
Ignoring transmission dynamics leads to underestimation of the impact of a novel

intervention against mosquito-borne disease

Sean M. Cavany*, John H. Huber*, Annaliese Wieler, Quan Minh Tran, Manar Alkuzweny,

Margaret Elliott, Guido España, Sean M. Moore, T. Alex Perkins

Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame

*Contributed Equally

For correspondence: Sean Cavany (scavany@kolabnow.com), John Huber (jhuber3@nd.edu),

and Alex Perkins (taperkins@nd.edu).

Key words: Mathematical modeling, vector control, dengue, Wolbachia, cluster-randomized

trials, bias

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 9, 2022. ; https://doi.org/10.1101/2021.11.19.21266602doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:scavany@kolabnow.com
mailto:jhuber3@nd.edu
mailto:taperkins@nd.edu
https://doi.org/10.1101/2021.11.19.21266602
http://creativecommons.org/licenses/by/4.0/


Abstract

New vector-control technologies to fight mosquito-borne diseases are urgently needed, the

adoption of which depends on efficacy estimates from large-scale cluster-randomized trials

(CRTs). The release of Wolbachia-infected mosquitoes is one promising strategy to curb dengue

virus (DENV) transmission, and a recent CRT reported impressive reductions in dengue

incidence following the release of these mosquitoes. Such trials can be affected by multiple

sources of bias, however. We used mathematical models of DENV transmission during a CRT

of Wolbachia-infected mosquitoes to explore three such biases: human movement, mosquito

movement, and coupled transmission dynamics between trial arms. We show that failure to

account for each of these biases would lead to underestimated efficacy, and that the majority of

this underestimation is due to a heretofore unrecognized bias caused by transmission coupling.

Taken together, our findings suggest that Wolbachia-infected mosquitoes could be even more

promising than the recent CRT suggested. By emphasizing the importance of accounting for

transmission coupling between arms, which requires a mathematical model, our results highlight

the key role that models can play in interpreting and extrapolating the results from trials of

vector control interventions.
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Introduction

Dengue virus (DENV) poses a risk to around half the world’s population due to the widespread

abundance of its Aedes mosquito vectors [1]. Historically, the success of dengue control has

been limited by challenges such as the expanding distribution of Aedes aegypti due to

urbanization and land-use changes, and ineffective or sub-optimally applied control strategies

[2,3]. One novel control strategy that holds promise is the release of mosquitoes infected with

Wolbachia, a vertically transmitted intracellular bacteria that reduces the ability of Aedes aegypti

mosquitoes to transmit DENV [4]. A cluster-randomized, controlled trial conducted between

2018 and 2020 in Yogyakarta, Indonesia (Applying Wolbachia to Eliminate Dengue, AWED)

[5,6] estimated that release of Wolbachia-infected mosquitoes had a protective efficacy against

symptomatic, virologically confirmed dengue of 77.1% (95% confidence interval: 65.3-84.9%)

[7].

There are at least three factors that can result in underestimated efficacy in this type of

trial. All operate by making outcomes in treatment and control clusters appear more similar than

if these factors were not at play, although they result in this for different reasons. First, the

movement of humans between control and treated clusters can increase the exposure to DENV

of study subjects residing in treatment clusters and lower the exposure of subjects residing in

control clusters [8]. Second, the movement of mosquitoes between arms can lead to an

appreciable proportion of mosquitoes in control clusters infected with Wolbachia, lowering these

mosquitoes’ ability to transmit DENV and introducing a source of contamination across trial

arms. Third, the dynamic, spatially localized nature of DENV transmission [9,10] implies that

suppression of transmission in treated clusters could influence transmission in neighboring

control clusters, thereby reducing incidence in both trial arms. Hereafter, we refer to each of

these three forms of bias as “human movement,” “mosquito movement,” and “transmission

coupling,” respectively.
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In their per-protocol analyses, Utarini et al. [7] acknowledged the potential effects of

human and mosquito movement in their per-protocol analysis, and by incorporating recent travel

and Wolbachia prevalence into their efficacy calculations did not detect a difference in efficacy

from that estimated in the intention-to-treat analysis. Nevertheless, the analysis of the AWED

trial by Utarini et al. [7] did not account for transmission coupling, and they noted that follow-up

analyses were needed to further explore the potential for bias due to human and mosquito

movement.

Understanding the magnitude of such biases is important when seeking to extrapolate

the impact of interventions across contexts. Such extrapolation has been recently undetaken for

the RTS,S/AS01 vaccine [11,12] and the endectocide ivermectin [13] for malaria. If failing to

account for such transmission dynamics contributes to an underestimated biological effect of

Wolbachia on DENV, we risk incorrectly assessing its broader impact. Given the myriad

intervention options available to public health officials for dengue control [14], it is important for

the potential impacts of each to be understood as well as possible.

In this study, we used a mathematical model of DENV transmission to gain insight into

the possible magnitudes of the three aforementioned sources of bias. Our approach involved

translating model inputs of the basic reproduction number (R0), the spatial scale of human

movement (b), and the proportional reduction in R0 afforded by Wolbachia-infected mosquitoes

(ε) into outputs of the infection attack rate (IAR) in control and treatment arms of a trial, in

accordance with a seasonal, two-patch susceptible-infectious-recovered (SIR) model [15]. We

used the outputs of IAR in treatment and control arms (IARt and IARc, respectively) to obtain an

estimate of the odds ratio (OR) of infection and, thereby, an estimate of the efficacy of the

intervention, Eff = 1 - OR. We constructed six different model versions for estimating efficacy,

each of which includes different combinations of the three biases, all of them, or none of them.

Henceforth, we refer to the efficacy observed in the AWED trial as “observed efficacy,” and the

efficacy estimated by a given model and ε as “estimated efficacy.” Finally, we quantify each bias
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as the difference in the efficacy estimated by a model including that bias and a model which

does not include that bias (see Methods for more details of our methods).

Fig. 1: The spatial scales of transmission and trial design. A: Idealized trial design. We used
a checkerboard pattern to approximate the design of the AWED trial of Wolbachia-infected
mosquitoes to control dengue [7]. ρij represents the amount of time an individual who lives in
arm i spends in arm j, where i and j can represent either control (c) or treatment (i). b describes
the scale of human movement. B: The relationship between the scale of human movement and
the amount of time individuals spend in clusters of the same type as their home cluster. C: The
relationship between the reduction in R0 (ε) required to reproduce the observed efficacy in the
AWED trial and the time people spend in their allocated arm. In this panel and panels E and F,
the dark blue line corresponds to the observed mean estimated in the AWED trial whereas the
light blue line and shaded region correspond to the 95% confidence intervals. D: The
relationship between ε and the estimated efficacy when b = 60 m. The black line shows the
theoretical relationship between a reduction in R0 and observed efficacy, assuming no mosquito
movement and no human movement between arms. The blue line shows this relationship if we
include these two factors as well as the effect of transmission coupling. The dark and light blue
squares indicate the mean and the 95% confidence interval respectively of the observed
efficacy in the AWED trial and the corresponding reduction in R0. E: The relationship between
the amount of time people spend in their allocated arm and the estimated efficacy. F: The
relationship between the size of the clusters and the estimated efficacy. The dashed line
indicates the estimated efficacy at the baseline cluster size (1000m). In all panels, parameters
are at their baseline given in Table S1 unless otherwise stated.
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Results

We assumed a checkerboard pattern of control and treatment arms of 1 km2 to

approximate the design used in the AWED trial, which covered the entire city of Yogyakarta, with

neighboring areas assigned to one arm or another in an (approximately) alternating pattern (Fig.

1A) [7], and assume that individuals are evenly distributed within each cluster such that they

have no internal spatial structure. The time that humans spend away from their home is

assumed to follow a Laplace distribution (Fig. 1A, top right), which takes a single parameter, b,

that we refer to as the scale of human movement. By assuming that individuals are evenly

distributed within each cluster, we can then estimate the average proportion of time that

individuals in each trial arm spend in their own arm (ρtt and ρcc) and in the opposite arm (ρtc and

ρct－ see the Apportionment of time at risk section in Methods for details). Larger values of b

imply that people spend less time in their allocated arm, and for large values of b individuals

spend roughly equal amounts of time in both arms (Fig. 1B).

The relationship between the efficacy estimated by the model with all three forms of bias

(the estimated efficacy) and the reduction in R0 (ε) was dependent on the amount of time people

spent in their allocated arm (Fig. 1C)—the less time individuals spent in their allocated arm, the

higher the reduction in R0 that was needed to recreate the observed efficacy from the AWED

trial. If individuals spent less than 83.9% of their time in their allocated arm, it was impossible to

generate the observed efficacy (77.1%), as that would have implied that ε exceeded 1.

Assuming that individuals spent 92.9% of their time in their allocated arm (i.e., ρii = 92.9%,

corresponding to b = 36.9 m － see the Spatial Scale of Human Movement section in Methods

for details and justification), we found that the observed efficacy (77.1% [95% CI: 65.3% -

84.9%]) corresponded to an ε of 49.9% (95% CI: 30.8% - 73.1%) (Fig. 1D, blue line). If we

instead assumed that there was no movement between trial arms, we observed that much

smaller values of ε were needed to explain the observed efficacy (6.3% [95% CI: 4.8% - 8.1%]).

The difference between these estimates provides an indication of the extent of bias introduced
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by assuming that humans and mosquitoes remain in their allocated arms, when they in fact do

not (Fig. 1D).

When we fixed ε to the value that reproduces the observed efficacy in the AWED trial

and increased human movement between arms by increasing b, the estimated efficacy by the

model accounting for all three forms of bias decreased (Fig. 1E). For example, increasing the

average distance in one direction between transmission pairs (b) from 36.9 m to 70 m caused a

relative reduction of 20.0% in estimated efficacy, highlighting the sensitivity of efficacy to the

spatial scale of human movement. This effect occurs for two reasons: first, as people spend less

time in their allocated arm, the proportion of time that people spend under the intervention

becomes more similar between arms; and secondly, in the presence of transmission coupling, a

reduction in prevalence in the intervention arm reduces transmission in the control arm more as

people spend less time in their allocated arm. Relatedly, estimated efficacy depended on the

dimensions of the trial clusters, which we set to 1 km2 by default (Fig. 1F). When we reduced the

cluster dimensions to 500 m x 500 m, estimated efficacy dropped from 77.1% to 60.3%,

representing a 21.8% relative reduction. This effect occurs because, as the cluster dimensions

are reduced, people spend less time in their home cluster. Hence, the time spent in each trial

arm approaches parity (i.e., 50%). Increasing cluster dimensions above 1 km2 had somewhat

less of an effect on estimated efficacy. For example, increasing the cluster dimensions to 2 km x

2 km resulted in an estimated efficacy of 86.7%, a relative increase of 12.4%.

Our approach enabled us to directly and separately model each of the three potential

sources of bias: (1) mosquito movement, (2) human movement, and (3) transmission coupling.

Movement of Wolbachia-infected mosquitoes is modeled by including a time-varying level of

coverage, and we assume that mosquito movement does not contribute to DENV transmission

(See Methods - wMel coverage). When we assumed that ε was equal to 49.9%, allowing for

mosquito movement but not human movement produced an estimated efficacy of 99.1%,

because there was almost no transmission in the intervention arm in that case (Fig. 2A, Fig. S7).
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If we allowed for both mosquito movement and human movement, we observed a lower

estimated efficacy of 93.6%. Although there was little transmission in the intervention arm in this

case, individuals residing in the intervention arm could be infected in the control arm.

Additionally, those assigned to the control arm experienced lower overall risk due to their time

spent in the intervention arm. When we accounted for transmission coupling between trial arms

alongside human and mosquito movement, thereby allowing for more transmission in the

intervention arm, risk was the most similar across the trial arms of all scenarios, leading to the

lowest estimated efficacy of 77.1% for an ε equal to 49.9%.

Fig. 2: Sources of bias in efficacy estimates. In both panels, yellow refers to mosquito
movement, red to human movement, and blue to transmission coupling. A: The relationship
between the reduction in R0 (ε) and the estimated efficacy for the six possible models. The black
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line here is the relationship for a model with no human movement or mosquito movement.
Where a line has more than one color, it represents the model which includes each of the types
of bias represented by those colors. The difference between this line and each of the colored
lines represents the bias introduced by not accounting for the features present in the model
described by that colored line. B: the contribution of each source of bias to the total bias. Eff(0)

refers to the estimated efficacy from a model with none of the biases, Eff(h) to the estimated
efficacy from a model with human movement only, Eff(m) to the estimated efficacy from a model
with mosquito movement only, Eff(hm) to the estimated efficacy from a model with human and
mosquito movement, Eff(ht) to the estimated efficacy from a model with human movement and
transmission coupling, and Eff(hmt) to the estimated efficacy from a model with all three biases.

We quantified total bias as Eff(hmt) - Eff(0), where Eff(hmt) is the estimated efficacy under the

model with all sources of bias and Eff(0) is the estimated efficacy under the model without human

or mosquito movement. We then computed the difference in the bias produced by pairs of

models to decompose overall bias into each of its three sources (Fig. 2B, Fig. S8-9, see

Methods for details). At the baseline ε of 49.9%, 17.6% of the total bias was attributable to

mosquito movement, 8.3% to human movement, and 74.1% to transmission coupling. At all

values of ε, the greatest source of bias was transmission coupling between trial arms. When ε

was below a value of around 10%, the effective reproduction number at the start of the trial

exceeded 1 in both arms. This value of ε varied slightly based on the model used (Fig. S8-9). If ε

was below this critical value, increasing it in the context of coupled transmission reduced

incidence in the control arm and caused smaller reductions in incidence in the intervention arm

than if transmission had been uncoupled (Fig. S7, e.g. panels D vs. F). This implies that the bias

introduced by transmission coupling increases as ε increases up to ~10% under our model’s

parameterization (Fig. 2B). Increasing ε past this point only leads to small reductions in

incidence in the intervention arm in an uncoupled model, as incidence is already very low.

Discussion

Our results highlight three sources of bias (human movement, mosquito movement, and

transmission coupling) that arise in large, cluster-randomized, controlled trials of interventions

against mosquito-borne diseases, and have implications for how to mitigate these biases.
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Biases arising due to human movement and mosquito movement are typically able to be

addressed through careful statistical analysis of trial data or in the design of the trial [8]. For

instance, in the per-protocol analysis of the AWED trial, Utarini et al. accounted for these two

forms of bias by combining self-reported recent travel and local Wolbachia prevalence into an

individual-level Wolbachia exposure index [7]. Comparing groups with the highest and lowest

Wolbachia exposure did not lead to higher efficacy estimates than their primary analysis.

Another approach to addressing contamination involves describing the effectiveness of the

intervention at the boundary between clusters using a sigmoid function [16–18]. Our results

suggest that failure to take steps such as this to account for human and mosquito movement

would typically lead to underestimated efficacy, while failure to account for transmission coupling

would lead to an even greater underestimate, particularly at intermediate reductions in R0.

Bias arising from human and mosquito movement could also be mitigated at the stage of

planning the trial. The classical design to achieve this is the ‘fried-egg’ design, in which a treated

buffer-zone is placed between intervention and control clusters [19]. A more recently proposed

approach involves excluding a subset of clusters from the trial completely, thereby increasing

the distance between clusters and leading to disconnected clusters at less risk of contamination

[20]. While both of these approaches do mitigate the risk of contamination directly, they also

necessitate a larger trial area and may be logistically infeasible in a trial taking place in a single

city, as was the case for the AWED trial. Another approach could include reducing the number

of clusters, but keeping the total area fixed, leading individuals to spend more time in their

assigned arm and reducing mosquito movement by reducing the boundary between clusters.

Our results show that the efficacy estimated from cluster-randomized, controlled trials of

interventions against mosquito-borne diseases is highly sensitive to cluster size (Fig. 1F). Had

the dimensions of the clusters in the AWED trial been much smaller, then the estimated efficacy

may have been substantially lower. However, having fewer, yet larger clusters would likely
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introduce new biases by making the arms less comparable, which may not be an acceptable

trade-off.

While bias due to human and mosquito movement can be mitigated through trial design

and statistical methods, our results highlight a third source of bias, transmission coupling, that

requires additional tools to fully address. Accounting for this bias first requires data on the

spatial distribution of the intervention and on human movement, similar to that used in the

supplementary analysis of the AWED trial. However, it also requires interfacing these data with

a dynamical transmission model to account for the fact that, in the presence of movement

between arms, incidence in each arm depends on prevalence in both arms [21]. Many common

trial designs will lead to reduced bias due to transmission coupling － for instance by allocating

a greater proportion of the trial area to the control arm, with small intervention clusters situated

among larger control clusters so that transmission suppression in the intervention arm has less

of a population-level effect. The ratio of area allotted to treatment and control would depend on

many factors, including the expected strength of the intervention, the local force of infection, and

logistical constraints such as the size and length of the trial. Utilizing a dynamical model

synthesizing these factors in the design of a trial could aid in understanding how different

designs might affect bias due to transmission coupling [21]. More work is needed to understand

what types of spatial clustering patterns, among other features of trial design, would minimize

this form of bias.

Although our modeling approach allowed us to account for different potential sources of

bias and to attribute the total bias to each of those sources, it has at least four limitations. First,

our model was deterministic, yet stochasticity could be important for a highly efficacious

intervention with potential to reduce transmission to very low levels [22]. This simplification

implies that our estimates are likely conservative, as these effects could increase the bias due to

transmission coupling if a highly effective intervention increases the probability of transmission

fadeouts. Second, our simple model does not reflect all of the complexities of DENV
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transmission. For example, we did not account for spatial heterogeneities in transmission or

interactions between serotypes. Accurately quantifying the contribution of these effects to bias

would require a more detailed model, but the qualitative results would likely be similar. Third, we

did not calibrate our model to trial data, so incidence in our model may not reflect the actual

incidence during the trial. However, our aim here was not to precisely quantify bias in the AWED

trial, but rather to highlight some potential sources of bias in trials of that nature and to

understand how these biases are influenced by transmission dynamics and human mobility.

Moreover, our model was calibrated to actual incidence from past years in Yogyakarta, and so

still reflects transmission typical of that location. It is also worth noting that an earlier version of

the manuscript, which used a simpler static model based on epidemic attack rate formulae, had

qualitatively similar findings [23]. Finally, we don’t account for heterogeneity between clusters,

such as regions of the city with systematically higher mosquito abundance, or greater human

movement, or within clusters, such as that transmission may be higher at the edge of control

clusters.

In conclusion, without accounting for human movement, mosquito movement, and

transmission coupling, the efficacy of Wolbachia-infected mosquitoes as an intervention to

control dengue is likely to be underestimated. As the estimate of efficacy in the AWED trial was

already very high (77.1% [95% CI: 65.3% - 84.9%]) [7] and, as we show, likely underestimated,

Wolbachia-infected mosquitoes have potential to be a game-changing tool in the fight against

dengue. Even as vaccines against dengue become available, a variety of vector control

approaches are likely to remain key tools in the fight against dengue [2,14]. Although we

focused our study on a trial of Wolbachia-infected mosquitoes, our findings are applicable to any

efficacy trial of an intervention that has the potential to contaminate the control arm, such as

gene drive mosquitoes or ivermectin as interventions against malaria [24,25]. As trials of these

interventions continue, it will be important to learn what lessons we can from transmission
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dynamic modeling when designing and interpreting future trials to ensure that we understand

the true promise of these interventions.
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Methods

Transmission model

We simulated DENV transmission using a four-serotype, two-patch seasonal SIR model. In this

model, fully susceptible individuals may become infected with any of the four serotypes. Once

infected, individuals have an exponentially-distributed period of cross-immunity to all other

serotypes with a mean of two years. Individuals with prior exposure to one or more serotypes

but that are not currently in their period of cross-immunity are immune to the serotypes they

have previously been infected with. We implicitly assume that all four serotypes circulate in

equal proportions. Births and deaths are modeled so that the population size remains constant,

and the mortality rate is the reciprocal of the mean life expectancy, taken from the United

Nations World Population Prospects database [26]. The transmission parameter, β(t), varies

seasonally according to a sine curve with a period equal to one year. The model equations are

as follows, with parameter definitions and values given in Tables S1 and S2, and the model

diagram is shown in Fig. S1.

𝑑𝑆
0

𝑑𝑡 = µ(1 − 𝑆
0
) − Ρ × (1 − ϵ𝐶(𝑡))β(𝑡) 𝐼

𝑁 𝑆
0

𝑑𝐼
1

𝑑𝑡 = 𝑃 × (1 − ϵ𝐶(𝑡))β(𝑡) 𝐼
𝑁 𝑆

0
− (γ + µ)𝐼

1

𝑑𝑅
1

𝑑𝑡 = γ𝐼
1

− (ω + µ)𝑅
1

𝑑𝑆
1

𝑑𝑡 = ω𝑅
1

− Ρ × (1 − ϵ𝐶(𝑡))β(𝑡) 3
4

𝐼
𝑁 𝑆

1
− µ𝑆

1

𝑑𝐼
2

𝑑𝑡 = 𝑃 × (1 − ϵ𝐶(𝑡))β(𝑡) 3
4

𝐼
𝑁 𝑆

1
− (γ + µ)𝐼

2

𝑑𝑅
2

𝑑𝑡 = γ𝐼
2

− (ω + µ)𝑅
2

𝑑𝑆
2

𝑑𝑡 = ω𝑅
2

− Ρ × (1 − ϵ𝐶(𝑡))β(𝑡) 1
2

𝐼
𝑁 𝑆

2
− µ𝑆

2

𝑑𝐼
3

𝑑𝑡 = 𝑃 × (1 − ϵ𝐶(𝑡))β(𝑡) 1
2

𝐼
𝑁 𝑆

2
− (γ + µ)𝐼

3
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𝑑𝑅
3

𝑑𝑡 = γ𝐼
3

− (ω + µ)𝑅
3

𝑑𝑆
3

𝑑𝑡 = ω𝑅
3

− Ρ × (1 − ϵ𝐶(𝑡))β(𝑡) 1
4

𝐼
𝑁 𝑆

3
− µ𝑆

3

𝑑𝐼
4

𝑑𝑡 = 𝑃 × (1 − ϵ𝐶(𝑡))β(𝑡) 1
4

𝐼
𝑁 𝑆

3
− (γ + µ)𝐼

4

𝑑𝑅
4

𝑑𝑡 = γ𝐼
4

− µ𝑅
4

𝐼 = 𝐼
1

+ 𝐼
2

+ 𝐼
3

+ 𝐼
4

(S1)β(𝑡) = β
0
(1 + β

𝑎
𝑠𝑖𝑛( 2π(θ+𝑡)

365.25 ))

Table S1. Model parameter values

Symb
ol

Definition Value Source

µ Mortality rate (day-1) 1/(71.4 x 365.25) UN World
Population
Database [26]

ϵ Transmission reduction due to Wolbachia varied N/a

Ρ A 2x2 matrix describing the proportion of
time people spend in their home and
non-home patches

varied See Model
parameterization
section

𝐶(𝑡) A 1x2 vector describing the time-varying
coverage of Wolbachia in each patch

See Fig. S6 Utarini et al. [7]

γ Recovery rate (day-1) 1/7 Burattini et al. [27]

ω Waning rate of cross-immunity (day-1) 1/(2 x 365.25) Reich et al. [28]

𝑅
0

Basic reproduction number 3.21 See Model
parameterization
section

α Amplitude in rate of effective contact calibrated
bounds: (0, 0.2)
estimate: 0.0588

N/a

θ Offset in seasonality (days) calibrated
bounds: (0, 180)

N/a
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estimate: 77.8

υ Proportion of infections reported as
cases

calibrated
bounds: (0.01, 0.2)
estimate: 0.0601

N/a

Table S2. All state variables are 1x2 vectors describing the number in each of the two patches.

Symbol Definition

𝑆
𝑖

Number of susceptible individuals with i prior infections

𝐼
𝑖

Number of infectious individuals with i prior infections

𝑅
𝑖

Number of immune individuals with i prior infections; individuals in this group
are immune to all serotypes until their cross-immunity wanes

16
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Fig. S1: Model diagram. The superscripts refer to the number of times individuals in that

compartment have been infected. Susceptible individuals (Si) experience a reduced force of

infection according to the number of prior infections they have experienced. We assume all

serotypes circulate equally. Following infection, individuals experience a temporary period of

immunity to all serotypes (Ri). Mortality occurs at an equal rate from all compartments and is not

shown.

Transmission model calibration

We calibrated the model to data on reported cases of dengue fever over a ten year period [29]

(Fig. S2). We first averaged the monthly number of reported cases, to capture the average

dynamics across the period. We ran the model for 100 years to reduce the influence of initial

conditions, and then fitted model years 101-110 to the 10 average years from the data using

maximum likelihood. We used a Poisson likelihood function,

, (S2)𝐿(𝑥
𝑚𝑜𝑑𝑒𝑙

, ν | 𝑥
𝑑𝑎𝑡𝑎

) =
(𝑥

𝑚𝑜𝑑𝑒𝑙
ν)

𝑥
𝑑𝑎𝑡𝑎𝑒

−𝑥
𝑚𝑜𝑑𝑒𝑙

ν

𝑥
𝑑𝑎𝑡𝑎

!

where is the number of infections per month predicted by the model and is the𝑥
𝑚𝑜𝑑𝑒𝑙

𝑥
𝑑𝑎𝑡𝑎

 

number of cases per month in the data.
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Fig. S2: Model calibration. Calibration of seasonal SIR model to data on dengue cases from

Yogyakarta. The faint red line and points show the data on the monthly number of cases from

2006 to 2017 in Yogyakarta, taken from Indriani et al. [29]. The solid red lines and points show

this data average by month. The gray polygon shows the model calibrated to the average

number of monthly cases.

Efficacy models

Let ε represent the effectiveness of the intervention, defined as the proportional reduction in the

pre-intervention basic reproduction number, R0, when the intervention is applied at full coverage

in a treatment cluster. Hence, in the absence of human or mosquito movement,

(S3)𝑅
0,𝑡

= (1 − ε)𝑅
0

. (S4)𝑅
0,𝑐

= 𝑅
0

Our interest is in quantifying the infection attack rate (IAR), 𝜋, within each cluster during a trial.

To do this, we simulate the model for two years, and calculate the infection attack rate in each

arm during that time. We estimate the initial proportion in each compartment by first simulating

the model for 100 years. We do this with six different models that include combinations of three

different types of bias: human movement between arms, mosquito movement between arms,

and transmission coupling between arms. The six resulting models are described below (note

that transmission coupling can only occur in the presence of human movement). Each model is

defined by different values for P and C(t).

1. No bias

18

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 9, 2022. ; https://doi.org/10.1101/2021.11.19.21266602doi: medRxiv preprint 

https://paperpile.com/c/P9CLhT/vOuk
https://doi.org/10.1101/2021.11.19.21266602
http://creativecommons.org/licenses/by/4.0/


In the absence of contamination from human movement or mosquito movement between arms,

we can essentially use equations (S3) and (S4) to describe the reproduction in each arm. This

amounts to setting C(t) = (1, 0) and P = I, the identity matrix.

2. Bias from mosquito movement

We represent the coverage of the intervention—i.e., the proportion of Wolbachia-infected

mosquitoes—in the two arms with Ct(t) and Cc(t). In the case of mosquito movement, there may

be non-zero coverage of intervention in the control arm (i.e., Cc>0), and less than 100%

coverage in the treatment arm (i.e., Ct < 1). Hence we set C(t) = (Cc(t), Ct(t)) and P = I.

Here we are assuming that movement of mosquitoes between trial arms does not

directly contribute to DENV transmission via movement of DENV-infected mosquitoes. This

discrepancy can be reconciled by the fact that the spread of dengue virus occurs within a single

mosquito generation, whereas the spread of Wolbachia occurs over the course of multiple

generations.

3. Bias from human movement

Let ϱij represent the ijth element of P,—i.e., the proportion of the total time at risk that a resident

of cluster i spends in cluster j. To account for human movement, but no transmission coupling,

we set C(t) = (ϱct, ϱtt) and P = I. This is because in this scenario, the wMel coverage in the

treatment arm is 1, and in the control arm is 0, so the experienced wMel exposure reduces to

the time spent in the treatment arm.

4. Bias from human movement and mosquito movement

We now have both human and mosquito movement, so we set

C(t) = (ϱccCc(t) + ϱctCt(t), ϱtcCc(t) + ϱttCt(t)), and P = I. Note that, by definition, 𝜚tt + 𝜚tc = 1 and 𝜚cc

+ 𝜚ct = 1.
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5. Bias from human movement and transmission coupling

Thus far, we have assumed that transmission in each arm is only a function of prevalence in

that arm, and not in the other. To relax this assumption, we couple transmission between the

two arms by varying P. In the presence of human movement but not mosquito movement, we

set C = (0, 1) and P = (ϱcc, ϱct; ϱtc, ϱtt).

6. Bias from human movement, mosquito movement, and transmission coupling

Finally, we include all three forms of bias by again setting P = (ϱcc, ϱct; ϱtc, ϱtt), and

C = (Cc(t), Ct(t)).

Efficacy calculation

The ratio of the IARs in the treatment and control clusters is an infection risk ratio. However, the

AWED trial based their efficacy calculations upon an odds ratio [7], with symptomatic,

virologically-confirmed dengue as the end point. That is, efficacy in the trial was computed as

1-ptnc/pcnt, where pi and ni represent enrolled test-positives and test-negatives, respectively, in

trial arm i. To generate a comparable quantity, we computed the efficacy according to model x

as

, (S5)𝐸𝑓𝑓(𝑥) = 1 −
π(𝑥)

𝑡

π(𝑥)
𝑐

1−π(𝑥)
𝑐

1−π(𝑥)
𝑡

where 𝜋(x)
i is the infection attack rate in trial arm i∈{c,t} for model x∈{0,h,m,hm,ht,hmt}. Here,

we are assuming that the ratio of infections to enrolled test-positives does not differ between

arms (i.e., pi=kp𝜋i for i∈{c,t}) and similarly the ratio of those uninfected to enrolled test-negatives

also does not differ between arms (i.e., ni=kn(1-𝜋i) for i∈{c,t}). If either of these assumptions
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were violated, for instance if the intervention affected either the proportion of dengue infections

that were symptomatic, then our estimate of efficacy would be less comparable to the estimate

used in the AWED trial.

Bias calculation

We calculated the bias due to a particular source as the difference in the efficacy between a

model with that source of bias and a model without that source of bias. As biases appear in

multiple models, this led to three ways to embed the models, and three corresponding ways to

quantify each bias. The three embeddings are: A) no bias → mosquito movement → human

movement + mosquito movement → full model; B) no bias → human movement → human

movement + mosquito movement → full model; and C) no bias → human movement → human

movement + transmission coupling → full model. The difference between efficacy estimates for

adjacent models in an embedding will lead to an expression for the bias which differs between

the two models. Hence, the three possible ways to calculate each of the three sources of bias

yields

(S6A)𝑏𝑖𝑎𝑠(𝑚)
𝐴

= 𝐸𝑓𝑓 (𝑚) − 𝐸𝑓𝑓 (0)

(S6B)𝑏𝑖𝑎𝑠(𝑚)
𝐵

= 𝐸𝑓𝑓 (ℎ𝑚) − 𝐸𝑓𝑓(ℎ)

(S6C)𝑏𝑖𝑎𝑠(𝑚)
𝐶

= 𝐸𝑓𝑓 (ℎ𝑚𝑡) − 𝐸𝑓𝑓 (ℎ𝑡)

(S7A)𝑏𝑖𝑎𝑠(ℎ)
𝐴

= 𝐸𝑓𝑓 (ℎ𝑚) − 𝐸𝑓𝑓 (𝑚)

(S7B)𝑏𝑖𝑎𝑠(ℎ)
𝐵

= 𝐸𝑓𝑓 (ℎ) − 𝐸𝑓𝑓 (0)

(S7C)𝑏𝑖𝑎𝑠(ℎ)
𝐶

= 𝐸𝑓𝑓 (ℎ) − 𝐸𝑓𝑓 (0)

(S8A)𝑏𝑖𝑎𝑠(𝑡)
𝐴

= 𝐸𝑓𝑓 (ℎ𝑚𝑡) − 𝐸𝑓𝑓 (ℎ𝑚)
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(S8B)𝑏𝑖𝑎𝑠(𝑡)
𝐵

= 𝐸𝑓𝑓 (ℎ𝑚𝑡) − 𝐸𝑓𝑓 (ℎ𝑚)

. (S8C)𝑏𝑖𝑎𝑠(𝑡)
𝐶

= 𝐸𝑓𝑓 (ℎ𝑡) − 𝐸𝑓𝑓 (ℎ)

We then calculate the average total bias caused by each source of bias as

, (S9)𝑏𝑖𝑎𝑠(𝑖) = 𝑗∈{𝐴,𝐵,𝐶}
∑ 𝑏𝑖𝑎𝑠(𝑖)

𝑗

3

where i∈{h,m,t}. Note that bias(t)
A=bias(t)

B and bias(h)
B=bias(h)

C, but it is necessary to include each

as a separate term so that each of the three model embeddings is included equally.

Model Parameterization

Apportionment of Time at Risk

We considered a checkerboard arrangement for the treatment and control clusters in a trial

across a two-dimensional landscape (Fig. 1A, Fig. S10). Under this scenario, we assume that

the population density per unit area is constant and that transmission potential, as captured by

R0, is homogeneous across the landscape prior to initiation of the trial.

At the core of this derivation is the assumption that the location where an individual j

resides who was infected by an individual i is determined by an isotropic transmission kernel,

, where x and y are the spatial coordinates for the residence of each of i and𝑘( 𝑥
𝑖

− 𝑥
𝑗| |, 𝑦

𝑖
− 𝑦

𝑗| |)
j. We use a Laplace distribution with marginal density functions for each of the x and y

coordinates,

(S10)𝑘(𝑥
𝑗
|µ = 𝑥

𝑖
, 𝑏) = 1

2𝑏 𝑒
−

𝑥
𝑗
−µ| |
𝑏  

. (S11)𝑘(𝑦
𝑗
|µ = 𝑦

𝑖
, 𝑏) = 1

2𝑏 𝑒
−

𝑦
𝑗
−µ| |
𝑏  
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where 𝜇 is the location parameter and b is the scale parameter [30]. The scale parameter b is

equal to the average distance in one direction between the locations where infector and infectee

reside.

Under the checkerboard arrangement, we considered alternating squares of width δ

corresponding to treatment and control clusters within a contiguous urban area (Fig. 1A).

Although any such area would have borders in reality, we ignored any possible edges effects

and assumed that the extent of interactions between squares of type t and c in the interior of the

checkerboard provide a suitable characterization of overall interaction between individuals

residing in t and c, as summarized by ρtt and ρcc. Because the area and arrangement of t and c

squares are identical, ρtt = ρcc and ρtc = ρct (Fig. 1A).

We approach this problem by first calculating the proportion of time at risk that an

individual i residing on a line within in an interval of width 𝛿=𝜇r-𝜇l experiences in an adjacent

interval of width Δ. Let the former interval span [𝜇l,𝜇r] and the latter interval span [𝜇r,𝜇r+Δ]. If i

resides specifically at 𝜇, then the proportion of its time at risk in the other interval is

. (S12)𝐹(µ
𝑟

+ ∆|µ, 𝑏) − 𝐹(µ
𝑟
|µ, 𝑏)

where F(·) is the Laplace distribution function. To average across all individuals i, we can

integrate according to

. (S13)𝐴
δ,∆

= 1
δ

µ
𝑙

µ
𝑟

∫(𝐹(µ
𝑟

+ ∆|µ, 𝑏) − 𝐹(µ
𝑟
|µ, 𝑏))𝑑µ
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which gives the proportion of time in the interval of length Δ for an individual who resides in the

interval of length 𝛿. Given that the Laplace distribution function is F(x|𝜇,b)=1-½exp(-(x-𝜇)/b)

when x >𝜇 , eqn. (S25) evaluates to

. (S26)𝐴
δ,∆

= 𝑏
2δ (1 − 𝑒−δ/𝑏 − 𝑒−∆/𝑏 + 𝑒−(δ+∆)/𝑏 )

We can quantify the proportion of time at risk in the interval of width 𝛿 for individuals who reside

there as

. (S14)𝐴
δ

= 1 − 2
∆ ∞
lim
→

𝐴
δ,∆

= 1 − 𝑏
δ (1 − 𝑒−δ/𝑏)

We also need to calculate the time at risk in a non-adjacent interval of width 𝛿3 whose edge is

spaced distance 𝛿2 away from the nearest edge of the interval where the individual resides,

which has width 𝛿1. Applying similar reasoning as in eq. (S25), we obtain

. (S15)𝐴
δ

1
,δ

2
,δ

3

= 𝑏
2δ

1
(𝑒

 −δ
2
/𝑏

− 𝑒
−(δ

1
+δ

2
)/𝑏

− 𝑒
−(δ

2
+δ

3
)/𝑏

+ 𝑒
−(δ

1
+δ

2
+δ

3
)/𝑏 

)

We can calculate the proportion of time spent in like squares by applying the probabilities used

to calculate the proportions of time at risk for residents who live under treatment or not. Going

out three layers from a focal square (Fig. S10), the proportion of time spent in like squares is

, (S16)𝐵 = 𝐴
δ

2 + 4𝐴
δ,δ
2 + 4𝐴

δ,δ,δ
𝐴

δ
+ 4𝐴

δ,δ,δ
2 + 8𝐴

δ,2δ,δ
𝐴

δ,δ
+ 4𝐴

δ,2δ,δ
2

and the proportion of time spent in unlike squares is
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. (S17)𝐶 = 4𝐴
δ,δ

𝐴
δ

+ 8𝐴
δ,δ,δ

𝐴
δ,δ

+ 4𝐴
δ,2δ,δ

𝐴
δ

+ 8𝐴
δ,2δ,δ

𝐴
δ,δ,δ

The total proportion of time under treatment or not is then

(S18)ρ
𝑐𝑐

= ρ
𝑡𝑡

= 𝐵
𝐵+𝐶

. (S19)ρ
𝑡𝑐

= ρ
𝑐𝑡

= 𝐶
𝐵+𝐶

Hence, for a checkerboard arrangement of clusters, the proportion of time which each individual

spends in each arm of the trial is uniquely determined by the width of each cluster (δ) and the

scale of human movement (b).

Calculation of  Initial Susceptibility, force of infection, and R0

To obtain an estimate of initial susceptibility, we followed ten Bosch et al. [31] and calculated the

proportion of the population exposed to n serotypes,∀n∈{0,1,2,3,4}, as a function of age.

Following ten Bosch et al. [31], we defined ei(a) as the proportion of individuals of age a that

have been exposed to i serotypes and ri(a) as the proportion of individuals of age a experiencing

temporary heterologous immunity following exposure to i serotypes. The dynamics of how

individuals progress through these classes as they age follows

(S20)
𝑑𝑒

0

𝑑𝑎 =− 4Λ𝑒
0

(S21)
𝑑𝑟

𝑖

𝑑𝑎 |
𝑖=1,..,4

= (4 − (𝑖 − 1))Λ𝑒
(𝑖−1)

− σ𝑟
𝑖

. (S22)
𝑑𝑒

𝑖

𝑑𝑎 |
𝑖=1,..,4

= σ𝑟
𝑖

− (4 − 𝑖)Λ𝑒
𝑖
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In eqs. (S33-S35), Λ = 0.0457 is the force of infection, and is the rate at which individuals loseσ

heterologous immunity, which we set to 0.5/yr [31].

We computed the proportion of the population in Yogyakarta, Indonesia that is of age a

using estimates from the United Nations World Population Prospects database [32] and

computed the proportion of the population that is susceptible to their (i+1)th infection as

. (S23)𝐸
𝑖

=
𝑎
∑(𝑝(𝑎)𝑒

𝑖
(𝑎))

It follows that initial susceptibility is equal to

, (S24)𝑆' = 𝐸
0 

+ 3
4 𝐸

1
+ 1

2 𝐸
2

+ 1
4 𝐸

3

provided that the force of infection for each serotype has been constant over time. For the

assumed values of Λ and σ, S’ = 0.341 for Yogyakarta, Indonesia.

We used data on seropositivity by age from Yogyakarta [29] to estimate the mean annual

force of infection using the above catalytic model (Fig. S3). This led to an estimate of the mean

annual per-serotype force of infection of 0.0457.
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Fig. S3: Force of infection estimation. The circles show the proportion of individuals that are

seropositive by age group in Yogyakarta, and the thin vertical lines show the 95% binomial

confidence intervals, both from Indriani et al. [29]. The thick black line shows the proportion that

would be expected to be seropositive according to the catalytic model with a per-serotype force

of infection of 0.0457.

To estimate R0 from Λ and S’, we use the formula:
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, (S25)𝑅
0

=
𝑙𝑜𝑔(𝑆

𝑓
)−𝑙𝑜𝑔(𝑆')

𝑆
𝑓
−𝑆'

where Sf is the proportion susceptible after an outbreak. Here we estimate R0 based on one

season’s transmission, i.e., , yielding R0 = 3.21. We incorporate this estimate𝑆
𝑓

= 𝑆'𝑒𝑥𝑝(− 4Λ)

of R0 into the transmission model by assuming that the mean value of β(t) (i.e. β0) is related to

R0 by , i.e. we assume that R0 represents the number of secondary infections in a fullyβ
0

= 𝑅
0
γ

susceptible population in the absence of seasonality. It is likely that this leads to an overestimate

of β0, though our model still accurately recreates the typical epidemic peaks and troughs of

Yogyakarta (Fig. S2).

Spatial Scale of Human Movement

Our calculations of the apportionment of time at risk depend upon a value of , the spatial scale𝑏

of human movement, a quantity that is challenging to parameterize. To do this, we first estimate

the relative risk (RR) of 100% wMel coverage compared to 0% wMel coverage, based on the

per-protocol analysis in Utarini et al. In that analysis, the authors estimated a weighted wMel

exposure level based on human movement diaries and local wMel frequency over time. This is

essentially the product of the wMel frequency in a location and the amount of time an individual

spent there, and then summed over all of the locations at which that individual spent time. They

then binned individuals into five equal width groups based on their exposure index and

calculated the RR of infection compared to the lowest exposure group (Fig. S4). To estimate the

RR of 100% exposure compared to 0%, we fit a logistic curve to the binned RR values (using

the midpoints of each bin) and calculate the RR of 100% compared to 0%. This yields a RR of

0.18, or equivalently an efficacy of 82%.
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Fig. S4. Efficacy adjusted for human movement. Circles and associated confidence intervals

show the relative risk at different levels of the wMel exposure index compared to the [0, 0.2)

group, according to the per-protocol analysis in Utarini et al. [7]. The horizontal red lines show

the relative risk from the intention-to-treat analysis in the same paper. The dashed horizontal

indicates a relative risk of 1. The black line indicates a logistic curve fit to the estimates of

relative risk from the per-protocol analysis.
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To inform our selection of , we compared the model with all of the biases included to the𝑏

one with only human movement and transmission coupling. We then selected a value of b which

enabled us to select a single value of ε that would lead to 77% efficacy in the full model, and

82% efficacy in the model with human movement and transmission coupling (Fig. S5). This

yielded a value of m, corresponding to and for the𝑏 = 36. 9 ρ
𝑡𝑡

= ρ
𝑐𝑐

= 0. 929 ρ
𝑡𝑐

= ρ
𝑐𝑡

= 0. 071

checkerboard arrangement.
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Fig. S5: Estimation of scale of human movement.

wMel coverage

When modeling mosquito movement between trial arms, we use data on the time-varying wMel

coverage in each trial arm from the AWED trial [7]. We average across clusters within each arm

to find the average coverage over time. As we don’t explicitly model mosquitoes or their
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movement, these averaged time series are then used directly in the model. They are shown in

Fig. S6 and are represented in the model by C(t) = (Cc(t), Ct(t)), where Cc(t) is given in the left

panel and Ct(t)  in the right. When mosquito movement is not modeled, C(t) = (0, 1), for all t.

Fig. S6. wMel frequency in the AWED trial [7]. Each thin gray line shows the wMel frequency

over time in one of the treatment (A) or control (B) clusters. The red line and points show the

average of these, which is what was used in the model.
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Supplementary Figures

Fig. S7: Infection attack rates for each of the six models, delineated by control and
intervention arms.
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Fig. S8: The total bias introduced by each of the three biases. These biases are calculated
by subtracting the efficacy of a model with that bias from a model without it, and as biases
appear in multiple models there are three possible ways to quantify each bias. These different
ways are shown with different line types. For transmission coupling and human movement, two
of the ways are equivalent and so these are shown with a thicker line.
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Fig. S9: The contribution of each source of bias to the total bias. Each panel shows a
different way of calculating the contribution due to that source of bias, which is calculated as the
difference in efficacy of a model without that bias and a model with that bias. This can be
thought of as embedding the models, and subtracting adjacent pairs of models, so that the sum
of each pair of models is equal to the total bias. The embeddings in each panel are: A: no
bias→mosquito movement→human movement + mosquito movement→full model. B: no
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bias→human movement→human movement + mosquito movement→full model. C: no
bias→human movement→human movement + transmission coupling→full model.

Fig. S10: Diagram of the checkerboard arrangement. Cell coloring refers to whether or not
someone is the treatment or control cluster. In this case, the central cluster is an individual’s
home cluster. Ai describes the proportion of time someone spends in a cluster i clusters from
their home cluster in one direction. AiAj is then the proportion of time someone spends in a
cluster i clusters away in one direction, and j in the other.
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