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Abstract

Wolbachia is an intracellular bacterium that many hope could have a major impact on dengue

and other mosquito-borne diseases that are notoriously difficult to control. The balance of future

investments in Wolbachia versus other public health needs will be informed to a great extent by

efficacy estimates from large-scale trials, which can be affected by multiple sources of bias. We

used mathematical models to quantify the possible magnitude of these biases, finding that

efficacy would have been severely underestimated in a recent trial in Indonesia if the spatial

scale of clusters had been smaller than it was. We also identified a previously unrecognized

source of bias owing to the coupled nature of transmission dynamics across clusters. This too

led to a consistent underestimate of the protection afforded by Wolbachia. Taken together, our

findings suggest that this intervention may be even more promising than currently recognized.

Main text

Dengue virus (DENV) poses a risk to around half the world’s population due to the

widespread abundance of its Aedes mosquito vectors1. Historically, the success of dengue

control has been limited by challenges such as the expanding distribution of Aedes aegypti due

to urbanization and land-use changes, and ineffective or sub-optimally applied control

strategies2,3. One novel control strategy that holds promise is the release of mosquitoes infected

with Wolbachia, a vertically transmitted intracellular bacteria that reduces the ability of Aedes

aegypti mosquitoes to transmit DENV4. A cluster-randomized, controlled trial conducted
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between 2018 and 2020 in Yogyakarta, Indonesia (Applying Wolbachia to Eliminate Dengue,

AWED)5,6 estimated that release of Wolbachia-infected mosquitoes had a protective efficacy

against symptomatic, virologically-confirmed dengue of 77.1% (95% confidence interval:

65.3-84.9%)7.

Although the estimated protective efficacy of Wolbachia in the AWED trial was high,

several features of the trial design may have resulted in it being an underestimate. First,

because the trial was conducted by dividing a single city into clusters where Wolbachia-infected

mosquitoes were or were not released, humans moved freely between control and treated

clusters, potentially increasing the exposure to DENV of study subjects residing in treatment

clusters and lowering the exposure of subjects residing in control clusters8. Second, an

appreciable proportion of mosquitoes in control clusters were infected with Wolbachia

(approximately 0-10% at the start of the trial and 10-80% at the completion of the trial7),

lowering these mosquitoes’ ability to transmit DENV and introducing a source of contamination

across trial arms. Third, the dynamic, spatially localized nature of DENV transmission9,10 implies

that suppression of transmission in treated clusters could influence transmission in neighboring

control clusters, thereby reducing incidence in both trial arms. Hereafter, we refer to each of

these three forms of bias as “human movement,” “mosquito movement,” and “transmission

coupling,” respectively.

Failure to account for each of these possible biases would lead to a reduced estimate of

efficacy. In their per-protocol analyses, Utarini et al.7 acknowledged the potential effects of

human and mosquito movement by incorporating recent travel and Wolbachia prevalence into

their efficacy calculations and found that the adjusted efficacy estimates were not greater than

efficacy estimated from the intention-to-treat analysis. Nevertheless, the AWED trial did not

account for transmission coupling, and noted that follow-up analyses were needed to further

explore the potential for bias due to human and mosquito movement. Understanding the

magnitude of such biases is important when seeking to extrapolate the impact of interventions
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across geographical contexts, as has been recently done for the RTS,S/AS01 vaccine11,12 and

the endectocide ivermectin13 for malaria. If failing to account for such transmission dynamics

contributes to an underestimated biological effect of Wolbachia on DENV, we risk incorrectly

assessing its broader impact.

In this study, we used a simple mathematical model of DENV transmission to gain insight

into the possible magnitudes of these three sources of bias. Our approach involved translating

model inputs of the basic reproduction number (R0), population susceptibility (S), the spatial

scale of human movement (b), and the proportional reduction in R0 afforded by

Wolbachia-infected mosquitoes (ε) into outputs of the infection attack rate (IAR) in control and

treatment arms of a trial, in accordance with a structured, susceptible-infectious-recovered (SIR)

model14. We assumed a checkerboard pattern of control and treatment arms of 1 km2 to

approximate the design used in the AWED trial, which covered the entire city of Yogyakarta with

neighboring areas assigned to one arm or another in an (approximately) alternating pattern (Fig.

1A)7. We used the outputs of IAR in treatment and control arms (IARt and IARc, respectively) to

obtain an estimate of the odds ratio of infection, and thereby an estimate of the efficacy of the

intervention, Eff = 1 - OR. This is comparable to the measure of efficacy used in the AWED trial,

which also used 1 - OR, but in a test-negative design with virological-confirmed symptomatic

dengue as the primary end point (see Online Methods for a justification of the comparability of

these approaches). We constructed six different model versions for estimating efficacy, each of

which includes different combinations of the three biases, all of them, or none of them.

Henceforth, we refer to the efficacy observed in the AWED trial as “observed efficacy,” and the

efficacy estimated by a given model and ε as “estimated efficacy.” Finally, we quantify each bias

as the difference in the efficacy estimated by a model including that bias and a model which

does not include that bias (see Online Methods for more details of our methods).
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Fig. 1: The spatial scales of transmission and trial design. A: Idealized trial design. We used
a checkerboard pattern to approximate the design of the AWED trial of Wolbachia-infected
mosquitoes to control dengue7. represents the amount of time an individual who lives in arm iρ

𝑖𝑗
spends in arm j, where i and j can represent either control or treatment. b describes the scale of
human movement. B: The relationship between the scale of human movement and the amount
of time individuals spend in clusters of the same type as their home cluster. C: The relationship
between the reduction in R0 (ε) required to reproduce the observed efficacy in the AWED trial
and the time people spend in their allocated arm. In this panel and panels E and F, the dark blue
line corresponds to the observed mean estimated in the AWED trial whereas the light blue line
and shaded region correspond to the 95% confidence intervals. D: The relationship between ε
and the estimated efficacy when b = 60 m. The black line shows the theoretical relationship
between a reduction in R0 and observed efficacy, assuming no mosquito movement and no
human movement between arms. The blue line shows this relationship if we include these two
factors as well as the effect of transmission coupling. The dark and light blue squares indicate
the mean and the 95% confidence interval respectively of the observed efficacy in the AWED
trial and the corresponding reduction in R0. E: The relationship between the amount of time
people spend in their allocated arm and the estimated efficacy. F: The relationship between the
size of the clusters and the estimated efficacy. In all panels, parameters are at their baseline
given in Table S1 unless otherwise stated.

The relationship between the efficacy estimated by the model with all three forms of bias

(the estimated efficacy) and the reduction in R0 (ε) was dependent on the amount of time people

spent in their allocated arm (Fig. 1C)—the less time individuals spent in their allocated arm, the
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higher the reduction in R0 that was needed to recreate the observed efficacy from the AWED

trial. If individuals spent less than 82.5% of their time in their allocated arm, it was impossible to

generate the observed efficacy (77.1%), as that would have implied that ε exceeded 1.

Assuming that individuals spent 88.7% of their time in their allocated arm (corresponding to b =

60 m, see Online Methods), we found that the observed efficacy (77.1% [95% CI: 65.3% -

84.9%]) corresponded to an ε of 70.3% (95% CI: 52.4% - 94.3%) (Fig. 1D, blue line). If we

instead assumed that there was no movement between trial arms, we observed that much

smaller values of ε were needed to explain the observed efficacy (28.0% [95% CI: 24.5% -

30.3%]). The difference between these estimates provides an indication of the extent of bias

introduced by assuming that humans and mosquitoes remain in their allocated arms, when they

in fact do not (Fig. 1D).

When we fixed ε to the value that reproduces the observed efficacy in the AWED trial for

b = 60 m, and increased human movement between arms by increasing b, the estimated

efficacy by the model accounting for all three forms of bias decreased (Fig. 1E). For example,

increasing the average distance in one direction between transmission pairs (b) from 60 m to

120 m caused a relative reduction of 25.0% in estimated efficacy, highlighting the sensitivity of

efficacy to the spatial scale of human movement. This effect occurs for two reasons: firstly, as

people spend less time in their allocated arm, the time that people spend under the intervention

becomes more similar between arms; and secondly, as fewer people are infected overall, the

local force of infection is reduced over time in both arms. Relatedly, estimated efficacy

depended on the dimensions of the trial clusters, which we set to 1 km2 by default (Fig. 1F).

When we reduced the cluster dimensions to 500 m x 500 m, estimated efficacy dropped from

77.1% to 57.8%, representing a 25.0% relative reduction. This effect occurs because as the

cluster dimensions reduce, people spend less time in their home cluster and, hence, the time

spent in each trial arm approaches parity (i.e., 50%). Increasing cluster dimensions above 1 km2
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had less of an effect on estimated efficacy. For example, increasing the cluster dimensions to 2

km x 2 km resulted in an estimated efficacy of 87.9%, a relative increase of 14.0%.

Our approach enabled us to directly and separately model each of the three potential

sources of bias: (1) mosquito movement, (2) human movement, and (3) transmission coupling.

When we assumed that ε was equal to 70.3%, allowing for mosquito movement but not human

movement produced an estimated efficacy of 100%, because there was no transmission in the

intervention arm in that case (Fig. 2A, Fig. S1). If we allowed for both mosquito movement and

human movement, we observed a lower estimated efficacy of 89.3%. Although there was no

transmission in the intervention arm in this case, individuals residing in the intervention arm

could be infected in the control arm. Additionally, those assigned to the control arm experienced

lower overall risk due to their time spent in the intervention arm. When we accounted for

transmission coupling between trial arms alongside human and mosquito movement, thereby

allowing for transmission in the intervention arm, risk was the most similar across the trial arms

of all scenarios, leading to the lowest estimated efficacy of 77.1% when ε was 70.3%.
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Fig. 2: Sources of bias in efficacy estimates. In both panels, yellow refers to mosquito
movement, red to human movement, and blue to transmission coupling. A: The relationship
between the reduction in R0 (ε) and the estimated efficacy for the six possible models. The black
line here is the relationship for a model with no human movement or mosquito movement.
Where a line has more than one color, it represents the model which includes each of the types
of bias represented by those colors. The difference between this line and each of the colored
lines represents the bias introduced by not accounting for the features present in the model
described by that colored line. B: the contribution of each source of bias to the total bias.

We quantified total bias as Eff(hmt) - Eff(0), where Eff(hmt) is the estimated efficacy under the

model with all sources of bias and Eff(0) is the estimated efficacy under the model without human

or mosquito movement. We then computed the difference in the bias produced by pairs of

models to decompose overall bias into each of its three sources (Fig. 2B, Fig. S2-3, see Online

methods for details). At the baseline ε of 70.3%, 2.8% of the total bias was attributable to
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mosquito movement, 44.9% to human movement, and 52.3% to transmission coupling. For the

highest and lowest values of ε, the greatest source of bias was human movement between trial

arms. At intermediate levels of ε, the relative (Fig. 2B) and absolute (Fig. S2) contributions of

transmission coupling to bias were greatest. When ε was below a value of around 35%, the

effective reproduction number at the start of the trial exceeded 1 in both arms. This value of ε

varied slightly based on the model used (Fig. S2-3), but was always approximately 1 - 1/(S0R0).

When ε was below this critical value, increasing it in the context of coupled transmission

reduced incidence in the control arm and caused smaller reductions in incidence in the

intervention arm than if transmission had been uncoupled (Fig. S1, e.g. panels D vs. F). This

implies that the bias introduced by transmission coupling increases as ε increases up to ~35%

under our model’s parameterization (Fig. 2B). Increasing ε past this point does not lead to

further reductions in incidence in the intervention arm in an uncoupled model, as incidence is

already minimized. However, for the model with coupled transmission, incidence can continue to

decrease in both arms as ε increases. Hence, the relative difference between arms for a

coupled model compared to an uncoupled model increases at higher values of ε. In other words,

the bias caused by transmission coupling decreases while the bias caused by human

movement continues to increase (Fig. S2).

Our results highlight three sources of bias (human movement, mosquito movement, and

transmission coupling) that arise in large, cluster-randomized, controlled trials of interventions

against mosquito-borne diseases, and have implications for how to mitigate these biases.

Biases arising due to human movement and mosquito movement are typically able to be

addressed through careful statistical analysis of trial data or in the design of the trial8. For

instance, in the analysis of the AWED trial, Utarini et al. accounted for these two forms of bias

by combining self-reported recent travel and local Wolbachia prevalence into an individual-level

Wolbachia exposure index7. Comparing groups with the highest and lowest Wolbachia exposure

did not lead to higher efficacy estimates than their primary analysis. Another recently proposed
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approach to addressing contamination involves describing the effectiveness of the intervention

at the boundary between clusters using a sigmoid function15,16. Our results suggest that failure to

take steps such as this to account for human and mosquito movement would typically lead to

underestimated efficacy, while failure to account for transmission coupling would lead to an even

greater underestimate, particularly at intermediate reductions in R0.

Bias arising from human and mosquito movement could also be mitigated at the stage of

planning the trial. The classical design to achieve this is the ‘fried-egg’ design, in which a treated

buffer-zone is placed between intervention and control clusters17. A more recently proposed

approach involves excluding a subset of clusters from the trial completely, thereby increasing

the distance between clusters and leading to disconnected clusters at less risk of

contamination18. While both of these approaches do mitigate the risk of contamination directly,

they also necessitate a larger trial area, and may be logistically infeasible in a trial taking place

in a single city, such as the AWED trial. Another approach could include reducing the number of

clusters, but keeping total area fixed, leading individuals to spend more time in their assigned

arm and reducing mosquito movement by reducing the boundary between clusters. Our results

show that the efficacy estimated from cluster-randomized, controlled trials of interventions

against mosquito-borne diseases is highly sensitive to cluster size (Fig. 1F). Had the dimensions

of the clusters in the AWED trial been much smaller, then the estimated efficacy may have been

substantially lower. However, having fewer large clusters would likely introduce new biases by

making the arms less comparable, which may not be an acceptable trade-off.

While bias due to human and mosquito movement can be mitigated through trial design

and statistical methods, our results highlight a third source of bias, transmission coupling, that

requires other tools to fully address. Accounting for this bias first requires data on the spatial

distribution of the intervention and on human movement, similar to that used in the

supplementary analysis of the AWED trial. However, it also requires interfacing these data with

a dynamical transmission model to account for the fact that, in the presence of movement
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between arms, incidence in each arm depends on prevalence in both arms19. It may also be

possible to design a trial in ways that reduce the bias due to transmission coupling, for instance

by allocating a greater proportion of the trial area to the intervention arm, with small intervention

clusters situated among larger control clusters so that transmission suppression in the

intervention arm has less of a population-level effect. The ratio of area allotted to treatment and

control would depend on many factors, including the expected strength of the intervention, the

local force of infection, and logistical constraints such as the size and length of the trial. Utilizing

a dynamical model synthesizing these factors in the design of a trial could aid in understanding

how different designs might affect bias due to transmission coupling19. More work is needed to

understand what types of spatial clustering patterns, among other features of trial design, would

minimize this form of bias.

Although our modeling approach allowed us to account for different potential sources of

bias and to attribute the total bias to each of those sources, it has at least three limitations. First,

our model was deterministic, yet stochasticity could be important for a highly efficacious

intervention with potential to reduce transmission to very low levels20. This simplification implies

that our estimates are likely conservative, as these effects could increase the bias due to

transmission coupling if a highly effective intervention increases the probability of transmission

fadeouts. Second, our simple model does not reflect all of the complexities of DENV

transmission. For example, our model does not account for seasonality, so dengue outbreaks in

our model end by susceptible depletion rather than by seasonal reductions21. We also did not

account for spatial heterogeneties in transmission or interactions between serotypes. Accurately

quantifying the contribution of these effects to bias would require a more detailed model, but the

qualitative results would likely be similar. Finally, we did not calibrate our model to trial data.

However, our aim here was not to precisely quantify bias in the AWED trial, but rather to

highlight some potential sources of bias in trials of that nature and to understand how these

biases are influenced by transmission dynamics and human mobility. Moreover, although our
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estimate of R0 may not be reflective of the transmission context during the AWED trial, our

qualitative results were robust to different values of R0.

In conclusion, without accounting for human movement, mosquito movement, and

transmission coupling, the efficacy of Wolbachia-infect mosquitoes as an intervention to control

dengue is likely to be underestimated. As the estimate of efficacy in the AWED trial was already

very high (77.1% [95% CI: 65.3% - 84.9%])7 and, as we show, likely underestimated,

Wolbachia-infected mosquitoes have potential to be a game-changing tool in the fight against

dengue. Even as vaccines against dengue become available, a variety of vector control

approaches are likely to remain key tools in the fight against dengue2,22. Although we focused

our study on a trial of Wolbachia-infected mosquitoes, our findings are applicable to any efficacy

trial of an intervention that has the potential to contaminate the control arm, such as gene drive

mosquitoes or ivermectin as interventions against malaria23,24. As trials of these interventions

continue, it will be important to learn what lessons we can from transmission dynamic modeling

when designing and interpreting future trials, to ensure that we understand the true promise of

these interventions.
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Online Methods

Attack rate models

Let ε represent the effectiveness of the intervention, defined as the reduction in the

pre-intervention basic reproduction number, R0, when the intervention is applied at full coverage

in a treatment cluster. Hence,

(S1)𝑅
0,𝑡

= (1 − ε)𝑅
0

. (S2)𝑅
0,𝑐

= 𝑅
0

Given the epidemic behavior of an SIR model, our interest is in quantifying the infection attack

rate (IAR), 𝜋, within each cluster during a trial. We do this for three different types of bias:

human movement between arms, mosquito movement between arms, and transmission

coupling between arms. This results in six different models, as transmission coupling can only

occur in the presence of human movement, which are described below.

1. No bias

In the absence of contamination from human movement or mosquito movement between arms,

an implicit solution for 𝜋t
(0) and 𝜋c

(0) can be obtained from

(S3)π
𝑡
(0) = 𝑆'(1 − 𝑒

−(1−ε)𝑅
0
π

𝑡
(0)

)

, (S4)π
𝑐

(0) = 𝑆'(1 − 𝑒
−(1−ε)𝑅

0
π

𝑐
(0)

)

as described by Miller 14. In eqs. (S3-S4), S′ is the initial susceptibility of the population, which is

assumed to be equal in treatment and control clusters.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.11.19.21266602doi: medRxiv preprint 

https://paperpile.com/c/miOHhZ/u9cw
https://doi.org/10.1101/2021.11.19.21266602
http://creativecommons.org/licenses/by/4.0/


2. Bias from human movement

Let ϱij represent the proportion of the total time at risk that a resident of cluster i spends in

cluster j. We calculate the effect of movement on the infection attack rates as weighted

averages of the IARs computed under the no-bias scenario,

(S5)π
𝑡
(ℎ) = ρ

𝑡𝑡
π

𝑡
(0) + ρ

𝑡𝑐
π

𝑐
(0)

, (S6)π
𝑐

(ℎ) = ρ
𝑐𝑐

π
𝑐

(0) + ρ
𝑐𝑡

π
𝑡
(0)

because 𝜚tt + 𝜚tc = 1 and 𝜚cc + 𝜚ct = 1.

3. Bias from mosquito movement

We represent the coverage of the intervention—i.e., the proportion of Wolbachia-infected

mosquitoes—in the two arms with Ct and Cc. In the case of mosquito movement, there may be

non-zero coverage of intervention in the control arm (i.e., Cc>0), and less than 100% coverage

in the treatment arm (i.e., Ct < 1). To calculate the attack rate under mosquito movement, we

adjust the effectiveness in each arm, yielding

(SX1)𝑅
0,𝑡

= (1 − 𝐶
𝑡
ε)𝑅

0

. (SX2)𝑅
0,𝑐

= (1 − 𝐶
𝑐
ε)𝑅

0

This leads to the following implicit solutions for 𝜋t
(m) and 𝜋c

(m):

(SX3)π
𝑡
(0) = 𝑆'(1 − 𝑒

−(1−𝐶
𝑡
ε)𝑅

0
π

𝑡
(𝑚)

)
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, (SX4)π
𝑐

(0) = 𝑆'(1 − 𝑒
−(1−𝐶

𝑐
ε)𝑅

0
π

𝑐
(𝑚)

)

Here we are assuming that movement of mosquitoes between trial arms does not directly

contribute to transmission via movement of infected mosquitoes. This discrepancy can be

reconciled by the fact that the spread of dengue virus occurs within a single mosquito

generation, whereas the spread of Wolbachia occurs over the course of multiple generations.

4. Bias from human movement and mosquito movement

We calculated the combined effect of mosquito movement and human movement on the

infection attack rates, 𝜋t
(hm) and 𝜋c

(hm), in a similar fashion to 𝜋t
(h) and 𝜋c

(h) in eqs. (S5-S6). The

only difference was that the intervention coverages, Ct and Cc, used in eqs. (SX3-SX4) were

incorporated to account for mosquito movement, leading to

(S5)π
𝑡
(ℎ𝑚) = ρ

𝑡𝑡
π

𝑡
(𝑚) + ρ

𝑡𝑐
π

𝑐
(𝑚)

. (S6)π
𝑐

(ℎ𝑚) = ρ
𝑐𝑐

π
𝑐

(𝑚) + ρ
𝑐𝑡

π
𝑡
(𝑚)

5. Bias from human movement and transmission coupling

Thus far, we have assumed that transmission in each arm is only a function of prevalence in

that arm, and not in the other. To relax this assumption, we couple transmission between the

two arms according to a dynamic two-patch transmission model. We then follow Miller14 and

calculate an implicit solution for the infection attack rates in both clusters under the combination

of both human movement and transmission coupling as

(S7)π
𝑡
(ℎ𝑡) = 𝑆'(1 − 𝑒

−(ρ
𝑡𝑡

(1−ε)𝑅
0
π

𝑡
(ℎ𝑡)+ρ

𝑡𝑐
(1−ε)𝑅

0
π

𝑐
(ℎ𝑡))

)
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. (S8)π
𝑐

(ℎ𝑡) = 𝑆'(1 − 𝑒
−(ρ

𝑐𝑐
(1−ε)𝑅

0
π

𝑐
(ℎ𝑡)+ρ

𝑐𝑡
(1−ε)𝑅

0
π

𝑡
(ℎ𝑡))

)

6. Bias from human movement, mosquito movement, and transmission coupling

Finally, we include all three forms of bias by altering equations S7-S8 to account for differential

coverage between arms:

(SX7)π
𝑡
(ℎ𝑚𝑡) = 𝑆'(1 − 𝑒

−(ρ
𝑡𝑡

(1−𝐶
𝑡
ε)𝑅

0
π

𝑡
(ℎ𝑚𝑡)+ρ

𝑡𝑐
(1−𝐶

𝑐
ε)𝑅

0
π

𝑐
(ℎ𝑚𝑡))

)

. (SX8)π
𝑐

(ℎ𝑚𝑡) = 𝑆'(1 − 𝑒
−(ρ

𝑐𝑐
(1−𝐶

𝑐
ε)𝑅

0
π

𝑐
(ℎ𝑚𝑡)+ρ

𝑐𝑡
(1−𝐶

𝑡
ε)𝑅

0
π

𝑡
(ℎ𝑚𝑡))

)

Efficacy calculation

The ratio of the IARs in the treatment and control clusters is an infection risk ratio. However, the

AWED trial based their efficacy calculations upon an odds ratio7, with symptomatic,

virologically-confirmed dengue as the end point. That is, efficacy in the trial was computed as

1-ptnc/pcnt, where pi and ni represent enrolled test-positives and test-negatives, respectively, in

trial arm i. To generate a comparable quantity, we computed the efficacy according to model x

as

, (S9)𝐸𝑓𝑓(𝑥) = 1 −
π(𝑥)

𝑡

π(𝑥)
𝑐

1−π(𝑥)
𝑐

1−π(𝑥)
𝑡

where 𝜋(x)
i is the infection attack rate in trial arm i∈{c,t} for model x∈{0,h,m,hm,ht,hmt}. Here,

we are assuming that the ratio of infections to enrolled test-positives does not differ between

arms (i.e., pi=kp𝜋i for i∈{c,t}) and similarly the ratio of those uninfected to enrolled test-negatives

also does not differ between arms (i.e., ni=kn(1-𝜋i) for i∈{c,t}). If either of these assumptions
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were violated, for instance if the intervention affected either the proportion of dengue infections

that were symptomatic, then our estimate of efficacy would be less comparable to the estimate

used in the AWED trial.

Bias calculation

We calculated the bias due to a particular source as the difference in the efficacy between a

model with that source of bias and a model without that source of bias. As biases appear in

multiple models, this led to three ways to embed the models, and three corresponding ways to

quantify each bias. The three embeddings are: A) no bias→mosquito movement→human

movement + mosquito movement→full model; B) no bias→human movement→human

movement + mosquito movement→full model; and C) no bias→human movement→human

movement + transmission coupling→full model. The difference between efficacy estimates for

adjacent models in an embedding will lead to an expression for the bias which differs between

the two models. Hence the three possible ways to calculate each of the three sources of bias

yield the following equations:

(S10A)𝑏𝑖𝑎𝑠(𝑚)
𝐴

= 𝐸𝑓𝑓 (𝑚) − 𝐸𝑓𝑓 (0)

(S10B)𝑏𝑖𝑎𝑠(𝑚)
𝐵

= 𝐸𝑓𝑓 (ℎ𝑚) − 𝐸𝑓𝑓(ℎ)

(S10C)𝑏𝑖𝑎𝑠(𝑚)
𝐶

= 𝐸𝑓𝑓 (ℎ𝑚𝑡) − 𝐸𝑓𝑓 (ℎ𝑡)

(S11A)𝑏𝑖𝑎𝑠(ℎ)
𝐴

= 𝐸𝑓𝑓 (ℎ𝑚) − 𝐸𝑓𝑓 (𝑚)

(S11B)𝑏𝑖𝑎𝑠(ℎ)
𝐵

= 𝐸𝑓𝑓 (ℎ) − 𝐸𝑓𝑓 (0)

(S11C)𝑏𝑖𝑎𝑠(ℎ)
𝐶

= 𝐸𝑓𝑓 (ℎ) − 𝐸𝑓𝑓 (0)

(S12A)𝑏𝑖𝑎𝑠(𝑡)
𝐴

= 𝐸𝑓𝑓 (ℎ𝑚𝑡) − 𝐸𝑓𝑓 (ℎ𝑚)
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(S12B)𝑏𝑖𝑎𝑠(𝑡)
𝐵

= 𝐸𝑓𝑓 (ℎ𝑚𝑡) − 𝐸𝑓𝑓 (ℎ𝑚)

. (S12C)𝑏𝑖𝑎𝑠(𝑡)
𝐶

= 𝐸𝑓𝑓 (ℎ𝑡) − 𝐸𝑓𝑓 (ℎ)

We then calculate the average total bias caused by each source of bias as

, (S13)𝑏𝑖𝑎𝑠(𝑖) = 𝑗∈{𝐴,𝐵,𝐶}
∑ 𝑏𝑖𝑎𝑠(𝑖)

𝑗

3

where i∈{h,m,t}. Note that bias(t)
A=bias(t)

B and bias(h)
B=bias(h)

C, but it is necessary to include each

as a separate term so that each of the three model embeddings is included equally.

Model Parameterization

Apportionment of Time at Risk

We considered a checkerboard arrangement for the treatment and control clusters in a trial

across a two-dimensional landscape (Fig. 1A, Fig. S4). Under this scenario, we assume that the

population density per unit area is constant and that transmission potential, as captured by R0,

is homogeneous across the landscape prior to initiation of the trial.

At the core of this derivation is the assumption that the location where an individual j

resides who was infected by an individual i is determined by an isotropic transmission kernel,

, where x and y are the spatial coordinates for the residence of each of i and𝑘( 𝑥
𝑖

− 𝑥
𝑗| |, 𝑦

𝑖
− 𝑦

𝑗| |)
j. We use a Laplace distribution with marginal density functions for each of the x and y

coordinates,

(S14)𝑘(𝑥
𝑗
|µ = 𝑥

𝑖
, 𝑏) = 1

2𝑏 𝑒
−

𝑥
𝑗
−µ| |
𝑏  

. (S15)𝑘(𝑦
𝑗
|µ = 𝑦

𝑖
, 𝑏) = 1

2𝑏 𝑒
−

𝑦
𝑗
−µ| |
𝑏  
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where 𝜇 is the location parameter and b is the scale parameter 25. The scale parameter b is

equal to the average distance in one direction between the locations where infector and infectee

reside.

Under the checkerboard arrangement, we considered alternating squares of width δ

corresponding to treatment and control clusters within a contiguous urban area (Fig. 1A).

Although any such area would have borders in reality, we ignored any possible edges effects

and assumed that the extent of interactions between squares of type t and c in the interior of the

checkerboard provide a suitable characterization of overall interaction between individuals

residing in t and c, as summarized by ρtt and ρcc. Because the area and arrangement of t and c

squares are identical, ρtt = ρcc and ρtc = ρct (Fig. 1A).

We approach this problem by first calculating the proportion of time at risk that an

individual i residing on a line within in an interval of width 𝛿=𝜇r-𝜇l experiences in an adjacent

interval of width Δ. Let the former interval span [𝜇l,𝜇r] and the latter interval span [𝜇r,𝜇r+Δ]. If i

resides specifically at 𝜇, then the proportion of its time at risk in the other interval is

. (S16)𝐹(µ
𝑟

+ ∆|µ, 𝑏) − 𝐹(µ
𝑟
|µ, 𝑏)

where F(·) is the Laplace distribution function. To average across all individuals i, we can

integrate according to

. (S17)𝐴
δ,∆

= 1
δ

µ
𝑙

µ
𝑟

∫(𝐹(µ
𝑟

+ ∆|µ, 𝑏) − 𝐹(µ
𝑟
|µ, 𝑏))𝑑µ
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which gives the proportion of time in the interval of length Δ for an individual who resides in the

interval of length 𝛿. Given that the Laplace distribution function is F(x|𝜇,b)=1-½exp(-(x-𝜇)/b)

when x >𝜇 , eqn. (S17) evaluates to

. (S18)𝐴
δ,∆

= 𝑏
2δ (1 − 𝑒−δ/𝑏 − 𝑒−∆/𝑏 + 𝑒−(δ+∆)/𝑏 )

We can quantify the proportion of time at risk in the interval of width 𝛿 for individuals who reside

there as

. (S19)𝐴
δ

= 1 − 2
∆ ∞
lim
→

𝐴
δ,∆

= 1 − 𝑏
δ (1 − 𝑒−δ/𝑏)

We also need to calculate the time at risk in a non-adjacent interval of width 𝛿3 whose edge is

spaced distance 𝛿2 away from the nearest edge of the interval where the individual resides,

which has width 𝛿1. Applying similar reasoning as in eq. (S17), we obtain

. (S20)𝐴
δ

1
,δ

2
,δ

3

= 𝑏
2δ

1
(𝑒

 −δ
2
/𝑏

− 𝑒
−(δ

1
+δ

2
)/𝑏

− 𝑒
−(δ

2
+δ

3
)/𝑏

+ 𝑒
−(δ

1
+δ

2
+δ

3
)/𝑏 

)

We can calculate the proportion of time spent in like squares by applying the probabilities used

to calculate the proportions of time at risk for residents who live under treatment or not. Going

out three layers from a focal square (Fig. S4), the proportion of time spent in like squares is

, (S21)𝐵 = 𝐴
δ

2 + 4𝐴
δ,δ
2 + 4𝐴

δ,δ,δ
𝐴

δ
+ 4𝐴

δ,δ,δ
2 + 8𝐴

δ,2δ,δ
𝐴

δ,δ
+ 4𝐴

δ,2δ,δ
2

and the proportion of time spent in unlike squares is
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. (S22)𝐶 = 4𝐴
δ,δ

𝐴
δ

+ 8𝐴
δ,δ,δ

𝐴
δ,δ

+ 4𝐴
δ,2δ,δ

𝐴
δ

+ 8𝐴
δ,2δ,δ

𝐴
δ,δ,δ

The total proportion of time under treatment or not is then

(S23)ρ
𝑐𝑐

= ρ
𝑡𝑡

= 𝐵
𝐵+𝐶

. (S24)ρ
𝑡𝑐

= ρ
𝑐𝑡

= 𝐶
𝐵+𝐶

Hence, for a checkerboard arrangement of clusters, the proportion of time which each individual

spends in each arm of the trial is uniquely determined by the width of each cluster (δ) and the

scale of human movement (b).

Calculation of Initial Susceptibility

To obtain an estimate of initial susceptibility, we followed ten Bosch et al. 26 and calculated the

proportion of the population exposed to n serotypes,∀n∈{0,1,2,3,4}, as a function of age. We

used an estimate of the force of infection of 0.0318/yr for dengue for Yogyakarta, Indonesia 27

and assumed that the force of infection was constant across space and serotype. Following ten

Bosch et al. 26, we defined ei(a) as the proportion of individuals of age a that have been exposed

to i serotypes and ri(a) as the proportion of individuals of age a experiencing temporary

heterologous immunity following exposure to i serotypes. The dynamics of how individuals

progress through these classes as they age follows

(S25)
𝑑𝑒

0

𝑑𝑎 =− 4Λ𝑒
0

(S26)
𝑑𝑟

𝑖

𝑑𝑎 |
𝑖=1,..,4

= (4 − (𝑖 − 1))Λ𝑒
(𝑖−1)

− σ𝑟
𝑖
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. (S27)
𝑑𝑒

𝑖

𝑑𝑎 |
𝑖=1,..,4

= σ𝑟
𝑖

− (4 − 𝑖)Λ𝑒
𝑖

In eqs. (S22-S23), Λ is the force of infection, which we set to 0.0318/yr, and is the rate atσ

which individuals lose heterologous immunity, which we set to 0.5/yr 26.

We computed the proportion of the population in Yogyakarta, Indonesia that is of age a

using estimates from the United Nations World Population Prospects database 28 and computed

the proportion of the population that is susceptible to their (i+1)th infection as

. (S28)𝐸
𝑖

=
𝑎
∑(𝑝(𝑎)𝑒

𝑖
(𝑎))

It follows that initial susceptibility is equal to

, (S29)𝑆' = 𝐸
0 

+ 3
4 𝐸

1
+ 1

2 𝐸
2

+ 1
4 𝐸

3

provided that the force of infection for each serotype has been constant over time. For the

assumed values of Λ and σ, S’ = 0.436 for Yogyakarta, Indonesia.

Proportion of Wolbachia-Infected Mosquitoes

To determine the proportion of Wolbachia-infected mosquitoes in the treatment and control

clusters, we extracted data on the establishment of Wolbachia in each cluster of the AWED trial

7. We computed and as the average proportion of Wolbachia-infected mosquitoes across𝐶
𝑡

𝐶
𝑐

all clusters and time points for the treatment and control clusters, respectively. Under this

calculation, was equal to 0.950 and was equal to 0.170.𝐶
𝑡

𝐶
𝑐
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Spatial Scale of Human Movement

Our calculations of the apportionment of time at risk depend upon a value of , the  spatial scale𝑏

of human movement, a quantity that is challenging to parameterize. To inform our selection of ,𝑏

we calculated the relationship between (i.e., the reduction in R) and estimated efficacyε

calculated using the model that combined the effects of mosquito movement, human movement,

and transmission coupling. We compared the observed efficacies obtained for different values of

b to the observed efficacy from the AWED trial. We chose b = 60 m, because the mean and

95% confidence interval limits of observed efficacy from the AWED trial were the only ones that

implied realistic values of . This value of corresponded to andε ≤ 1 𝑏 = 60 ρ
𝑡𝑡

= ρ
𝑐𝑐

= 0. 887

for the checkerboard arrangement.ρ
𝑡𝑐

= ρ
𝑐𝑡

= 0. 113

Sensitivity Analysis

We performed sensitivity analyses to determine how the choice of parameter values affected the

conclusions that we reached concerning the contribution of the three effects (i.e., mosquito

movement, human movement, and transmission coupling) to the bias in efficacy. To do so, we

either varied each parameter one at a time while holding all parameters at their default value, or

varied all parameters simultaneously. In both cases, we calculated the total bias attributable to

each source of bias as described previously. We report the parameter ranges and default values

in Table S1, and values within these ranges were sampled using a Sobol design 29. We then

quantified the global sensitivity of the measured bias to each parameter by computing Sobol

indices using the sensobol package in R30. We used the Saltelli estimator for first-order indices

and the Glen estimator for the total-order indices, and a sample size of 105 parameter sets.

Table 1: Parameter default values and ranges for sensitivity analyses.

Parameter Default Value Range
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ρ
𝑡𝑡

, ρ
𝑐𝑐

0.887 (0.6,1)

𝐶
𝑡

0.950 (0.7,1)

𝐶
𝑐

0.170 (0,0.4)

Λ 0.0318 (0,0.04)

𝑅
0

3.5 (2.8, 4.38)

ε 0.701 (0,1)
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Supplementary Text - Sensitivity analysis

We undertook a global sensitivity analysis to understand how the level of bias is affected

by our assumed model parameters (Figs S4-S6). For the model with only mosquito movement,

the prevalence of Wolbachia-infected mosquitoes in the treatment arm and the value of ε had

the biggest effect on the extent of bias, explaining 14% and 38% of the variance in bias,

respectively (Fig. S5). For the model with only human movement, 70% of the variance in bias

was explained by the proportion of time that individuals spent in their allocated arm (Fig. S6).

For the full model, no single parameter could explain more than 2% of the variance in the bias

on its own. Instead, interactions between these parameters explained the variance (Fig. S7. In

particular, the concentration of Wolbachia-infected mosquitoes in the control arm, initial

population susceptibility (determined by historical force of infection), the proportion of time

people spent in their allocated arm, and ε each appeared in ≥95% of terms explaining the

variance, including interactions. Varying the proportion of time that people spend in their

allocated arm, ⍴tt, from 0.6 to 1 while keeping other parameters fixed generated a high level of

bias or no bias respectively, with bias decreasing approximately linearly with ⍴tt. The value of ε

had a large non-linear and non-monotonic effect on bias, with bias maximized when ε≈0.35, the

aforementioned value at which R0=1. Although interactions of the assumed value of R0 with

other parameters were an important explainer of variance in bias, the effect of R0 on bias was

modest when other parameters were at baseline.
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Supplementary Figures

Fig. S1: Infection attack rates for each of the six models, delineated by control and
intervention arms.
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Fig. S2: The total bias introduced by each of the three biases. These biases are calculated
by subtracting the efficacy of a model with that bias from a model without it, and as biases
appear in multiple models there are three possible ways to quantify each bias. These different
ways are shown with different line types. For transmission coupling and human movement, two
of the ways are equivalent and so these are shown with a thicker line.
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Fig. S3: The contribution of each source of bias to the total bias. Each panel shows a
different way of calculating the contribution due to that source of bias, which is calculated as the
difference in efficacy of a model without that bias and a model with that bias. This can be
thought of as embedding the models, and subtracting adjacent pairs of models, so that the sum
of each pair of models is equal to the total bias. The embeddings in each panel are: A: no
bias→mosquito movement→human movement + mosquito movement→full model. B: no
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bias→human movement→human movement + mosquito movement→full model. C: no
bias→human movement→human movement + transmission coupling→full model.

Fig. S4: Diagram of the checkerboard arrangement. Cell coloring refers to whether or not
someone is the treatment or control cluster. In this case, the central cluster is an individual’s
home cluster. Ai describes the proportion of time someone spends in a cluster i clusters from
their home cluster in one direction. AiAj is then the proportion of time someone spends in a
cluster i clusters away in one direction, and j in the other.
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Fig. S5: One-at-a-time sensitivity of bias to different parameter values for the model with
only mosquito movement (red lines), and scatter plots showing output of global
sensitivity analysis (black points). Baseline parameter values are shown with the red dashed
lines. Sobol indices are shown above the plots; the first order index indicates the proportion of
the variance in the bias is attributable to variance in that parameter alone, and the total order
index indicates the proportion of the bias is attributable to variance in that parameter including
all interaction terms in which that parameter appears.
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Figure S6: One-at-a-time sensitivity of bias to different parameter values for the model
with only human movement (red lines), and scatter plots showing output of global
sensitivity analysis (black points). Baseline parameter values are shown with the red dashed
lines. Sobol indices are shown above the plots; the first order index indicates the proportion of
the variance in the bias is attributable to variance in that parameter alone, and the total order
index indicates the proportion of the bias is attributable to variance in that parameter including
all interaction terms in which that parameter appears.
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Figure S7: One-at-a-time sensitivity of bias to different parameter values for the full
model (red lines), and scatter plots showing output of global sensitivity analysis (black
points). Baseline parameter values are shown with the red dashed lines. Sobol indices are
shown above the plots; the first order index indicates the proportion of the variance in the bias is
attributable to variance in that parameter alone, and the total order index indicates the
proportion of the bias is attributable to variance in that parameter including all interaction terms
in which that parameter appears.
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