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Abstract

Both sex and gender are characteristics that play a key role in risk and resilience in health and well-being. Current
research lacks the ability to quantitatively describe gender and gender diversity and is limited to endorsement of
categorical gender identities, which are contextually and culturally dependent. A multidimensional data-driven
approach to characterizing gender diversity will enable researchers to advance the health of gender-diverse people by
better understanding how genetic factors interact to determine health outcomes. In N = 450 independent adults with
or without autism in the SPARK cohort, we used the Gender Self-Report (GSR), a self-report tool that
psychometrically captures two quantitative dimensions of gender diversity: Binary, the extent to which one identifies
with the binary gender opposite that of their sex at birth, and Nonbinary gender diversity, the extent to which one
identifies with a neutral gender and/or both binary genders. We correlated the two GSR scores with two mental
health outcomes and 20 human behavior polygenic scores in a subset of N = 450 participants. Same-sex sexual
behavior polygenic scores were positively correlated with Binary (ρ = 0.12, p < 0.05) and Nonbinary
(ρ = 0.11, p < 0.05). Interestingly, cognitive performance polygenic scores were also correlated with Binary
(ρ = 0.09, p = 0.07) and Nonbinary (ρ = 0.13, p < 0.05). In agreement with this, an association was also observed in
a larger SPARK sample (N = 3,466, with less granular gender identity data), in which the sex/gender discordant
group had higher mean polygenic scores for educational attainment (p < 0.05). Binary and Nonbinary were positively
correlated with poorer mental health, and accounting for genetic effects had minimal impact on these associations.
However, when stratifying individuals by polygenic scores quartiles, we observed dramatic differences in genetic risk
and resilience, with individuals in the high risk quartile for schizophrenia and bipolar polygenic risk having strong
positive correlations of gender diversity with mental health, whereas the lower quartile had no significant associations.
Overall, our results suggest (1) cognitive ability and gender diversity share overlapping genetic factors, (2) greater
gender diversity is correlated with poorer mental health outcomes and this effect is not directly explained by
neuropsychiatric polygenic risk, but rather an interaction effect, and (3) quantitatively measuring gender diversity
facilitates a better understanding of the role of gender in health outcomes.

1 Introduction

Sex and gender (see Table 1 for our definitions of terms) can have major impacts on health outcomes [1]. This stems
from both extrinsic factors (e.g. healthcare barriers [2, 3]) as well as biological factors, with sex and gender impinging
on the underlying molecular mechanisms of disease and well-being [4]. In health research, sex is a more objective and
well-defined variable than gender, which is multidimensional with binary and nonbinary components and often
experienced on a continuum [5]. Gender diversity can be characterized with self-endorsement of gender identity labels
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(e.g. transgender, nonbinary, genderqueer), but these labels are contextually and culturally dependent [6]. Moreover,
gender diversity, a fundamental aspect of human diversity, is not only expressed by individuals with transgender or
nonbinary identities. People who identify as cisgender also exhibit variation in gender diversity and expression [7] that
would be lost in studies only reporting categorical descriptors of gender identity. Therefore, a quantitative,
dimensional characterization of gender that is independent of categorical gender identity self-endorsement will enable
health researchers to appropriately incorporate gender diversity in their analyses.

Gender diversity is a crucial variable to include in health research, and this is particularly true in mental health
and neuropsychiatric research. For instance, groups that express higher levels of gender diversity than the cisgender
proportional majority, such as the LGBTQ+ (lesbian, gay, bisexual, transgender, and queer) community, often have
greater rates of anxiety and depression and are more likely to attempt suicide [8]. Discrimination and resilience
partially mediate these negative outcomes in LGBTQ+ college students [9], but the contributions of genetic factors to
mental health risks and resiliences in these groups are unknown. Because an individual’s personal identity influences
gender, we hypothesized that gender diversity is also shaped by the brain, and is therefore susceptible to genetic
influences like other human behavior traits [10]. Most behaviors are at least somewhat heritable, with genome-wide
association studies (GWAS) of common genetic variants showing many loci, each of small effect, contributing
additively (i.e. polygenic) [11]. These loci are often found to be associated with several behavioral traits, i.e., they are
pleiotropic. To date, genetic research of gender diversity has been limited to small sample sizes with a focus on rare
genetic variants [12], which limits the generalizability of the gene-behavior relationships. A reasonable proxy to
gender diversity is same-sex sexual behavior (SSSB), for which a GWAS in over 400,000 participants identified five
loci associated with the trait [13]. The heritability of SSSB varied by age, ranging from 0.08 to 0.25, and was
positively genetically correlated with several neuropsychiatric conditions and personality traits. However, the
interpretation of these genetic correlations are limited because of the possible confounding with minority
stress/discrimination, meaning the positive correlation could be due to either true pleiotropy between SSSB and
neuropsychiatric conditions, or could be due to individuals engaging in SSSB facing more sexual and/or gender-based
discrimination that increase risk for neuropsychiatric conditions. Recent work has begun disentangling the
confounding variables of genetic risk, discrimination, and mental health outcomes–– a study of N = 1,146 participants
found the association between discrimination (not necessarily sexual or gender-based discrimination) and anxiety was
persistent after controlling for genetic liability via polygenic scores for anxiety, depression, and neuroticism [14].

We sought to investigate whether gender diversity, like SSSB, is pleiotropic with other behavioral traits like
personality, neuropsychiatric conditions, and/or cognitive ability, and also how this pleiotropy might play a role in
mental health outcomes. Ultimately, we believe this line of research will advance the health of gender diverse people
through a greater understanding of how genetic factors interact with gender diversity in determining health outcomes.
We administered a SPARK Research Match to N = 818 adults (with a subset of N = 450 having genetic data) in
which the participants answered questions regarding their gender identity and sexual orientation, as well as two
psychometric self-report tools. The first, the Adult Self Report (ASR) [15], is a well-established measurement of
various mental health outcomes and adaptive behaviors. The second, the Gender Self-Report, is composed of 30 items
that capture two quantitative dimensions of gender diversity: Binary gender diversity, the extent to which one
identifies with the binary gender opposite that of their sex, and Nonbinary gender diversity, the extent to one
identifies with a neutral gender and/or both binary genders. Study participants were recruited from the SPARK
cohort [16], a nationwide genetic study of over 270,000 individuals with and without autism. Existing research
demonstrating the common intersection of autism and gender diversity makes SPARK an ideal cohort for
understanding the genetic factors that contribute to gender diversity. Previous sociological studies have shown there
is an enrichment of gender diversity [17] in autistic samples compared to the general population. Likewise, general
population samples of individuals identifying as transgender or nonbinary are more likely to have clinically relevant
levels of autistic traits [18]. We then sought to answer the following questions in the sample with genetic data
available (N = 450): First, are polygenic scores for human behavioral traits correlated with the two measures of
dimensional gender diversity from the GSR? Second, are mental health outcomes correlated with gender diversity?
Lastly, to what extent do polygenic scores explain and/or interact with the relationship between gender diversity and
mental health outcomes? An overview of our analyses is shown in Figure 1.

2 Methods

2.1 Primary study: SPARK Research Match

SPARK [16] is a U.S.-based nationwide autism study of over 270,000 participants, in which genetic data is available
for many of the participants. For the primary study we conducted a Research Match, in which independent adults,
with or without autism, were invited to participate. Those who agreed and consented to participate were asked to
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complete the Gender Self Report (GSR), the Adult Self Report (ASR) [?], and additional questions regarding their
sexual orientation, gender identity, and gender expression, with the final sample size N = 818. This study was
approved by the University of Iowa Institutional Review Board (IRB #201611784). SPARK is approved by the
Western IRB (#20151664).

2.1.1 Measures

Self-endorsed labels of gender identity and sexual orientation: Participants were able to select as many
labels for gender identity and sexual orientation they found applicable. Selections of nonbinary, demigender, gender
fluid, third gender, agender, gender neutral, pangender, bigender, and gender queer were categorized as
nonbinary/neutral. Cisgender and transgender were each categorized separately. Participants who did not endorse
any of the listed gender identities were excluded from analyses using gender identity labels (N = 77 of 818). For
sexual orientation, participants selecting lesbian, gay, bisexual, pansexual, homosexual, queer, and/or polysexual were
grouped as LGBQ+ and heterosexual orientation was categorized separately. Participants who did not select any of
the listed sexual orientation labels were excluded from analyses using sexual orientation labels (N = 94 of 818).

Gender Self Report (GSR): The Gender Self-Report (GSR) itemset was developed through an iterative
multi-input community driven process with autistic cisgender, autistic gender-diverse, and non-autistic cisgender and
gender-diverse collaborators [19]; Open Science Framework Development Summary:
https://osf.io/qh25d/?view_only=c0ce41d07bca4af1b792e074d51b7ded. A diversified recruitment approach was
employed across seven separate recruitments (N = 1,654), including the current study’s recruitment (N = 818), to
optimize the breadth of the GSR calibration sample and enrich the sample based on the following key characteristics:
autism, gender-diverse identities (binary and nonbinary), the intersection of autism and gender-diverse identities,
transition age/young adult age, and female designation at birth within the entire sample and within autism,
specifically. This sampling approach resulted in an overall calibration sample that was 37.5% autistic, 32.6% gender
diverse, and 38.9% cisgender sexual minority. Two-dimensional graded response model with a normal-mixture latent
density adequately fit the data and yielded two factors. The two factors are labeled Female-Male Continuum (F-MC)
and Nonbinary gender diversity. A transformation of the F-MC values based on designated sex at birth produced
Binary gender diversity values (i.e., representing the distance on the binary gender spectrum from individual’s
designated sex at birth). GSR calibration employed differential item functioning, an equity-based psychometric
method to identify and reduce bias, in this case by age as well as autism status. Empirical reliability coefficients for
response pattern EAP (expected a posteriori) scores were 0.75 for Nonbinary gender diversity and 0.85 for Binary
gender diversity. GSR factors performed well across the following validation metrics: (1) construct validity; GSR
factor values followed expected value patterns comparing gender identity subgroups, (2) convergent validity; GSR
factor values correlated with existing gender-related measures and in expected directions, and (3) ecological validity;
GSR factor values aligned with report of gender-affirming medical treatment request/receipt. The final GSR itemset
is composed of 30 questions, in which participants answered: 1 = never true, 2 = sometimes true, 3 = often true, 4 =
always true. The two GSR scores, Binary and Nonbinary gender diversity, were then residualized for the effects of age,
sex, and autism diagnostic status in the SPARK Research Match sample (N = 818). These two scores were then used
as the phenotypes in the subsequent correlation analyses in the N = 450 subset.

Adult Self Report (ASR): The Adult Self Report (ASR) [15] is a well-established self-report questionnaire of
129 items assessing a range of adaptive behaviors and mental health outcomes. The participants responds either: 0 =
not true, 1 = somewhat or sometimes true, or 2 = very true or often true. Empirically based syndrome subscales can
be summed to capture overall Internalizing and Externalizing problems, which were the two measures we used in our
analyses. Externalizing problems is composed of aggressive behavior, rule-breaking behavior, and intrusive behavior
subscales (35 items total), and Internalizing problems is composed of the anxious depressed, withdrawn depressed,
and somatic complaints subscales (37 items total). From the N = 818, five participants were removed due to having
12 (approximately 10%) or more missing ASR items. In the remaining N = 813, 0.2% of the data was missing, with
no item having more than five missing data points. The missing data was imputed to the median. Then, the
individual items were summed for Externalizing and Internalizing problems subscales. Lastly, age and sex were
residualized from the subscale totals by linear regression and then the final values were centered to have a mean of 0
and a standard deviation of 1.

2.2 Secondary analysis: Larger SPARK sample

The secondary analysis used the SPARK adult background history and child background history data from the
Version 7 phenotype data release. The child background history (parent-report) was filtered to individuals age 12 or
older and with cognitive age level not significantly below age. This was merged with the adult background history
(self-report). SPARK is approved by the Western IRB (#20151664).
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2.2.1 Measures

Categorization of sex/gender discordance: If the participant’s sex assigned at birth (options: Male or Female)
did not match their gender (options: Male, Female, or Other) then the participant was categorized as sex/gender
discordant. The cohort was then filtered to individuals in which genetic data was available that passed quality control
(see next section for genotype quality control) and were not genetically related by a relatedness threshold of 0.05. The
final sample size was N = 3,466 autistic individuals, N = 88 sex/gender concordant.

2.3 Genotype quality control and imputation

Version 3 Freeze (2019) and Version 4 (2020) genotypes were first merged using PLINK [20]. The merged genotypes
were then lifted from hg38 to hg19 using the LiftOver tool [21]. The genotypes included 43,209 individuals and
616,321 variants that were then quality controlled using the BIGwas quality control pipeline [22], which performed the
genotype quality control, sample quality control, and identification of population stratification and sample filtering
due to genetic ancestry. The BIGwas default parameters were used, except for skipping Hardy-Weinberg tests and
keeping related samples due to the SPARK cohort being family-based and not a general population sample (we later
removed related individuals with GCTA [23] within our SPARK sample of interest). The pre-QC annotation step
removed 21 variants (N = 616,299 variants remaining). The SNP QC step removed 101,600 variants due to
missingness at a threshold of 0.02 (N = 514,699 variants remaining). The sample QC step removed 1,114 individuals
due to missingness, 67 individuals due to heterozygosity, and 176 due to duplicates (or monozygotic twins). The
population stratification step projects the remaining individuals onto the principal components (PCs) from the
combined HapMap and 1000 Genomes PCs and removed individuals who are not within median +/− five times the
interquartile range for PC1 and PC2. This removed an additional 9,533 individuals (N = 32,422 individuals
remaining). The quality controlled set of N = 514,699 variants and N = 32,422 individuals were then imputed to the
TopMed [24] reference panel using the Michigan Imputation Server [25] with the phasing and quality control steps
included and to output variants with imputation quality r2 > 0.3. After the genotype imputation, the variants were
filtered to only the HapMap SNPs (N = 1,054,330 variants) with imputation quality r2 ≥ 0.8 using bcftools [26].
Next, they were lifted over from hg38 to hg19 using the VCF-liftover tool
(https://github.com/hmgu-itg/VCF-liftover) and the alleles normalized to the hg19 reference genome. Finally,
the files were converted to PLINK files with N = 1,018,200 final variants.

2.4 Polygenic score calculations

Polygenic scores were calculated using LDpred2 [27] and the bigsnpr tools [28] in R [29]. Because SPARK is
family-based, an external LD reference based on 362,320 European individuals of the UK Biobank (provided by the
developers of LDpred2) was used to calculate the genetic correlation matrix, estimate heritability, and calculate the
infinitesimal beta weights. Polygenic scores were calculated from the following genome-wide association studies
performed by the Psychiatric Genomics Consortium: ADHD (2019) [30], anorexia nervosa (2019) [31], autism
(2019) [32], bipolar disorder (2021) [33], major depression (2019) [34], OCD (2018) [35], and schizophrenia (2020) [36].
Polygenic scores were calculated from genome-wide association studies performed by the Social Science Genetic
Association Consortium for cognitive performance (2018) and educational attainment (2018) [37] and from the UK
Biobank for same-sex sexual behavior [13]. The public LDpred2 beta weights from the Polygenic Index
Repository [38] were used to calculate polygenic scores for depressive symptoms [39], extraversion [40], loneliness [41],
neuroticism [42], openness [43], risky behavior [44], subjective well-being [45], age at first birth [46], number of
children ever born (men) [41], and number of children ever born (women) [41].

From the N = 818 Research Match participants, N = 813 also had mental health outcomes data, and N = 457 also
had genetic data that passed quality control. This subset was pruned to remove related individuals using GCTA [23]
with a relatedness threshold of 0.05 (N = 7 individuals removed, N = 450 remaining). Genetic principal components
were re-calculated for these N = 450 participants using the snp autoSVD function from the bigsnpr package [28]. The
polygenic scores were residualized using linear regression for the first five genetic principal components, autism
diagnostic status, sex, and age and then centered to have a mean of 0 and scaled to have a standard deviation of 1.
For the N = 3,466 participants from the larger SPARK sample with sex/gender concordance data available, the same
polygenic score processing was performed.

2.5 Polygenic score analyses

In the N = 450 Research Match participants, polygenic scores were correlated with the two GSR scores (Binary and
Nonbinary) and the two mental health outcomes from the ASR (Externalizing and Internalizing) using Spearman
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correlations. For the genetic liability analysis, we residualized the effects of all 20 polygenic scores from both the GSR
scores and ASR scores by linear regression. In the correlations stratified by polygenic risk, we grouped people into one
of three groups for each polygenic score: upper 75th quartile (N = 113), middle quartile (N = 224), and the lower
25th quartile (N = 113). We then compared Spearman correleation coefficients between the upper versus lower
quartiles. We tested for GSR score by polygenic group interaction effects in association with the ASR scores with
linear models: ASR score ~ GSR score + polygenic group + GSR score:polygenic group.

For the N = 3,466 participants from the larger SPARK sample with sex/gender concordance, t-tests were
performed.

3 Results

3.1 Distribution of the GSR scores

The demographic characteristics of the SPARK cohort are shown in Table 2. Approximately one-quarter of the cohort
is transgender or gender nonbinary (TGNB). The distribution of the two GSR scores are shown in Figure 2. The two
GSR measures are Binary gender diversity, the extent to which one identifies with the binary gender opposite that of
their sex at birth, and Nonbinary gender diversity, the extent one identifies with a neutral gender and/or both binary
genders. The scores range from 0 (no gender diversity) to 1 (high gender diversity), with the mode being for both near
0 (Figure 2A). The overall trends show higher gender diversity in females (Figure 2B) and autistic individuals (Figure
2C). TGNB and non-heterosexual participants trended towards greater Binary and Nonbinary (Figure 2D and E).

3.2 Polygenic score correlations with GSR scores

The two GSR scores were correlated with twenty human behavior polygenic scores using Spearman correlations, with
the correlation coefficients ρ shown in Figure 3A. As expected, higher polygenic scores for same-sex sexual behavior
were significantly positively correlated with both Binary (ρ = 0.11, p < 0.05) and Nonbinary (ρ = 0.11, p < 0.05).
Interestingly, higher polygenic scores for cognitive performance were positively correlated with Binary
(ρ = 0.09, p = 0.07) and Nonbinary (ρ = 0.13, p < 0.05), meaning that polygenic propensity for greater cognitive
performance is associated with elevated Binary and Nonbinary gender diversity. To a lesser extent, educational
attainment polygenic scores were positively correlated Nonbinary (ρ = 0.08, p = 0.09), but only moderately correlated
with Binary (ρ = 0.05, p = 0.26). No neuropsychiatric polygenic scores were significantly correlated with either GSR
score. The strongest correlations were Binary being positively correlated with schizophrenia polygenic scores
(ρ = 0.07, p = 0.13) and OCD (ρ = 0.06, p = 0.22), and Nonbinary being negatively correlated with bipolar disorder
(ρ = −0.06, p = 0.22).

3.2.1 Secondary analysis of polygenic scores with sex/gender discordance in the larger
SPARK sample

Because our Research Match cohort was on the smaller end for polygenic score associations, we wanted to further test
the relationship between polygenic scores and gender identity in a larger sample. To do this, we used a sparse indicator
of gender diversity by identifying SPARK individuals who were discordant between their sex assigned at birth with
their gender. Our final sample size for this larger SPARK sample is N = 3,466 autistic participants age 13 or older,
with N = 88 sex/gender discordant and the remaining N = 3,378 sex/gender concordant (see Table 3 for demographic
information). T-tests for differences in mean polygenic scores were performed (Table 4). The sex/gender discordant
group had significantly greater polygenic scores for number of children ever born-women (t = 2.78, p < 0.05) and
educational attainment (t = 2.09, p < 0.05), and to a lesser extent cognitive performance (t = 1.60, p = 0.11).

3.3 ASR score correlations with GSR scores

We next wanted to disentangle the relationship between mental health outcomes, GSR scores, and polygenic scores in
the N = 450 participants. The two mental health outcomes were the two major subscales from the Adult Self Report
(ASR) [15], Internalizing problems and Externalizing problems. Internalizing problems is an overall composite score of
anxious depressed, withdrawn depressed, and somatic complaints. Externalizing problems is an overall composite
score of aggressive behavior, rule-breaking behavior, and intrusive behavior. We first correlated the ASR scores with
the GSR scores, in which all four were significantly positively correlated (Figure 4A). Externalizing problems was
positively correlated with Binary (ρ = 0.12, p < 0.05) and Nonbinary (ρ = 0.18, p < 0.05). Internalizing problems
was also positively correlated with Binary (ρ = 0.13, p = 0.06) and Nonbinary (ρ = 0.20, p < 0.05).
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3.4 ASR score correlations with polygenic scores

We next correlated the ASR scores with polygenic scores (Figure 4B). Externalizing was not significantly correlated
with any polygenic scores, but it approached significance for loneliness (ρ = 0.08, p = 0.09) and ADHD
(ρ = 0.07, p = 0.15). Internalizing was positively correlated with neuroticism (ρ = 0.16, p < 0.05), major depressive
disorder (ρ = 0.10, p < 0.05), and depressive symptoms (ρ = 0.10, p < 0.05).

3.5 ASR score correlations with GSR scores stratified by polygenic risk

We first tested if controlling for genetic liability by residualizing out the effects of all polygenic scores from the ASR
scores would attenuate the positive correlations. The correlations were hardly changed, with the strongest
attentuation being Externalizing problems and Nonbinary, from ρ = 0.18 to ρ = 0.17.

Lastly, we wanted to test if there were differences in the positive relationships between mental health and gender
diversity between high versus low polygenic risk groups. We grouped participants into one of three groups for each
polygenic score: high risk (upper 75th quartile, N = 113), middle quartile (N = 224), and the low risk (lower 25th
quartile, N = 113), and then performed ASR-GSR correlations between the upper 75th quartile and the lower 25th
quartile and also tested for interaction effects with linear models: ASR score ~ GSR score + polygenic group +

GSR score:polygenic group. Figure 4C shows the ρ for GSR-ASR correlations for the upper quartile versus lower
quartile polygenic risk groups, and Table 5 has the ρ difference between the two quartiles as well as the p-value for
the GSR-polygenic group interaction term. Figure 4D shows four examples of the strongest interaction effects.

We observed dramatic differences in correlations when stratified by polygenic risk, most prominently with
neuropsychiatric polygenic scores. The upper quartiles for anorexia, bipolar, and schizophrenia polygenic groups had
the strongest correlations, whereas the lower quartiles had correlations of roughly zero. The Nonbinary-Internalizing
correlation in the schizophrenia upper group was ρ = 0.32, p < 0.05 and in the lower group was ρ = 0, with the
interaction being β = 0.32, p < 0.05 (Figure 4D). A similar effect was observed for the Nonbinary-Externalizing
correlation–– the schizophrenia upper group was ρ = 0.27, p < 0.05, and the lower group was ρ = 0.01, with the
interaction being β = 0.21, p = 0.12. The Nonbinary-Internalizing correlation in the bipolar upper group was
ρ = 0.34, p < 0.05, but in the lower group was ρ = 0.07, p = 0.27, with the interaction being β = 0.31, p < 0.05
(Figure 4D). The Binary-Internalizing correlation in the anorexia upper group was ρ = 0.21, p < 0.05 and in the lower
group was ρ = 0.01, with the interaction being β = 0.22, p = 0.09.

We also observed interaction effects with cognitive, personality, and sexuality polygenic groups. Age at first birth
(AFB) is positively genetically correlated with educational attainment [11]). The Binary-Internalizing correlation in
the AFB upper group was ρ = 0.03, but the lower group (i.e. highest polygenic quartile for younger age at first birth)
was ρ = 0.25, p < 0.05, with the interaction being β = −0.29, p < 0.05 (Figure 4D). The Binary-Externalizing
correlation in the extraversion upper group was ρ = 0.04, but in the lower group (i.e. highest polygenic quartile for
introversion) was ρ = 0.22, p < 0.05, with the interaction being β = −0.24, p < 0.06 (Figure 4D).

4 Discussion

Our analyses are the first to address the relationships of gender diversity with mental health outcomes and genetics.
We leveraged two novel, dimensional measures of gender diversity, Binary and Nonbinary gender diversity, from the
Gender Self-Report (GSR) in a neurodivergent sample of N = 818 adults in the SPARK autism cohort (N = 450 with
genetic data). In this sample, we found greater gender diversity in female, autistic, and LGBTQ+ individuals. Due to
the structure of SPARK and study recruitment, we were only able to collect data from independent adults with
autism or non-autistic parents of children with autism. Therefore, the elevated gender diversity in the autistic subset
should be interpreted with the major caveat that the non-autistic parents were older and presumed to adhere to more
traditional gender roles. Still, these results are in line with rigorous prior research that has shown the enrichment for
gender diversity in autism [17]. Intriguingly, while our results showed higher gender diversity in LGBTQ+ individuals,
many people who identify as cisgender also showed evidence of gender diversity. This underscores the value of the
GSR in capturing dimensional gender diversity beyond self-endorsed identities. The formation of gender identity is a
complex and multi-factorial process [47], and is contextualized by numerous factors like time (e.g., age, generation),
region, and culture. Additionally, the conceptualization of these identities requires understanding of how they relate
to other points of reference, which can be different for some autistic people [48] who may struggle with understanding
social and gender norms.

In order to identify the possible pleiotropic relationships between gender diversity and other human behaviors, we
first correlated the two GSR scores with twenty behavior polygenic scores (Figure 3A). The strongest correlation was
cognitive performance polygenic scores positively correlated with Nonbinary (ρ = 0.13, p < 0.05), with a similar
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correlation with Binary (ρ = 0.09, p = 0.07). This indicates that of the genetic factors that may contribute to gender
diversity, the most immediately detectable in our small sample were those related to cognitive performance, which
may suggest that cognitive capacity is a necessary ingredient in the development of more complex and nuanced gender
identities. We also found same-sex sexual behavior (SSSB) polygenic scores to be positively correlated with both
Binary (ρ = 0.11, p < 0.05) and Nonbinary (ρ = 0.11, p < 0.05). Considering SSSB is positively correlated with
several neuropsychiatric conditions [13], we expected neuropsychiatric polygenic scores to also be positively correlated
with the GSR scores. Interestingly, we did not find any significant positive correlations with GSR scores and
neuropsychiatric polygenic scores, although the schizophrenia polygenic score correlation with Binary approached
significance (ρ = 0.07, p = 0.13). However, GSR scores were positively correlated with our two measures of mental
health outcomes from the Adult Self Report(ASR): Internalizing and Externalizing problems (Figure 4A).

Considering the GSR scores were strongly positively correlated with poorer mental health but not with
neuropsychiatric polygenic scores, we next sought to understand how neuropsychiatric genetic risk might interact with
gender diversity in mediating these mental health outcomes. To do this, we stratified our sample into two groups for
each polygenic score: high polygenic risk (above the 75th percentile, N = 113) and low polygenic risk (below the 25th
percentile, N = 113). We then performed GSR-ASR correlations and compared the correlations in the high polygenic
group versus the low polygenic group, and observed dramatic differences in genetic risk and resilience (Figure 4C, D).
The high-risk schizophrenia and bipolar polygenic groups produced the strongest GSR-ASR correlations, whereas the
low-risk groups had correlations of roughy zero. This indicates that polygenic risk for schizophrenia and bipolar
interact with gender diversity (or environmental factors related to gender diversity such as discrimination and/or
minority stress) in determining mental health outcomes. In other words, our findings suggest the relationship between
gender diversity and mental health outcomes is not solely environmental or genetic, but rather a combination of the
two. Specifically, an individual’s polygenic background contributes to determining the extent that their gender
diversity (and the adversity that comes with it) impacts their mental health. Note that polygenic risk and polygenic
resilience are related features: Lower risk implies higher resilience, and vice versa. The polygenic group at a higher
risk of poorer mental health under stress has lower resilience; while the other polygenic group, the one that with lower
polygenic risk, has higher resilience against poorer mental health outcomes when under stress. This is similar to
analogous research in major depressive disorder (MDD) polygenic scores–– they found that the individuals in the
greatest MDD polygenic risk groups were more likely to have more depressive symptoms when under stress, and those
in the lowest MDD polygenic risk group were least likely/most resilient under stress [49].

4.1 Limitations

Most common genetic analyses (genome-wide association studies, heritabilities, polygenic scores) require moderate
sample sizes due to the small effects of individuals common variants. Our major limitation is the small sample size,
and we therefore were only powered to detect strong polygenic score correlations. Future replication work in larger
samples is crucial. Additionally, age, sex, at birth, and autism diagnostic status can be confounding with the results.
Autism is confounding at the genetic level due to previous work showing autism and educational attainment to be
positively genetically correlated [32] and higher autism polygenic scores positively correlated with cognitive
performance in a general population sample [50]. Because of our small sample size, we could only residualize out the
effects of age, sex at birth, and autism diagnostic status from both the GSR scores and the polygenic scores. However,
future work should analyze the interaction between autism, sex, and polygenic scores in their associations with gender
diversity by performing stratified analyses on autism and sex.

4.2 Conclusion

We demonstrate that gender diversity, as captured by the Gender Self Report, has dimensional properties that share
common genetic factors with cognitive performance and same-sex sexual behavior. Furthermore, we find greater
gender diversity to be correlated with poorer mental health, but the relationship between gender diversity and mental
health is not directly due to genetics. Rather, one’s polygenic background acts as a risk or resilient mechanism in
interaction with gender diversity (and/or the adversity that comes with it) in determining mental health outcomes.
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Figures and Tables

Table 1. Working definitions of terms.
Some definitions from [7] and [51].

term definition

sex sex recorded around the time of birth based on physiological and anatomical sex characteristics; also referred
to as assigned sex, natal sex, designated sex, or recorded sex; unless otherwise indicated, instances of “sex”
in this work should be understood to mean sex at birth

gender the behavioral norms for each sex that emerge at the population level, driven by a combination of biological,
social, and cultural influences

gender identity an individual’s own inner experience and personal sense of their gender–– being a boy/man/male;
girl/woman/female; or another gender (e.g., gender queer, gender fluid)

transgender a gender identity describing an individual whose gender is different from their sex at birth

cisgender a gender identity describing an individual whose gender identity aligns with their sex at birth

nonbinary an umbrella term encompassing those whose gender identity cannot be adequately described in a male-female
axis. This may specific identities such as genderqueer, agender, gender fluid, third gender, and many others.

transgender and gender
nonbinary (TGNB)

a term to describe individuals whose gender differs from their sex at birth (i.e. not exclusively cisgender)

gender expression the way in which an individual expresses aspects of their gender through physical appearance, clothing choice,
accessories, and behavior. Gender expression may or may not align with one’s gender identity

gender diversity an umbrella term used to describe divergence from gender identities, norms, and/or expressions often
prescribed to those of the assigned sex; this may be measured either in a categorical or a continuous manner

gender dysphoria clinically relevant distress resulting from an incongruence between one’s gender identity and assigned sex at
birth

sexual orientation the self-endorsed community labels(s) one finds representative of the gender(s) of their sexual and/or romantic
attractions

neurodivergent individuals with cognitive differences from the neuromajority in the areas of social, thinking, and/or other
neurocognitive process; autism and ADHD are often considered forms of neurodivergence
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Table 2. SPARK Research Match cohort de-
mographics.

variable N or mean %

total sample size 450

age 38

male 93 21%

autistic 198 44%

cisgender identity 295 66%

gender-diverse identity 108 24%

no gender identity label(s) 47 10%

Table 3. Larger SPARK cohort demographics
for secondary analysis.

variable N or mean %

total sample size 3,466

age 38

male 2,371 68%

autistic 3,466 100%

overlap with Research Match 194 6%

sex/gender discordant 88 3%

Table 4. Polygenic score differences between
sex/gender concordances in the larger SPARK
cohort.
Polygenic scores were tested from mean differences
between the the sex/gender discordant group (N = 88)
and sex/gender concordant group (N = 3,378).

PGS t disc. X̄ conc. X̄ p

cog perf 1.60 0.19 0.00 0.11

edu attain 2.08 0.24 -0.01 0.04

dep 0.38 0.04 0.00 0.70

extra 0.31 0.03 0.00 0.76

lonely 0.28 0.03 0.00 0.78

neurot -0.80 -0.08 0.00 0.43

open -0.66 -0.06 0.00 0.51

risky -0.10 -0.01 0.00 0.92

SWB 0.07 0.01 0.00 0.94

AFB 0.73 0.07 0.00 0.47

NEB men -0.19 -0.02 0.00 0.85

NEB women 2.78 0.28 -0.01 0.01

SSSB 0.84 0.09 0.00 0.40

ADHD -1.18 -0.12 0.00 0.24

anorexia 1.20 0.12 0.00 0.23

autism -0.77 -0.08 0.00 0.44

bipolar 0.97 0.12 0.00 0.33

MDD 0.36 0.04 0.00 0.72

OCD 1.03 0.09 0.00 0.30

SCZ 0.90 0.10 0.00 0.37
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Table 5. ASR score correlations with GSR scores with
polygenic interactions.
ASR-GSR correlations stratified by polygenic score group (upper
75th percentile vs. lower 25th percentile).
p diff = upper ρ - lower ρ.
p int. = p-value for GSR score by polygenic group interaction effect.

Externalizing Internalizing

PGS GSR ρ diff. p int. ρ diff. p int.

Binary -0.10 0.92 0.02 0.64

cog perf
Nonbinary -0.26 0.13 -0.03 0.78

Binary 0.03 0.26 0.02 0.94

edu attain
Nonbinary -0.09 0.51 0.00 0.98

Binary -0.08 0.84 -0.05 0.67

dep
Nonbinary 0.02 0.64 -0.03 0.95

Binary -0.19 0.06 -0.04 0.66

extra
Nonbinary -0.06 0.43 0.20 0.31

Binary -0.13 0.17 -0.04 0.88

lonely
Nonbinary 0.12 0.22 0.20 0.11

Binary -0.05 0.97 -0.01 0.97

neurot
Nonbinary 0.08 0.59 0.02 0.73

Binary -0.12 0.59 -0.09 0.66

open
Nonbinary -0.10 0.51 -0.07 0.66

Binary -0.08 0.83 0.02 0.89

risky
Nonbinary 0.01 0.76 0.25 0.15

Binary -0.07 0.87 -0.02 0.96

SWB
Nonbinary -0.10 0.52 0.00 0.76

Binary -0.10 0.38 -0.22 0.04

AFB
Nonbinary 0.07 0.48 -0.10 0.63

Binary -0.02 0.35 -0.03 0.68

NEB-men
Nonbinary -0.02 0.93 -0.12 0.29

Binary -0.01 0.59 0.11 0.38

NEB-women
Nonbinary 0.05 0.98 0.16 0.31

Binary 0.02 0.77 0.10 0.37

SSSB
Nonbinary -0.14 0.46 0.10 0.38

Binary -0.04 0.72 -0.08 0.43

ADHD
Nonbinary -0.09 0.70 -0.19 0.06

Binary 0.03 0.53 0.19 0.09

anorexia
Nonbinary 0.17 0.57 0.20 0.27

Binary -0.05 0.75 -0.06 0.47

autism
Nonbinary 0.00 0.62 -0.02 0.93

Binary 0.04 0.46 0.18 0.14

bipolar
Nonbinary 0.19 0.09 0.27 0.02

Binary 0.00 0.59 0.03 0.40

MDD
Nonbinary 0.08 0.41 0.06 0.43

Binary -0.02 0.76 0.09 0.63

OCD
Nonbinary 0.03 0.66 -0.10 0.54

Binary 0.08 0.17 0.03 0.34

SCZ
Nonbinary 0.26 0.12 0.32 0.03
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Figure 1. Overview.
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Figure 2. Distribution of the two Gender Self
Report (GSR) scores.
A Distribution of the GSR scores in N = 450, stratified
by B designated sex at birth, C autism diagnostic sta-
tus, D gender identity: cisgender or TGNB (transgen-
der and gender nonbinary), and E, sexual orientation.
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Figure 3. Polygenic score correlations with the GSR scores.
A Polygenic score correlations with the GSR scores. The dotted lines represents the
minimal correlation coefficient for statistical significance (nominal p < 0.05), which
is ρ = 0.09. Polygenic score abbreviations: cog perf = cognitive performance, edu
attain = educational attainment, dep = depressive symptoms, extra = extraversion,
lonely = loneliness, neurot = neuroticism, open = openness, risky = risky behavior,
SWB = subjective well-being, AFB = age at first birth, NEB = number of
children ever born, SSSB = same-sex sexual behavior, ADHD = attention-deficit
hyperactivity disorder, MDD = major depressive disorder, OCD = obsessive
compulsive disorder, SCZ = schizophrenia.

13/17

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 15, 2022. ; https://doi.org/10.1101/2021.11.22.21266696doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.22.21266696


Figure 4. Correlations and interactions between GSR scores, ASR scores, and polygenic scores
A Correlations of the GSR scores (Binary and Nonbinary) with the two ASR scores (Externalizing and Internalizing). B Correlations of
the ASR scores with the polygenic scores. The dotted lines represents the minimal correlation coefficient for statistical significance
(nominal p < 0.05), which is ρ = 0.09. C Correlations of the GSR scores with the ASR scores stratified by polygenic scores: the upper
75th quartile and the lower 25th quartile groups (N = 113 for each group). The dotted lines represent the minimal correlation coefficient
for statistical significance for N = 113, which is ρ = 0.18. E Four examples of the GSR-ASR score correlations stratified by polygenic
group. The β in text is the interaction β.
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