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Abstract

Gender diverse individuals are at higher risk for mental health problems. What remains unclear is whether this1

increased risk is attributable to environmental stressors (e.g., minority stress), to innate genetic factors with2

pleiotropic effects on gender diversity and mental health, or to gene-by-environment interactions. Here, we present a3

study of N=701 independent adults (58% autistic) who were thoroughly characterized for gender diversity using the4

Gender Self Report (GSR), a novel assessment for the continuous, multidimensional characterization of gender5

diversity. We calculated polygenic scores for 20 behavioral traits, and tested them for association with the continuous6

dimensions of the GSR: Binary Gender Diversity (degree of identification with the gender opposite that implied by7

sex designated at birth) and Nonbinary Gender Diversity (degree of identification with a gender that is neither8

man/male nor woman/female). We found no evidence of association between gender diversity and polygenic risk for9

adult-onset psychiatric conditions (major depression, bipolar disorder, schizophrenia). Strikingly, we instead found10

that both gender diversity dimensions were positively associated with polygenic scores for cognitive performance11

(Binary ρ = 0.09, Nonbinary ρ = 0.11, p < 0.05). We also found Binary Gender Diversity to be positively associated12

with polygenic scores for both autism (ρ = 0.08, p < 0.05) and non-heterosexual sexual behavior (ρ = 0.09, p < 0.05).13

Further, we found no association between increasing gender diversity and poorer mental health outcomes in a14

subsample with low genetic risk for these neuropsychiatric conditions. Only in the subsample with high genetic risk15

for major depression or schizophrenia did we observe a significant relationship between gender diversity and poor16

mental health outcomes. These findings suggest that minority stress experienced as a gender diverse person may act17

with particular potency in those who have high genetic risk for neuropsychiatric disorders. In summary, our findings18

challenge a pathologizing view of gender diversity, identify pleiotropic relationships with adaptive traits such as19

cognitive performance, and implicate environment (e.g., minority stress) as a key factor interacting with polygenic risk20

to generate poor mental health outcomes in gender diverse individuals.21

1 Introduction

Sex and gender (see Table 1 for our definitions of terms) have major impacts on health [1]. This stems from both22

extrinsic factors (e.g., healthcare barriers [2, 3]) as well as biological factors, with sex and gender modulating the23

underlying molecular mechanisms of disease and well-being [4]. In health research, sex has been a more objective and24

well-defined variable than gender, which is multidimensional with binary and nonbinary components and often25

experienced on a continuum [5]. Gender diversity can be reported through self-endorsement of gender identity labels26

(e.g., transgender, nonbinary, genderqueer, demi-boy), but these labels are contextually and culturally dependent (i.e.,27

not accessible by all) and variable and often non-specific in their meanings [6]. Further, there are numerous gender28

identity self-descriptors, and group-based analyses based on parsing datasets into individual descriptors erode29

statistical power for meaningful comparisons given the numerous individual subgroupings. Moreover, gender diversity,30

a fundamental aspect of human diversity, is not only expressed by individuals with transgender and/or gender31

nonbinary identities (TGNB). People who identify as cisgender also exhibit some variation in gender diversity that32

would be lost in studies only reporting categorical descriptors of gender identity [7]. Therefore, a multidimensional,33
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continuous characterization of gender that uses simple and broadly accessible language will enable health researchers34

to appropriately incorporate gender diversity in their analyses.35

Gender diversity is a crucial variable to include in health research, and this may be particularly true in mental36

health and neuropsychiatric research. Groups that express higher levels of gender diversity than the cisgender37

proportional majority, such as LGBTQ+ (lesbian, gay, bisexual, transgender, and queer) individuals [8, 9], often have38

greater rates of anxiety and depression and are more likely to attempt suicide [10]. A recent report of N = 329,03839

participants in the All of Us cohort found that the non-heterosexual participants had greater prevalence of all40

neuropsychiatric diagnoses compared to the heterosexual participants [11]. The exact mechanisms for this are not41

entirely known. Research has shown that poorer mental health is due to factors related to the experienced adversity42

from sexual orientation and/or gender diversity minority stress; for example, discrimination and resilience partially43

mediate negative mental health outcomes in LGBTQ+ college students [12]. Additionally, access to gender-affirming44

hormone therapy for TGNB youth is associated with a reduced likelihood of depression and suicidality [13]. However,45

to the best of our knowledge, no study has leveraged genetic data to elucidate the relationships between gender46

diversity and mental health, so any possible contributions of genetic factors are unknown.47

The brain is the biological seat of personal identity, including gender identity. We hypothesize that gender identity48

is therefore susceptible to genetic influences like other human behavior traits [14]. Most behaviors are somewhat49

heritable, with genome-wide association studies (GWASs) of common genetic variants showing many loci, each of a50

small effect, contributing additively (i.e., polygenicity) [15]. Additionally, genomic loci associated with one behavior51

trait are often found to be associated with another trait, suggesting the two traits have a degree of pleiotropy. One52

method to estimate pleiotropy is to use polygenic scores that are the genome-wide cumulative sum from a GWAS; a53

polygenic score is then correlated with the other trait of interest. Genetic research of gender diversity has been54

limited and underpowered for gene discovery [16,17].55

Among the current well-powered GWAS, the most reasonable proxy to gender diversity is the non-heterosexual56

sexual behavior GWAS [18] performed in N = 408,995 UK Biobank participants. The trait was defined as the yes/no57

response to ever having sex with someone of the same sex (the nuance between same-sex versus same-gender are lost58

due to the nature of the question). The heritability of non-heterosexual sexual behavior varied by age, ranging from59

0.08 to 0.25 and was positively genetically correlated with several neuropsychiatric conditions and personality traits.60

However, the interpretation of these genetic correlations is limited because of the confounding with experienced61

adversity, meaning the positive correlation could be due to either individuals engaging in non-heterosexual sexual62

behavior facing more sexual and/or gender-based discrimination that increase risk for neuropsychiatric conditions63

and/or pleiotropy between non-heterosexual sexual behavior and neuropsychiatric risk. Recent work has begun64

disentangling the confounding variables of discrimination, genetic risk, and mental health outcomes in a study of N =65

1,146 participants. They regressed out the effects of anxiety, depression, and neuroticism polygenic scores from both66

their discrimination measures (not necessarily sexual or gender-based discrimination) and anxiety measures and found67

the association between discrimination and anxiety was persistent after controlling for these genetic liabilities [19].68

In this study, we investigated whether gender diversity, like non-heterosexual sexual behavior, is pleiotropic with69

other behavioral traits and how this pleiotropy might play a role in mental health. Study participants were from the70

SPARK cohort [20], a nationwide genetic study of over 300,000 participants with and without autism. Existing71

research demonstrating the common intersection of autism and gender diversity makes SPARK an ideal cohort for72

gender diversity studies. Previous studies have shown there is an enrichment of gender diversity in autistic samples73

compared to the general population [21]. Likewise, general population samples of transgender and more broadly74

gender diverse people are more likely to be or autistic or have clinically relevant levels of autistic traits [22]. In our75

sample of N = 701 participants, we calculated polygenic scores for 20 traits including cognitive ability, personality,76

and neuropsychiatric conditions and administered two psychometric self-report tools. The first, the Adult Self Report77

(ASR) [23], is a well-established instrument that measures several mental health outcomes and adaptive behaviors.78

The second, the Gender Self-Report captures two quantitative dimensions of gender diversity: Binary Gender79

Diversity, the extent one experiences themselves as the other binary gender (i.e., different from their sex designated at80

birth), and Nonbinary Gender Diversity, the extent one experiences themselves as not female or male. We then sought81

to answer the following questions: First, are behavior polygenic scores correlated with the two measures of82

dimensional gender diversity from the GSR? Second, is self-reported mental health correlated with gender diversity?83

Lastly, do polygenic scores provide additional context in our understanding of the relationship between gender84

diversity and mental health? An overview of our analyses is shown in Figure 1.85
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2 Results

2.1 Gender diversity and mental health correlations

The demographic characteristics of the SPARK Research Match participants are shown in Table 2. The final sample86

size was N = 701 participants, with approximately one-third of the cohort identifying as transgender or gender87

nonbinary (TGNB). Fifty-eight percent of participants were autistic, and 22% were male. The genetic ancestry88

categorization is based on the five continental populations described by 1000 Genomes [24]. Ninety-two percent of89

participants were in the Europe genetic group, 4% in the Americas group, 4% in the South Asia group, 1% in the East90

Asia group, 0% in the Africa group.91

The two gender diversity values, Binary and Nonbinary Gender Diversity, are from the Gender Self Report92

(GSR) [25]. The GSR values range from 0 (no gender diversity) to 1 (high gender diversity), with the mode being near93

0 for both; these values were then controlled for age, sex designated at birth, and autism diagnostic status by linear94

regression, and then standardized to a mean of 0 and a standard deviation of 1. The distributions of these two values95

(controlling for covariates) are shown in Figure 2A and are colored by self-endorsed sexual orientation (top panel) and96

gender identity (bottom panel). The overall trend shows higher gender diversity in LGBQ+ and TGNB participants.97

The GSR values were significantly positively correlated with each other: ρ = 0.56, p < 0.05 (Figure 2B).98

The two mental health outcome values, Externalizing and Internalizing, are from the Adult Self Report99

(ASR) [23]. Internalizing problems is a composite score of anxiety, depression, and somatic complaints, and100

Externalizing problems is a composite score of aggressive, rule-breaking, and intrusive behavior. These values were101

also controlled for age, sex designated at birth, and autism diagnostic status by linear regression, and then102

standardized to a mean of 0 and a standard deviation of 1. Externalizing and Internalizing were significantly103

positively correlated with each other: ρ = 0.61, p < 0.05 (Figure 2C). The ASR values were also significantly104

positively correlated with the GSR values (Figure 2D). Binary Gender Diversity was more strongly correlated with105

Internalizing ρ = 0.15, p < 0.05, than Externalizing ρ = 0.10, p < 0.05. Nonbinary Gender Diversity was also more106

strongly correlated with Internalizing ρ = 0.18, p < 0.05 than Externalizing ρ = 0.12, p < 0.05.107

2.2 Polygenic score correlations with gender diversity and mental health

We next assessed the relationships between the GSR and ASR with twenty polygenic scores for behavior traits108

spanning across four behavior domains [15]. The first domain is reflective of traits related to cognition and109

socioeconomic status–– cognitive performance and educational attainment [26]. The second domain is personality and110

well-being traits, with three traits from the Big Five personality (extraversion [27], neuroticism [28], openness [29]), as111

well as depressive symptoms [30], loneliness [31], risky behavior [32], and subjective well-being (SWB) [33]. The third112

domain is sexuality and reproduction-related traits: these include age at first birth (i.e., age at parenthood) [34],113

number of children ever born (NEB) [31], and non-heterosexual sexual behavior [18]. The last domain is114

neuropsychiatric conditions–– ADHD [35], anorexia [36], autism [37], bipolar disorder [38], major depression [39],115

OCD [40], and schizophrenia [41]. Polygenic scores were controlled for the effects of the first twenty genetic principal116

components (to account for genetic ancestry effects), as well as age, sex designated at birth, and autism diagnostic117

status by linear regression. We computed correlation coefficients between the polygenic scores with the GSR values118

(Figure 3A) and ASR values (Figure 3B).119

As expected, the non-heterosexual sexual behavior polygenic score was significantly positively correlated with120

Binary Gender Diversity: ρ = 0.09, p < 0.05. The non-heterosexual sexual behavior polygenic score was also121

positively correlated with Nonbinary Gender Diversity, although the correlation did not reach nominal significance:122

ρ = 0.05, p = 0.18. Strikingly, the cognitive performance polygenic score was significantly positively correlated with123

Binary Gender Diversity (ρ = 0.09, p < 0.05) and Nonbinary Gender Diversity (ρ = 0.11, p < 0.05), meaning that124

polygenic propensity for greater cognitive performance was associated with elevated binary and nonbinary gender125

diversity. The autism polygenic score was significantly positively correlated with Binary Gender Diversity:126

ρ = 0.08, p < 0.05. No other neuropsychiatric polygenic scores were significantly correlated with the GSR values.127

However, we did observe significant neuropsychiatric polygenic score correlations with the two ASR values.128

Externalizing was positively correlated with the ADHD polygenic score (ρ = 0.13, p < 0.05) and negatively correlated129

with the anorexia polygenic score (ρ = −0.08, p < 0.05) and the openness polygenic score (ρ = −0.08, p < 0.05).130

Internalizing was positively correlated with the depression polygenic score (ρ = 0.09, p < 0.05), as well as the131

depressive symptoms polygenic score (ρ = 0.10, p < 0.05) and the neuroticism polygenic score (ρ = 0.11, p < 0.05).132

We performed the same correlations stratified by autism diagnostic status, with the results being comparable133

(Figure S1). Results were also comparable when performing the correlations only in the European genetic population134

group of N = 644 (Figure S2).135
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2.3 Interactions between gender diversity, mental health, and polygenic scores

In order to investigate whether polygenic risk and gender diversity interact in modeling mental health outcomes, we136

tested for interaction effects in linear models and also performed stratified correlations. We grouped participants into137

one of three groups for each polygenic score: high risk (upper quartile, N = 175), neutral (2nd and 3rd quartiles, N =138

351), and the low risk (lower quartile, N = 175). We compared GSR-ASR associations between the polygenic score139

upper group (coded as 1) versus the polygenic score lower group (coded as 0) and removed the neutral risk group. We140

first formally tested for polygenic group-by-GSR interaction effects with the linear model ASR value ~ GSR value +141

polygenic group + GSR value:polygenic group. The interaction terms are shown in Figure 4A, with nominally142

significant interactions (p < 0.05) indicated by a white asterisk. We then performed GSR-ASR correlations stratified143

by the polygenic group, and Figure 4B shows the ρ for GSR-ASR correlations for the upper quartile versus lower144

quartile polygenic risk groups. Figure 4C shows the stratified correlations for the two strongest polygenic145

group-by-GSR interaction effects.146

We identified four significant polygenic group-by-GSR interactions, specifically the schizophrenia and depression147

polygenic risk. Within the entire cohort of N = 701, Nonbinary Gender Diversity and Internalizing are positively148

correlated: ρ = 0.18, p < 0.05. However, this apparent main effect appears to be driven by a context-specific149

interaction with genetic risk: in the subset at greatest schizophrenia polygenic risk (e.g. the upper quartile, N = 175),150

the correlation between Nonbinary Gender Diversity and Internalizing is ρ = 0.33, p < 0.05. While in the lower risk151

group (e.g. the lower quartile, N = 175), there is no correlation: ρ = 0.04, p = 0.56. The effect is similar when152

stratifying by the depression polygenic score–– the high risk correlation is ρ = 0.29, p < 0.05, while in the low risk153

group the correlation is not significant: ρ = 0.09, p = 0.25.154

3 Discussion

Our analyses are the first to address the relationships of multidimensional gender diversity with mental health and155

genetics. We leveraged two novel, quantitative measures of gender diversity, Binary and Nonbinary Gender Diversity,156

from the Gender Self-Report (GSR) in a neurodiverse sample of N = 701 adults participating in the SPARK autism157

study. In this sample, we found greater gender diversity in female, autistic, and LGBTQ+ participants. Due to the158

structure of SPARK and study recruitment, we were only able to collect data from independent adults with autism or159

immediate family-members of someone with autism (mostly parents). Therefore, the elevated gender diversity in the160

autistic subset should be interpreted with the caveat that the non-autistic participants were older and presumed to161

adhere to more traditional gender roles. Still, these results are in line with prior research that has shown the162

enrichment for gender diversity in autism [21]. Intriguingly, while our results showed higher gender diversity in the163

LGBTQ+ participants, many people who identify as cisgender also showed evidence of gender diversity, though not164

enough for them to report being transgender or more broadly gender diverse. This underscores the value of the GSR165

in capturing dimensional gender diversity beyond self-endorsed identities, alone. The formation of gender identity is a166

complex and multi-factorial process [42] and is contextualized by numerous factors like time (e.g., age, generation),167

region, and culture. Additionally, the conceptualization of these identities requires understanding of how the self168

relates to other points of reference. This can be different for some autistic people who may struggle with169

understanding social and gender norms [43].170

We correlated 20 behavior polygenic scores with the two GSR measures, and strikingly, the strongest association171

was cognitive performance being positively associated with both Binary and Nonbinary Gender Diversity (Figure 3A).172

This suggests cognitive capacity may be an important component in the development of more complex and nuanced173

gender identities. Beyond cognitive performance, we also found the non-heterosexual sexual behavior polygenic score174

to be positively correlated with Binary Gender Diversity. While gender identity and sexual orientation are distinct175

concepts, the non-heterosexual sexual behavior genome-wide association study (GWAS) is the most well-powered176

GWAS that is adjacent to gender diversity. Non-heterosexual behavior is associated with reduced number of children177

(i.e., reduced reproductive fitness) [44], so the population endurance of alleles associated with non-heterosexual178

behavior is an interesting conflict. Among heterosexuals, the non-heterosexual sexual behavior polygenic score was179

recently shown to be positively correlated with an increased number of partners, which presumably increases180

reproductive fitness [45]. Building off this, our results suggest gender diversity may part of a pleiotropic ensemble of181

traits with adaptive advantages (e.g., cognitive performance).182

We expected neuropsychiatric polygenic scores to also be positively correlated with the GSR measures, considering183

non-heterosexual sexual behavior shows positive genetic correlation with several neuropsychiatric conditions [18]. In184

light of this prior research, it was surprising that we found no significant positive correlations with GSR values and185

neuropsychiatric polygenic scores, aside from Binary Gender Diversity being positively correlated with the autism186

polygenic score. This suggests that, within the statistical power limits of our sample, gender diversity is not in strong187

4/17

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2021.11.22.21266696doi: medRxiv preprint 

~
https://doi.org/10.1101/2021.11.22.21266696


pleiotropic relationships with adult-onset psychiatric disorders. Instead, in our sample greater gender diversity188

appears to have pleiotropic relationships with higher cognitive ability, non-heterosexual sexual behavior, and autism.189

The lack of a genetic main effect linking psychiatric conditions and gender diversity, combined with our observation190

that the GSR values nevertheless show numerous significant correlations with poorer self-reported mental health191

(Figure 2D) prompted us to examine the possibility of a relationship between gender diversity and mental health that192

depends on genetic risk level (i.e., an interaction between polygenic risk and gender diversity). To accomplish this, we193

used the polygenic score for each psychiatric condition to stratify our sample into high and low risk groups (upper and194

lower quartiles of polygenic scores, respectively, each with N=175, see Figure 4A). We observed dramatic differences195

in the correlations between the genetic risk groups when stratifying by the schizophrenia and depression polygenic196

scores (Figure 4B, C): the groups of high depression and schizophrenia polygenic risk had the strongest GSR-ASR197

correlations, whereas the correlations in the low-risk groups were absent (i.e., not nominally significant). This198

suggests that polygenic risk for depression and schizophrenia interact with gender diversity (or environmental factors199

related to gender diversity such as discrimination and/or minority stress) in determining mental health outcomes. In200

other words, our findings provide evidence that the robustly observed relationship between gender diversity and201

mental health outcomes is not solely environmental or genetic, but rather a combination of the two. Specifically, an202

individual’s polygenic risk for psychiatric disorders determines the extent their gender diversity (and/or experiences of203

adversity that gender diverse individuals may experience) impacts their mental health. This observation could also be204

cast in terms of resilience: the high genetic risk group is less resilient against experienced adversity that might impact205

mental health, while the low risk group shows more resilience against poorer mental health as gender diversity and/or206

associated stressors increase. This interpretation is congruent with previous work that found that the individuals at207

high polygenic risk for depression were more likely to have more depressive symptoms while under stress, and those in208

the lowest depression polygenic risk group were least likely/most resilient under stress [46].209

Our results and their interpretations have several limitations. Most genetic analyses (genome-wide association210

studies, heritabilities, polygenic scores) require large sample sizes due to the small effects of individual common211

variants. Consequently, our primary limitation is the small sample size, and we therefore were only powered to detect212

strong polygenic score correlations. With our sample size of N = 701, we were at 80% power to detect correlations213

greater than ρ = ±0.106. Additionally, age, sex designated at birth, and autism diagnostic status are entangled with214

other variables of interest. Autism diagnosis is confounded at the genetic level, as observed in previous work that215

showed that educational attainment [37] and cognitive performance [47] are positively genetically correlated with216

autism. However, we repeated our analyses stratified by autism diagnostic status and found the results to be217

comparable (Figure S1). Future work with larger samples should analyze the interplay between autism, sex218

designated at birth, and polygenic scores in their associations with gender diversity by performing sufficiently219

powered analyses stratified by autism and designated sex.220

In summary, our findings show that gender diversity, as captured by the Gender Self Report, has dimensional221

properties that share common genetic factors with cognitive performance, non-heterosexual sexual behavior, and222

autism. In agreement with previous studies, we find greater gender diversity to be correlated with poorer mental223

health, but this relationship is not due to shared genetic effects between psychiatric disorders and gender diversity.224

Rather, one’s polygenic background is a risk/resilience mechanism that interacts with gender diversity (and/or the225

adversity that comes with it) in determining mental health outcomes.226

4 Materials and methods

4.1 Sample description

SPARK [20] is a U.S.-based nationwide autism study of over 300,000 participants, with genetic data available for227

many of the participants. Independent adults, with or without autism, were invited to participate in our Research228

Match. Those who agreed and consented to participate were asked to complete the Gender Self Report (GSR) [25],229

the Adult Self Report (ASR) [23], and additional questions regarding their sexual orientation, gender identity, and230

gender expression, with the final sample size N = 818. N = 701 is the final sample size after genetic data availability231

and quality control filtering. This study was approved by the University of Iowa Institutional Review Board (IRB232

#201611784). SPARK is approved by the Western IRB (#20151664).233

4.2 Measures

Self-endorsed labels of gender identity and sexual orientation: Participants were able to select as many234

labels for gender identity and sexual orientation they found applicable. Selections of nonbinary, demigender, gender235

fluid, third gender, agender, gender neutral, pangender, bigender, and gender queer were categorized as236
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nonbinary/neutral. Cisgender and transgender were each categorized separately. Participants who did not endorse237

any of the listed gender identities were excluded from analyses using gender identity labels (N = 67 of 729). For238

sexual orientation, participants selecting lesbian, gay, bisexual, pansexual, homosexual, queer, and/or polysexual were239

grouped as LGBQ+ and heterosexual orientation was categorized separately. Participants who did not select any of240

the listed sexual orientation labels were excluded from analyses using sexual orientation labels (N = 73 of 701).241

Gender Self Report (GSR): The Gender Self-Report (GSR) itemset was developed through an iterative242

multi-input community driven process with autistic cisgender, autistic gender-diverse, and non-autistic cisgender and243

gender-diverse collaborators [25]; Open Science Framework Development Summary:244

https://osf.io/qh25d/?view_only=c0ce41d07bca4af1b792e074d51b7ded. A diversified recruitment approach was245

employed across seven separate recruitments (N = 1,654), including the current study’s recruitment (N = 818), to246

optimize the breadth of the GSR calibration sample and enrich the sample based on the following key characteristics:247

autism, gender-diverse identities (binary and nonbinary), the intersection of autism and gender-diverse identities,248

transition age/young adult age, and female designation at birth within the entire sample and within autism,249

specifically. This sampling approach resulted in an overall calibration sample that was 37.5% autistic, 32.6% gender250

diverse, and 38.9% cisgender sexual minority. Two-dimensional graded response model with a normal-mixture latent251

density adequately fit the data and yielded two factors. The two factors are labeled Female-Male Continuum and252

Nonbinary Gender Diversity. A transformation of the Female-Male Continuum values based on designated sex at253

birth produced Binary Gender Diversity values (i.e., representing the distance on the binary gender spectrum from254

individual’s designated sex at birth). GSR calibration employed differential item functioning, an equity-based255

psychometric method to identify and reduce bias, in this case by age as well as autism status. Empirical reliability256

coefficients for response pattern expected a posteriori scores were 0.75 for Nonbinary Gender Diversity and 0.85 for257

Binary Gender Diversity. GSR factors performed well across the following validation metrics: (1) construct validity;258

GSR factor values followed expected value patterns comparing gender identity subgroups, (2) convergent validity;259

GSR factor values correlated with existing gender-related measures and in expected directions, and (3) ecological260

validity; GSR factor values aligned with report of gender-affirming medical treatment request/receipt. The final GSR261

itemset is composed of 30 questions, that participants answered: 1 = never true, 2 = sometimes true, 3 = often true, 4262

= always true. In our genetic sample of N = 701 participants, these two GSR values were controlled for age in months,263

sex designated at birth, and autism diagnostic status by linear regression and then standardized to a mean of 0 and a264

standard deviation of 1. These values were then used as the phenotypes in the subsequent correlation analyses.265

Adult Self Report (ASR): The Adult Self Report (ASR) [23] is a well-established self-report questionnaire of266

129 items assessing a range of adaptive behaviors and mental health outcomes. The participants responds either: 0 =267

not true, 1 = somewhat or sometimes true, or 2 = very true or often true. From the N = 818, five participants were268

removed due to having 12 (approximately 10%) or more missing ASR items. In the remaining N = 813, 0.2% of the269

data was missing, with no item having more than five missing data points. The missing data was imputed to the270

median. The two measures used in our analyses were Internalizing and Externalizing problems that are summed271

syndrome subscales. Externalizing problems is composed of aggression, rule-breaking, and intrusive behavior subscales272

(35 items total), and Internalizing problems is composed of the anxiety, depression, and somatic complaints subscales273

(37 items total). In our genetic sample of N = 701 participants, these two ASR values were controlled for age, sex274

designated at birth, and autism diagnostic status by linear regression and then standardized to a mean of 0 and a275

standard deviation of 1. These values were then used as the phenotypes in the subsequent correlation analyses.276

4.3 Genotype quality control and imputation

We used the genotype array data from SPARK integrated whole-exome-sequencing (iWES1) 2022 Release and the277

SPARK whole-genome-sequencing (WGS) Release 2, 3, and 4. iWES1 (N = 69,592) was quality controlled on release,278

including removing samples due to heterozygosity or high missingness, so no further quality control was performed by279

us before genotype imputation. iWES1 also provided genetic ancestry assignments based on the 1000 Genomes280

populations [24]. WGS Release 2 (N = 2,365), Release 3 (N = 2,871), and Release 4 (N = 3,684) were not quality281

controlled on release, so we performed quality control using PLINK [48] before genotype imputation. First, we282

removed participants from the WGS releases if they were in iWES1. Second, we removed variants with missingness283

greater than 0.1 and participants with missingness greater than 0.2. Third, we merged the three releases and then284

removed any participant whose heterozygosity (F statistic) was not within 3 standard deviations of the mean285

heterozygosity across the three releases. We then used the TopMed reference panel [49] to identify strand flips. The286

final sample size for WGS 2-4 was N = 8,152. iWES1 and WGS 2-4 were then imputed to the TopMed [49] reference287

panel using the Michigan Imputation Server [50] with the phasing and quality control steps included and to output288

variants with imputation quality r2 > 0.3. After imputation, the variants were filtered to only the HapMap SNPs (N289

= 1,054,330 variants) with imputation quality r2 > 0.8 using bcftools [51]. They were lifted over from hg38 to hg19290
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using the VCF-liftover tool (https://github.com/hmgu-itg/VCF-liftover) and the alleles normalized to the hg19291

reference genome. Finally, the files were merged and only variants with 0% missingness were retained (N = 914,328).292

4.4 Genetic ancestry

Genetic principal components (PCs) were calculated using the bigsnpr package [52], specifically by following the293

author’s recommendations [53] and their tutorial: https://privefl.github.io/bigsnpr/articles/bedpca.html. In294

summary, we 1.) used the snp plinkKINGQC function to identify and remove related participants at the KING295

threshold of 2−3.5, 2.) performed principal component analysis using the bed autoSVD on just the unrelated296

participants, 3.) detected principal component outliers and removed them, 4.) recalculated the principal components,297

and 5.) projected the principal components onto the entire cohort using the bed projectSelfPCA function. We chose298

to not remove participants based on their genetic ancestry and instead use genetic ancestry as a continuous variable299

(instead of categorical), as per recent recommendations [54]. However to establish faith in the robustness of our300

results, we used the top 40 principal components and performed k-means clustering with K = 5 (for the five301

populations from 1000 Genomes [24]) and used the genetic ancestry labels from iWES1 to assign labels to the genetic302

population clusters. We then repeated the polygenic score correlations in the European subset, with the results303

provided in the Supplemental Information.304

4.5 Polygenic score calculations

Polygenic scores were calculated using LDpred2 [55] and the bigsnpr tools [52] in R [56]. Because SPARK is305

family-based, an external LD reference based on 362,320 individuals in UK Biobank (provided by the authors of306

LDpred2) was used to calculate the genetic correlation matrix, estimate heritability, and calculate the infinitesimal307

beta weights. Polygenic scores were calculated from the following genome-wide association studies performed by the308

Psychiatric Genomics Consortium: ADHD (2019) [35], anorexia nervosa (2019) [36], autism (2019) [37], bipolar309

disorder (2021) [38], major depression (2019) [39], OCD (2018) [40], and schizophrenia (2020) [41]. Polygenic scores310

were calculated from genome-wide association studies performed by the Social Science Genetic Association311

Consortium for cognitive performance (2018) and educational attainment (2018) [26] and from the UK Biobank for312

non-heterosexual sexual behavior [18]. The public LDpred2 beta weights from the Polygenic Index Repository [57]313

were used to calculate polygenic scores for depressive symptoms [30], extraversion [27], loneliness [31], neuroticism [28],314

openness [29], risky behavior [32], subjective well-being [33], age at first birth [34], number of children ever born315

(men) [31], and number of children ever born (women) [31].316

From the N = 818 Research Match participants whom completed the GSR, N = 813 also had sufficient ASR data,317

and N = 730 had genetic data. This subset of N = 730 was pruned to remove related participants using GCTA [58]318

with a relatedness threshold of 0.125, corresponding to approximately third degree relatives (N = 29 individual319

removed). To control for genetic ancestry confounding with the polygenic scores, we residualized using linear320

regression for the first 20 genetic principal components. We also additionally controlled for the effects of age in321

months, sex designated at birth, and autism diagnostic status by linear regression. Lastly, the polygenic scores were322

standardized to a mean of 0 and a standard deviation of 1.323

4.6 Polygenic score analyses

Polygenic scores were correlated with the two GSR values (Binary and Nonbinary) and the two ASR values324

(Externalizing and Internalizing) using Spearman correlations. In the correlations stratified by polygenic risk, we325

grouped people into one of three groups for each polygenic score: upper 75th quartile (N = 175), middle quartile (N326

= 351), and the lower 25th quartile (N = 175). We then compared Spearman correlation coefficients between the327

upper versus lower quartiles. We tested for polygenic group-by-GSR interaction effects in association with the ASR328

values with linear models: ASR value ~ GSR value + polygenic group + GSR value:polygenic group. We used329

the pwr.r.test() function from the R pwr package [59] to determine statistical power for the correlations.330
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Figures and Tables

Table 1. Working definitions of terms.
Some definitions are from [7] and [60].

term definition

sex sex recorded around the time of birth based on physiological and anatomical sex characteristics; also referred
to as designated sex, natal sex, assigned sex, or recorded sex; unless otherwise indicated, instances of “sex”
in this work should be understood to mean sex at birth

gender identity an individual’s own inner experience and personal sense of their gender–– being a boy/man/male;
girl/woman/female; or another gender (e.g., gender queer, gender fluid)

transgender a gender identity describing an individual whose gender is different from their sex at birth

cisgender a gender identity describing an individual whose gender identity aligns with their sex at birth

nonbinary an umbrella term encompassing those whose gender identity cannot be adequately described in a male-female
axis. In some nomenclatures, this may include identities such as genderqueer, agender, gender fluid, third
gender, and many others.

transgender and gender
nonbinary (TGNB)

a term to describe individuals whose gender differs from their sex at birth (i.e., not exclusively cisgender)

gender expression the way an individual expresses aspects of their gender through physical appearance, clothing choice,
accessories, and behavior

gender diversity an umbrella term used to describe divergence from gender identities, norms, and/or expressions often
prescribed to those of the designated sex; this may be measured either in a categorical or a continuous manner

gender dysphoria clinically relevant distress resulting from an incongruence between one’s gender identity and designated sex
at birth

sexual orientation the self-endorsed community labels(s) one finds representative of the gender(s) of their sexual and/or romantic
attractions

neurodivergent individuals with cognitive differences from the neuromajority in the areas of social, thinking, and/or other
neurocognitive process; autism and ADHD are often considered forms of neurodivergence

Table 2. Participant demographics.

variable N or mean %

total sample size 701

age 37

male 156 22%

autistic 406 58%

cisgender identity 427 61%

TGNB identity 207 30%

no gender identity label(s) 67 10%

Africa genetic pop’l 0 0%

Americas genetic pop’l 27 4%

East Asia genetic pop’l 4 1%

Europe genetic pop’l 644 92%

South Asia genetic pop’l 26 4%
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Figure 1. Overview of the study.

Figure 2. Distributions and correlations of the gender diversity and mental health measures
A Distribution of the two dimensional gender diversity measures from the Gender Self Report (GSR): Binary and Nonbinary Gender
Diversity. The GSR values are corrected for age, sex designated at birth, and autism diagnosis, and the histogram are colored by
self-endorsed sexual orientation labels (top panel) and gender identity labels (bottom panel). B Correlation of the two GSR values. C
Correlation of the two mental heath measures from the Adult Self Report (ASR): Internalizing and Externalizing. D: Correlations of the
GSR values with the ASR values.
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Figure 3. Polygenic score correlations with gender diversity and mental health
Polygenic score correlations with the GSR values A and ASR values B . The dotted lines represent the minimal correlation coefficient
for statistical significance (nominal p < 0.05) that is ρ = ±0.074. Polygenic score abbreviations: SWB = subjective well-being, NEB =
number of children ever born, non-het = non-heterosexual sexual behavior .

Figure 4. Correlations and interactions between gender diversity, mental health, and polygenic scores
A Polygenic score group-by-GSR interaction effects in association with the ASR values. The polygenic score groups are the upper 75th
quartile (coded as 1) and the lower 25th quartile groups (coded as 0), with N = 175 in each group. The fill color is the β estimate for
the interaction term from the linear model. Significant interaction terms are indicated with the white asterisk. B Correlations of the
GSR values with the ASR values stratified by polygenic score group. The dotted lines represent the minimal correlation coefficient for
statistical significance for N = 175 that is ρ = ±0.148. C Examples of the GSR-ASR correlations stratified by polygenic group.
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Supplementary information

Supplementary figures

Figure S1. Polygenic score correlations with gender diversity and mental health separated by
autism diagnostic status.
Polygenic score correlations in the autism subset (N = 406 out of 701) with the GSR values A and ASR
values B. The dotted lines represent the minimal correlation coefficient for statistical significance that is
ρ = ±0.097. Polygenic score correlations in the subset not diagnosed with autism (N = 295 out of 701) with
the GSR values C and ASR values D. The dotted lines represent the minimal correlation coefficient for
statistical significance that is ρ = ±0.114. Polygenic score abbreviations: SWB = subjective well-being, NEB
= number of children ever born, non-het = non-heterosexual sexual behavior.
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Figure S2. Polygenic score correlations with gender diversity and mental health in the Europe
genetic ancestry population only (N = 644).
Polygenic score correlations with the GSR values A and ASR values B . The dotted lines represent the
minimal correlation coefficient for statistical significance (nominal p < 0.05) that is ρ = ±0.077. Polygenic
score abbreviations: SWB = subjective well-being, NEB = number of children ever born, non-het = non-
heterosexual sexual behavior.
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Polygenic scores clarify the relationship between mental health and
gender diversity

Taylor R. Thomas1, Ashton J. Tener1, Amy M. Pearlman2, Katherine L. Imborek3, Ji Seung Yang4, John F. Strang5,
Jacob J. Michaelson1,6,7*

Public summary

The way we act (behavior) is influenced by how our brains grow and function. Some of the ways our brains grow and
function are influenced by our genes (DNA). Everyone has slightly different versions of DNA. This is a normal part of
human diversity. Some of these DNA differences lead to differences in our brains. Brain differences can lead to
behavior differences like in personality, intelligence, or mental health.

In this study, we asked whether our DNA is involved in gender identity and gender expression. We use the term
“gender diversity” to mean differences in gender identity or gender expression. People with greater gender diversity
are more likely to be transgender and/or nonbinary, although cisgender people can also have differences in gender
expression. People with greater gender diversity are also more likely to be autistic, so we conducted this study with
the help of SPARK participants (SPARK is the largest study of autism). Approximately half of our study
participants were autistic adults, and the others were not autistic but do have an immediate relative who is autistic.

What we found

We found that thousands of DNA differences, when combined, are linked to differences in gender diversity.
Specifically, we found that DNA differences linked to higher intelligence were also linked to greater gender diversity.
We need to do more research to understand why DNA differences linked to higher intelligence are also linked to
greater gender diversity.

Gender diverse people are at increased risk for stress due to discrimination. Scientists have repeatedly found that
gender diverse people are at a greater risk for poorer mental health. In this study, we showed that greater gender
diversity is linked to poorer mental health only among people who have high genetic risk for psychiatric conditions.
Greater gender diversity was not linked to poorer mental health among those with low genetic risk for psychiatric
conditions. This may mean that their DNA differences help them to be resilient against minority stress.

What our study does not show

We did not identify, nor attempt to identify, a “transgender” or “nonbinary” gene. We cannot predict a person’s
gender diversity from their DNA. We found very little evidence that the DNA differences linked to major psychiatric
conditions are also linked to gender diversity. Larger studies in the future may be able to identify weaker effects, but
our study does not support a strong genetic connection between psychiatric conditions and gender diversity. Gender
diversity is not purely genetic, but genetic factors do play a role.

Why this study is important

This is one of the first genetic studies of gender diversity. Many people say that gender is a purely social construct,
with no biological factors involved. Our results show that the DNA differences linked to higher intelligence are also
linked to greater gender diversity. We also show that whether minority stress translates into poorer mental health
depends on the person’s level of genetic risk for psychiatric conditions. Ultimately, we believe this line of research will
advance the health of gender diverse people through a greater understanding of how genetics interact with gender
diversity in determining health outcomes.
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