = number of children ever born, non-het = non-heterosexual sexual
behavior, SCZ = schizophrenia.

phenotype PGS PGS β (95% CI) β pval β pval FDR

ASR Externalizing ADHD 0.1 [0.03, 0.17] 0.01 0.45
ASR Externalizing anorexia -0.07 [-0.15, 0] 0.04 >.999
ASR Externalizing autism 0.01 [-0.06, 0.08] 0.80 >.999
ASR Externalizing bipolar 0.01 [-0.06, 0.08] 0.79 >.999
ASR Externalizing cog perf 0 [-0.08, 0.07] 0.92 >.999
ASR Externalizing depression 0.05 [-0.03, 0.12] 0.21 >.999
ASR Externalizing edu attain -0.04 [-0.12, 0.03] 0.27 >.999
ASR Externalizing extraversion -0.01 [-0.08, 0.06] 0.82 >.999
ASR Externalizing NEB men 0.02 [-0.05, 0.1] 0.54 >.999
ASR Externalizing NEB women 0.01 [-0.06, 0.09] 0.74 >.999
ASR Externalizing neuroticism -0.01 [-0.08, 0.07] 0.89 >.999
ASR Externalizing non-het 0.01 [-0.06, 0.09] 0.72 >.999
ASR Externalizing OCD -0.04 [-0.11, 0.03] 0.30 >.999
ASR Externalizing openness -0.05 [-0.12, 0.02] 0.17 >.999
ASR Externalizing risky 0.03 [-0.04, 0.11] 0.37 >.999
ASR Externalizing SCZ -0.06 [-0.13, 0.01] 0.11 >.999
ASR Internalizing ADHD 0.01 [-0.06, 0.08] 0.73 >.999
ASR Internalizing anorexia 0 [-0.07, 0.07] 0.90 >.999
ASR Internalizing autism 0.01 [-0.06, 0.08] 0.72 >.999
ASR Internalizing bipolar 0.02 [-0.05, 0.09] 0.58 >.999
ASR Internalizing cog perf 0.02 [-0.05, 0.09] 0.53 >.999
ASR Internalizing depression 0.07 [0, 0.14] 0.04 >.999
ASR Internalizing edu attain -0.03 [-0.1, 0.04] 0.41 >.999
ASR Internalizing extraversion -0.04 [-0.11, 0.03] 0.29 >.999
ASR Internalizing NEB men -0.03 [-0.1, 0.05] 0.48 >.999
ASR Internalizing NEB women 0 [-0.07, 0.07] 0.92 >.999
ASR Internalizing neuroticism 0.1 [0.03, 0.17] 0.01 0.32
ASR Internalizing non-het 0.02 [-0.05, 0.09] 0.53 >.999
ASR Internalizing OCD -0.03 [-0.1, 0.04] 0.37 >.999
ASR Internalizing openness -0.01 [-0.08, 0.06] 0.81 >.999
ASR Internalizing risky -0.06 [-0.13, 0.01] 0.08 >.999
ASR Internalizing SCZ -0.01 [-0.08, 0.06] 0.87 >.999
GSR Binary ADHD 0.02 [-0.04, 0.09] 0.46 >.999
GSR Binary anorexia -0.01 [-0.07, 0.06] 0.87 >.999
GSR Binary autism 0.03 [-0.04, 0.09] 0.45 >.999
GSR Binary bipolar -0.01 [-0.07, 0.06] 0.84 >.999
GSR Binary cog perf 0.07 [0, 0.13] 0.06 >.999
GSR Binary depression -0.02 [-0.09, 0.04] 0.51 >.999
GSR Binary edu attain 0 [-0.06, 0.07] 0.89 >.999
GSR Binary extraversion 0.01 [-0.06, 0.07] 0.84 >.999
GSR Binary NEB men -0.01 [-0.07, 0.06] 0.87 >.999
GSR Binary NEB women 0.04 [-0.03, 0.11] 0.23 >.999
GSR Binary neuroticism 0.02 [-0.05, 0.08] 0.65 >.999
GSR Binary non-het 0.07 [0.01, 0.14] 0.03 >.999
GSR Binary OCD 0.02 [-0.04, 0.09] 0.51 >.999
GSR Binary openness -0.02 [-0.08, 0.05] 0.58 >.999
GSR Binary risky -0.02 [-0.08, 0.05] 0.60 >.999
GSR Binary SCZ 0.03 [-0.04, 0.09] 0.42 >.999
GSR Nonbinary ADHD -0.02 [-0.08, 0.05] 0.58 >.999
GSR Nonbinary anorexia 0.03 [-0.03, 0.1] 0.33 >.999
GSR Nonbinary autism 0.01 [-0.06, 0.07] 0.80 >.999
GSR Nonbinary bipolar -0.03 [-0.1, 0.03] 0.33 >.999
GSR Nonbinary cog perf 0.11 [0.05, 0.18] <.001 0.05
GSR Nonbinary depression -0.03 [-0.09, 0.04] 0.38 >.999
GSR Nonbinary edu attain 0.07 [0, 0.13] 0.05 >.999
GSR Nonbinary extraversion -0.04 [-0.11, 0.02] 0.20 >.999
GSR Nonbinary NEB men -0.04 [-0.11, 0.02] 0.19 >.999
GSR Nonbinary NEB women -0.02 [-0.09, 0.04] 0.54 >.999
GSR Nonbinary neuroticism -0.01 [-0.08, 0.05] 0.71 >.999
GSR Nonbinary non-het 0.04 [-0.03, 0.11] 0.22 >.999
GSR Nonbinary OCD -0.01 [-0.07, 0.06] 0.87 >.999
GSR Nonbinary openness 0.01 [-0.05, 0.08] 0.66 >.999
GSR Nonbinary risky -0.01 [-0.08, 0.05] 0.70 >.999
GSR Nonbinary SCZ -0.03 [-0.09, 0.04] 0.45 >.999
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Figure S1. Distributions of the Gender Self Report scores before adjusting
for covariates.
The Gender Self Report (GSR) scores here are the unadjusted scores from the GSR
factor analysis [24].
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Figure S2. Polygenic score associations with the Gender Self Report and
Adult Self Report scores, not filtered by genetic ancestry.
Polygenic score (PGS) associations with the (A) Adult Self Report (ASR) scores and (B)
Gender Self Report (GSR) scores. The PGS, as well as the GSR and ASR phenotypes,
were adjusted for age, sex, and autism. The correlations shown here were run in the full
cohort (N = 696).
PGS abbreviations: risky = risky behavior, NEB = number of children ever born, non-het = non-
heterosexual sexual behavior, SCZ = schizophrenia.
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Figure S3. Polygenic score associations with the Gender Self Report and Adult Self Report scores,
stratified by autism diagnosis.
(A) Polygenic score (PGS) differences by autism diagnosis within those of the European genetic ancestry cluster
(Autistic N = 376, not diagnosed N = 263).
PGS correlations with the (B) Adult Self Report (ASR) scores and (C) Gender Self Report (GSR) scores. The PGS,
as well as the GSR and ASR phenotypes, were not adjusted for age or sex. Multiple testing corrections for the 16
PGS were performed with the Benjamini and Yekutieli method [25].
PGS abbreviations: risky = risky behavior, NEB = number of children ever born, non-het = non-heterosexual sexual behavior, SCZ
= schizophrenia.
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Figure S4. Replication of polygenic score associ-
ations with categorical gender identity in a larger
sample, not filtered on genetic ancestry.
Polygenic score (PGS) difference in means (t-tests) be-
tween gender identity groups in the larger cohort (N =
5, 388) with all samples. The two gender identity groups
are cisgender (N = 5, 089) versus transgender and gender
nonbinary (TGNB, N = 299). The PGS were adjusted for
age, sex, and autism prior to performing the t-tests. Multi-
ple testing corrections for the 16 PGS were performed with
the Benjamini and Yekutieli method [25]).
PGS abbreviations: risky = risky behavior, NEB = number of chil-
dren ever born, non-het = non-heterosexual sexual behavior, SCZ
= schizophrenia.

Figure S5. Replication of polygenic score associations with categorical gender identity in a larger
sample with the polygenic scores not adjusted for age, sex, or autism.
Polygenic score (PGS) difference in means (t-tests) between gender identity groups in the larger cohort (N = 5, 165)
of European genetic ancestry. The two gender identity groups are cisgender (N = 4, 879) versus transgender and
gender nonbinary (TGNB, N = 286).
(A) shows the results for the PGS adjusted for age and sex (not autism).
(B) shows the results with the PGS not adjusted for age, sex, nor autism. Multiple testing corrections for the 16
PGS were performed with the Benjamini and Yekutieli method [25].
PGS abbreviations: risky = risky behavior, NEB = number of children ever born, non-het = non-heterosexual sexual behavior, SCZ
= schizophrenia.
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Figure S6. Interaction effects between the Gender Self Report and polygenic scores on the Adult
Self Report.
Interactions between the Gender Self Report (GSR) scores and the polygenic scores (PGS) on the Adult Self Report
(ASR) scores were tested with three models. All variables were Z-scaled prior to model input. The fill color is the
β estimate for the PGS-by-GSR interaction term from the linear model. Nominally significant interaction terms are
indicated with one star. No interactions are significant after multiple testing corrections with the Benjamini and
Yekutieli method [25].
(A) As recommended by [26], this model included the covariates (age, sex, and autism) as both main effects and
interactions with the PGS and GSR scores. ASR ∼ PGS + GSR + PGS × GSR + age + sex + autism + PGS ×
age+ PGS × sex+ PGS × autism+GSR× age+GSR× sex+GSR× autism.
(B) To be consistent with the previous analysis, we tested for interactions with the variables adjusted for covariates
prior to model input. Specifically, the PGS, GSR, and ASR scores were adjusted for age, sex, and autism. The
interaction model was thus ASR ∼ PGS +GSR+ PGS ×ASR.
(C) We binarized the PGS: the upper 75th quartile (coded as 1) and the lower 25th quartile groups (coded as 0),
with N = 160 in each group and the middle 50% removed. The interaction model was thus ASR ∼ PGSgroup +
GSR+ PGSgroup×GSR, with the ASR and GSR scores adjusted for covariates prior to model input.
(D) Spearman correlations of the GSR scores with the ASR scores stratified by PGS group. The ASR and GSR
scores were adjusted for covariates prior to running the correlations.
PGS abbreviations: risky = risky behavior, NEB = number of children ever born, non-het = non-heterosexual sexual behavior, SCZ
= schizophrenia.
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Polygenic scores clarify the relationship
between mental health and gender diversity
Taylor R. Thomas1, Ashton J. Tener1, Amy M. Pearlman2, Katherine L. Imborek3, Ji Seung Yang4, John F.
Strang5, Jacob J. Michaelson1,6,7*

Public summary
The way we act (behavior) is influenced by how our brains grow and function. Some of the ways our brains grow
and function are influenced by our genes (DNA). Everyone has slightly different versions of DNA. This is a normal
part of human diversity. Some of these DNA differences lead to differences in our brains. Brain differences can lead
to behavior differences like in personality, intelligence, or mental health.

In this study, we asked whether our DNA is involved in gender identity and gender expression. We use the
term “gender diversity” to mean differences in gender identity or gender expression. People with higher gender
diversity are more likely to be transgender and/or nonbinary, although cisgender people can also have differences
in gender expression. People with higher gender diversity are also more likely to be autistic, so we conducted this
study with the help of SPARK participants (SPARK is the largest study of autism). Approximately half of our study
participants were autistic adults, and the others were not autistic but do have an immediate relative who is autistic.

What we found
We found that thousands of DNA differences, when combined, are linked to differences in gender diversity. Specifically,
we found that DNA differences linked to higher intelligence were also linked to higher gender diversity. We need to
do more research to understand why DNA differences linked to higher intelligence are also linked to higher gender
diversity.

What our study does not show
We did not identify or attempt to identify a “transgender” or “nonbinary” gene. We cannot predict a person’s
gender diversity from their DNA. We found very little evidence that the DNA differences linked to major psychiatric
conditions are also strongly linked to gender diversity. Larger studies in the future may be able to identify weaker
effects, but our study does not support a strong genetic connection between psychiatric conditions and gender diversity.
Gender diversity is not purely genetic, but genetic factors do play a role.

Why this study is important
This is one of the first genetic studies of gender diversity. Many people say that gender is a purely social construct,
with no biological factors involved. Our results show that the DNA differences linked to higher intelligence are also
linked to higher gender diversity. Ultimately, we believe this line of research will advance the health of gender diverse
people through a higher understanding of how genetics interact with gender diversity in determining health outcomes.
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