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Abstract  
Addiction to nicotine, alcohol and cannabis commonly co-occurs, which is thought to partly stem 
from a common heritable liability. To elucidate its genetic architecture, we modelled the common 
liability to addiction, inferred from genetic correlations among six measures of dependence and 
frequency of use of nicotine, alcohol and cannabis. Forty-two genetic variants were identified in 
the multivariate genome-wide association study on the common liability to addiction, of which 
67% were novel and not associated with the six phenotypes. Mapped genes highlighted the role 
of dopamine (e.g., dopamine D2 gene), and showed enrichment for several components of the 
central nervous systems (e.g., mesocorticolimbic brain regions) and molecular pathways 
(dopaminergic, glutamatergic, GABAergic) that are thought to modulate drug reinforcement. 
Genetic correlations with other traits were most prominent for reward-related behaviours (e.g., 
risk-taking, cocaine and heroin use) and mood (e.g., depression, insomnia). These genome-wide 
results triangulate and expand previous preclinical and human studies focusing on the 
neurobiological substrates of addiction, and help to elucidate the common genetic architecture 
underlying addiction.  
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Introduction 
Addiction is one of the leading causes of preventable harms1, and considerable research efforts 
are made to better understand its aetiology. Addiction is typically not restricted to just one class 
of substance, as dependence of accessible psychoactive substances such as nicotine, alcohol and 
cannabis often co-occurs2. This co-occurring pattern of use has been shown to be particularly 
detrimental to the individual and to society as a whole3.  
Aetiological models posit that addiction to multiple substances stems from a common liability to 
addiction4,5 – a latent continuous trait accounting for the shared risk of developing addiction to 
different substances. Based on findings from genomic6–8 and behavioural genetic studies9,10, it is 
assumed that this common liability includes a genetic component. Indeed, genetic correlations 
between use of different classes of psychoactive substances are substantial, as estimated in twin 
(up to rg~0.8911–13) and genome-wide association (GWA) studies (up to rg~0.707,14–16). The 
underlying molecular mechanisms of this common heritable liability to addiction are, however, 
not fully understood. While it has been shown that genotypic variations contribute to the common 
heritable liability to addiction17, an investigation into the specific genome-wide effects has yet to 
be conducted. Furthermore, although increasingly large GWA studies have identified growing 
numbers of genetic risk variants associated with individual substance use phenotypes7, it remains 
unclear as to whether associated risk variants reflect shared (common) or non-shared (substance 
specific) risk across different addiction phenotypes. Some identified genetic variants likely operate 
through substance-specific pharmacological pathways, as is the case for variants affecting nicotinic 
receptors (e.g. genes coding for nicotinic acetylcholine receptors, such as CHRNA3-CHRNA518) or 
alcohol metabolism (e.g. variants in the alcohol dehydrogenases gene family, such as ADH1B7,15, 
ADH1C14,15). Other variants may affect common pathways, such as variants associating with two 
or more classes of psychoactive substances (e.g. BDNF7,19,20, PDE4B7,20,21 or DRD27,15,18,20,22) or 
behavioural phenotypes (e.g., the top variant identified for cannabis use disorder, which also 
associates with ADHD and risk-taking23). 

The aforementioned genetic overlap complicates research on causes and consequences of 
addiction, and distilling shared (common) from non-shared (substance specific) genetic risk is 
pivotal to the interpretation of genome-wide discoveries. One way of scrutinizing putative 
pleiotropic variants is to explicitly model the genetic overlap among different phenotypes indexing 
addiction, using multivariate methods such as genomic structural equation modelling (genomic 
SEM24). Applying this method has already been helpful in characterising shared genetic influences 
across dimensions of psychopathology24–31 and cognition32–35. In addition to assessing shared 
effects of suspected pleiotropic variants, genomic SEM also has the potential to identify novel 
genetic variants not previously identified in univariate GWA studies on individual phenotypes29. 
This is expected, since shared risk is thought to be expressed indirectly via the common liability, 
resulting in inherently small effects, which hampers detection of pleiotropic variants in univariate 
GWA analyses. A multivariate GWA can therefore boost discovery of shared variants directly 
associated with a common heritable liability. While genetically informed methods using polygenic 
scores have already explored risk factors involved in the common liability to addiction36,37, a 
multivariate GWA of the shared and non-shared genetic architecture can further deepen our 
understanding of biological pathways underlying addiction to multiple substances. Indeed, 
leveraging genetically informed methods would allow us to revisit long-theorized biological 
pathways underlying addiction, and to triangulate evidence from behavioural genetic11, brain 
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imaging38, candidate gene39 and preclinical studies40 focusing on the role of genetics and neural 
substrates of addiction. Together, such triangulated findings would help researchers and clinicians 
to better understand biological and developmental pathways involved in risk of developing 
addiction to commonly used and abused psychoactive substances.  

To unravel the genetic architecture underlying addiction to nicotine, alcohol and cannabis, 
here we conduct a multivariate GWA analysis on their common heritable liability. To model the 
common liability to addiction to these substances, we include phenotypes indexing clinical 
(diagnosis of dependence) as well as quantitative (frequency of use) measures of addiction to 
nicotine, alcohol and cannabis. More specifically, we conduct a multivariate GWA of the common 
heritable liability, with the aim to 

a. identify putative genetic variants associated with the common liability (i.e., 
shared/pleiotropic variants) and variants specific to the use of different classes of 
substances (i.e., non-shared) 

b. characterize the functional features of genetic variants associated with the common liability 
c. assess the genetic correlations between the common liability with other complex traits 
d. evaluate the validity of the causal claims imposed by a common liability model of addiction 
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Materials and methods 
GWA summary datasets 
We screened GWA summary statistics of addiction-related phenotypes for the most commonly 
used and misused psychoactive substances, namely nicotine, alcohol and cannabis. For each 
substance class, we included one clinical (diagnosis of dependence) and one quantitative 
(frequency of use) measure of addiction. The following summary statistics were included, derived 
from samples of individuals of European ancestry: Data on alcohol use disorder (n=28,757)14 and 
cannabis use disorder (n=358,534)23 was obtained from the Substance Use Disorders working 
group of the Psychiatric Genomics Consortium (PGC-SUD). Nicotine dependence (n=244,890) was 
taken from GWAS ATLAS41 (cf. URLs). Frequency of cigarette (n=245,876) and alcohol use 
(n=513,208), obtained from the GWA meta-analysis by Liu et al.7. The phenotypes were measured 
as the number of cigarettes/alcoholic drinks consumed during periods of consumption (assessed 
through the questions “How many cigarettes do/did you smoke per day?” and “How many drinks 
do/did you have each week/month?”). Frequency of cannabis use (n=24,798, from the question 
“Considering when you were taking cannabis most regularly, how often did you take it?”) was 
obtained from the Neale Lab UKBB summary statistics (cf. URLs). Additional details of each of the 
included summary statistic files can be found in sTable 1 (Supplement). As the included 
phenotypes are considered to reflect different dimensions of addiction, we coined their shared 
genetic architecture the ‘common heritable liability to addiction’. 
 
Genomic model of the common heritable liability to addiction 
We first estimated the genetic correlations (rg) among the individual phenotypes using genomic 

structural equation modelling (genomic SEM24) version 0.0.3. The method uses an extension of 
LD-score regression42 and accounts for sample overlap across studies through the LD-score 
intercept. In confirmatory factor analysis, we fitted a structural equation model with a single latent 
factor, representing a common liability to addiction to nicotine, alcohol and cannabis, onto which 
the six indicators loaded (Figure 1b). Equality constrains were imposed on paths belonging to the 
same pattern of substance use, i.e., equal weights across measures of dependence, and equal 
weights across measures of frequency of use. Correlated residuals were included to allow for 
within-substance class associations, as depicted in Figure 1b. The Diagonally Weighted Least 
Squares (DWLS) estimator was used and model fit was assessed based on the Comparative Fit 
Index (CFI) and the standardized root mean square residual (SRMR).  
 
Multivariate genome-wide association analysis  
For the multivariate GWA on the common heritable liability to addiction, the summary statistics 
for the individual addiction phenotypes were restricted to single nucleotide polymorphisms (SNPs) 
contained in the 1000 genomes phase 3 reference sample (with a minor allele frequency (MAF) > 
1%) and SNPs that were present in all GWA summary datasets included in the analysis. Genomic 
control was applied to all summary statistics showing evidence of uncontrolled confounding (LD 
score intercept > 1), by multiplying standard errors by the LD score intercept. To identify lead SNPs 
after conducting the GWA on the common liability, we selected LD-independent SNPs (r2<0.1 
within 250 kb) based on genome-wide significance (p<5x10-8).  

To determine whether the effects of the identified lead SNPs are likely to act through the 
common liability, we applied the heterogeneity test as implemented in Genomic SEM. The 
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resulting Q-statistic (QSNP) is a χ2distributed test statistic, with significant QSNP estimates (p<5x10-

8) indicating that the SNP effect does not act entirely through the common liability. Based on QSNP, 
we selected only SNPs that did not show evidence of heterogeneity (QSNP p>5×10-8) before 
conducting functional follow-up analyses of SNPs associated with the common liability.  

Two complementary strategies were used to map SNPs to genes: (i) positional mapping of 
lead SNPs and (ii) expression quantitative trait loci (eQTL) mapping of lead SNPs. For positional 
mapping (i), g:ProfileR43,44 and Phenoscanner45 were used, mapping SNPs to genes based on being 
physically located inside a gene. SNPs identified in GWA studies often reside in non-coding regions 
of the genome (intergenic and intronic), but can nevertheless influence gene expression of nearby 
genes. We therefore applied (ii) eQTL mapping on the lead SNPs (cis-eQTL, variants in a +/- 1 
megabase window around the transcription start site of a given gene)  using Qtlizer46. Qtlizer 
integrates a number of eQTL databases (e.g. GTEx Portal47, Haploreg48, GRASP49, GEUVADIS50, 
SCAN51, seeQTL52, Blood eQTL Browser53, pGWAS54, ExSNP55 and BRAINEAC56), to assign noncoding 
SNPs to their cognate genes.  

Finally, to explore previously identified associations of lead SNPs with other phenotypes, 
we searched the PhenoScanner45, a database of genotype-phenotype associations from existing 
GWA studies. For comparability, the same set of analyses was employed to characterise SNPs 
associated with the individual addiction phenotypes, including only lead SNPs that did not solely 
operate through the common liability (QSNP p<5×10-8). That way, the results obtained from gene 
annotation and functional analyses are interpretable with respect to shared (i.e., effects operating 
through the common liability) and non-shared (i.e., effects specific to the individual addiction 
phenotypes) risks. 
 
Pathway enrichment analysis of genetic variants associated with the common liability 
To identify the most likely biological pathways underlying the common heritable liability to 
addiction, we used Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT57) 
and Pathway SCoring ALgorithm (PASCAL)58. DEPCIT was used to test for tissue/cell type 
enrichment of a set of LD-independent SNPs (r2<0.05 within 500 kb) outside genome-wide 
significance (p<5×10-5). PASCAL was used to test for enrichment of all SNPs, using three gene sets 
(BIOCARTA, KEGG, REACTOME) curated by the Molecular Signatures Database (MSigDB59) and 
gene sets defined by DEPICT. Prior to running the analyses, the GWA on the common liability was 
filtered according to the QSNP statistic, retaining only SNPs operating through the common liability 
(QSNP p>5×10-8). Results were corrected for multiple testing using false discovery rate (FDR) 
correction (controlled at 5%). Further details regarding the application of the two methods can be 
found in the Supplement (sMethods). 
 
Genetic correlations between the common liability and other complex traits 
Bivariate LD score regression analyses were performed in Genomic SEM, to estimate the genetic 
correlations between SNPs operating through the common liability (i.e., SNPs with QSNP p>5×10-8) 
and 35 other traits related to physical features (e.g., height, body mass index), personality (e.g., 
risk-taking, neuroticism), social variables (e.g., socioeconomic status, education) and mental 
health (e.g., schizophrenia, depression). A complete list of the included GWA summary statistics 
can be found in sTable 1 (Supplement). FDR correction (controlled at 5%) was used to adjust for 
multiple testing. 
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Evaluation of the causal claims implied by the common liability theory 
It is important to note that the common liability to addiction, constructed from the observed 
covariance structure of phenotypes reflecting addictive behaviours, constitutes only a statistical 
model. As such, the model’s fit statistics do not examine the validity of the causal claims imposed 
by the model. For example, due to statistical equivalence, models with distinct interpretations (e.g. 
network models versus latent factor models) can have equivalent fit when constructed from the 
same data60. Therefore, model fit reveals little about the underlying causal relationships between 
the observed and latent variables. To assess the factor model-implied causal pathways, where the 
common liability factor is thought to causally influence all its indicators, Mendelian Randomization 
(MR) analysis was used to assess the effects between the common liability and the individual 
substance use phenotypes. Inverse variance weighted (IVW) MR implemented in TwoSampleMR61 
package was applied to all analyses. The genetic markers instrumenting the common liability were 
selected based on genome-wide significance (p<5×10-8) and Qsnp, retaining only SNPs that 
operated through the common liability (Qsnp p>5×10-8). To facilitate comparability of the MR 
estimates, the beta estimates for the included SNPs were standardized by dividing the z-scores by 
the square root of the sample size before conducting MR (cf. Supplement). 
 
 
Results 
Genomic model of the common heritable liability to addiction 
The correlations among the individual cigarette, alcohol and cannabis use phenotypes are 
presented in the heatmap in Figure 1a (cf. Supplement, sTable 2 for estimates). Genetic 
correlations varied widely between the individual substance phenotypes, ranging from rg=-0.01 to 
rg=0.74 (mean rg=0.40; SD=0.21). All standardized factor loadings are presented in Figure 1b (cf. 
also sTable 3, Supplement), showing that the constrained loadings were estimated to be 0.39 for 
frequency measures of substance use and 0.79 for substance dependence measures. On average, 
the common factor accounted for 38.81% (range 15.21%-62.41%) of the genetic variance in the 
six substance use phenotypes. The genomic common liability model showed evidence of a good 
model fit (CFI=0.97, SRMR=0.07, cf. sTable 4).  
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 Figure 1. Multivariate genome-wide association study of the shared genetic architecture of 
cigarette, alcohol and cannabis use  

 
 
 
 
 
 
 
 
 
 
 

Panel A. Heat map displaying the genetic correlations among the six substance use phenotypes. Shown are the genetic correlations between each of the cigarette, alcohol and 
cannabis phenotypes, with SNP-heritability estimates displayed down the diagonal. The mean genetic correlation is rg=0.4 [sd=0.21, median=0.34 and range (-0.01-0.74)]. Panel 
B. Genomic structural equation model fitted on the genetic covariation matrices of the individual cigarette, alcohol and cannabis use phenotypes. Squares represent observed 
variables (the measured cigarette, alcohol and cannabis use phenotypes). The circle represents the latent variable, i.e., the common heritable liability to addiction, derived 
through factor analysis of the genetic correlations between the individual substance use phenotypes. Single-headed arrows are regression paths constrained to be equal across 
measures of frequency of use and dependence. Panel C. Manhattan plot of the SNP effects obtained from the multivariate genome-wide association analysis on the common 
liability. Labels are provided for the LD-independent genome-wide significant SNPs (i.e., SNPs above the horizontal line, with p<5×10−8) and gene names obtained through 
positional mapping. The x-axis refers to chromosomal position, the y-axis refers to the p-value on a -log10 scale. Genetic variants coloured in red index variants that showed 
heterogeneous effects across the individual cigarette, alcohol and cannabis use phenotypes (QSNP p<5×10−8), indicating that their effects operate not entirely through the 
common liability. Genetic variants coloured in blue index genetic variants that did not show heterogeneous effects across the  individual cigarette, alcohol and cannabis use 
phenotypes (QSNP p>5×10−8), indicating that their effects are likely to operate through the common liability. 
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Genetic variants associated with the common heritable liability 
6,500,152 SNPs were included in the GWA of the common liability. Since our SNP estimates were 
derived from overlapping samples, we used the formula developed by Mallard et al.62 to derive 
the effective samples size (cf. sMethods, Supplement), which was estimated to be N=187,062. The 
Manhattan and Q-Q (quantile-quantile) plot of the common liability GWA are shown in Figure 1c 
and sFigure 1 (Supplement), respectively. The main results for all GWA analyses, including the 
multivariate analysis on the common liability and the six univariate analyses on the individual 
substance use phenotypes are summarised in sTable 5-7 and sFigure 1 (Supplement). In brief, the 
GWA on the common liability identified 3,509 genome-wide (p<5×10-8) SNPs, tagging 55 LD-
independent SNPs. After removing SNPs showing significant heterogeneity (QSNP p<5×10-8), 42 
SNPs operating through the common liability remained (cf. SNPs highlighted in blue in the 
Manhattan plot, Figure 1c). Of the 42 SNPs, 28 (66.67%) were novel, i.e., have not been associated 
with any of the individual substance use phenotypes. Positional mapping showed that the top five 
SNPs (rs10750025, rs4953149, rs281287, rs202665, rs35023999) operating through the common 
liability lay mostly outside coding regions, located close to DRD2, LINC01833, SEMA6D, SCUBE1 
and ANKK1, respectively. Further inspection through eQTL mapping indicated that the 
aforementioned SNPs acted as eQTLs for positionally mapped genes, highlighting their putative 
role in the common liability via gene expression (cf. sTable 8, Supplement). A search in the 
PhenoScanner database45 indicated that the five lead SNPs operating through the common liability 
have previously been linked to a number of behavioural phenotypes, such as neuroticism, 
irritability, smoking status or time spent in front of the computer (cf. sTable 9, Supplement). Of 
note, 13 of the 55 SNPs associated with the common liability still showed heterogeneous effects 
across the individual substance use phenotypes (QSNP p<5×10-8, highlighted in red in the 
Manhattan plot, Figure 1c). Those SNPs can be considered as false discoveries, which may result 
from a single or a subset of SNPs with large effects on the individual substance use phenotypes35. 
Among all 6,500,152 SNPs included in the common liability GWA, 2,356 (0.04%) showed 
heterogeneous effects. 
For comparison, we also evaluated the GWA results of the individual substance use phenotypes, 
focusing on significant variants (p<5×10-8) from the original GWA studies that showed 
heterogenous effects (QSNP p<5×10-8). Here, a number of variants appeared to be specific with 
respect to the class of substance. For alcohol use, the most prominent SNP was rs1229984, a 
variant on the alcohol dehydrogenase 1B gene (ADH1B). As shown in Figure 2, this variant was 
associated with all alcohol use phenotypes, but none of the cigarette or cannabis use phenotypes. 
Other identified SNPs related to the alcohol dehydrogenase group included rs1154433 and 
rs283412 (intron variants located on ADH1B and ADH1C, respectively) and rs1154433 acting as a 
cis-eQTL for ADH1A and ADH4. For cigarette use, a number of SNPs related to nicotinic pathways 
showed genome-wide effects, mapping onto nicotinic receptor genes (e.g., rs76474922 and 
rs58379124, intron variants located on CHRNA5 and CHRNB3, respectively) and variants affecting 
gene expression of CHRNA2, CHRNA3, CHRNA4, CHRNA5, CHRNB4 and CHRNB5 (cf. cis-eQTLs 
rs8034191, rs7174367, rs76474922, rs12595350, rs2273500, rs1052035, rs72740960, 
rs73229090). Only two SNPs were associated with cannabis use phenotypes, of which one variant 
(rs7783012, FOXP2) appeared to operate via the common liability (QSNP p>5×10-8). This is 
supported by studies implicating rs7783012 in a number of phenotypes related to externalising 
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behaviours (e.g., ADHD, risk-taking and risky sexual behaviour45), rather than pathways pointing 
to the endocannabinoid system specifically. 
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Figure 2. Associations of genetic variants with the common liability (blue) and the individual 
substance use phenotypes (red) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plotted are the standardized 
beta coefficients (βstd)  and 
their confidence intervals (cf. 
Supplement for details and 
corresponding formula) 
obtained from the multivariate 
genome-wide association 
(GWA) analysis on the common 
liability (column 1) and the 
univariate GWA analyses on 
the individual substance use 
phenotypes (columns 2-7). 
Displayed are genetic variants 
associated (p<5×10−8) with at 
least one of the individual 
substance use phenotypes 
and/or the common liability. 
Bars coloured in grey index 
genetic variants that are not 
significantly associated 
(p>5×10−8) with their 
respective phenotype. Bars 
coloured in red index genetic 
variants that showed 
heterogeneous effects across 
the individual cigarette, alcohol 
and cannabis use phenotypes 
(QSNP p<5×10−8), indicating that 
their effects operate not 
entirely through the common 
liability. Bars coloured in blue 
index genetic variants that did 
not show heterogeneous 
effects across the individual 
cigarette, alcohol and cannabis 
use phenotypes (QSNP 
p>5×10−8), indicating that their 
effects are unlikely to entirely 
operate through the common 
liability. The complete set of 
estimates can be found in 
sTable 7. The asterisks (*) 
highlight genetic variants that 
were identified as LD-
independent SNPs following 
clumping 
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Pathway enrichment analyses of genes associated with the common heritable liability 

Testing for tissue and cell type enrichment in DEPICT revealed 22 pathways associated (with FDR 
controlled at 5%) with the common liability (Figure 3A), which were all part of central nervous 
system tissues. A pattern of regional enrichment highlighted the role of a number of brain 
structures involved in the mesocorticolimbic brain circuits theorized to underlie addictive 
behaviours; notably, enrichment was present for regions involved in reward and emotion 
processing (limbic structures), motivation (basal ganglia), memory (hippocampus, 
parahippocampal gyrus, entorhinal cortex) and cognitive control (frontal lobe areas). In addition, 
the findings suggested that other brain structures may play a role in risk of addiction, such as areas 
involved in stress response (hypothalamus), or those relevant for visual processing (e.g., 
parahippocampal cortex, visual cortex, occipital lobe). Given this widespread network of brain 
areas, our results feed into theories suggesting that genetic risk to addiction is not solely the 
manifestation of altered limbic reward processes63. Since the highlighted pathways were most 
prominently enriched for the common liability, and less so for individual substance use 
phenotypes, the aforementioned brain circuits may tap into somewhat distinct features 
characterizing the common liability. 
Findings from PASCAL (Figure 3B) complement such conclusions, highlighting the role of neuronal 
signalling pathways in the common liability. Overall, 481 pathways were significantly (FDR 
controlled at 5%) enriched for the common liability, of which the top pathways related to broader 
categories of neurotransmitter functioning (e.g., neural system, abnormal excitatory postsynaptic 
currents, abnormal excitatory postsynaptic currents, transmission across chemical synapses). 
While the GWA analysis on the common liability identified the dopamine receptor D2 gene as the 
lead gene, pathway enrichment analyses implicated not only dopamine (e.g., dopamine 
neurotransmitter release cycle, dopamine binding), but also a number of other neurotransmitter 
systems, notably glutamate (e.g., ionotropic glutamate receptor complex, glutamate receptor 
activity), GABA (GABA-A receptor activity) or serotonin (serotonin neurotransmitter release cycle). 
Other identified pathways echoed the function of brain regions described above, such as those 
involved in learning and cognition (e.g., visual and associative learning, memory, cognition) or 
stress response (e.g., cAMP binding). Finally, a number of pathways were uniquely associated with 
the individual substance use phenotypes, mainly including those related to nicotinic pathways for 
cigarette use (e.g., presynaptic nicotinic acetylcholine receptors, postsynaptic nicotinic 
acetylcholine receptors, acetylcholine binding and downstream events). For alcohol, the ethanol 
oxidation pathway did not remain significant after correction for multiple testing, and there was 
no significant enrichment for cannabis use phenotypes. 
All estimates obtained from DEPCIT and PASCAL are included in sTable 11-12 (Supplement). 
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Figure 3. Pathway enrichment analyses of genes associated with the common heritable liability 

 
 
 
 
 
 
 
 
 
 

Shown are the results obtained from pathway enrichment analysis conducted in DEPICT and PASCAL. The common liability GWA results (filtered according to QSNP p<5×10−8) and 
the individual substance use GWA summary statistics were used as the input. The violet shading indexes the significance level corresponding to each tested pathway. The asterisk 
marks pathways that remained significant after correction for multiple testing (False Discovery Rate controlled at 5%). Panel A highlights results obtained from the tissue/cell 
type enrichment analysis done in DEPICT. Displayed are the -log10(p-value) for all pathways that were significant (p<0.05) in at least one of the included GWA studies. Panel B 
depicts results obtained from pathway analysis done in PASCAL, using gene-sets curated by the Molecular Signatures Database (n=1077 sets) and DEPICT (n=14462 sets). For the 
common liability, n=478 pathways were significant after FDR correction for multiple testing. Displayed in the figure are the 15 most significant pathways per GWA study. The full 
set of results is listed in sTable 10-11 (Supplement). 
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Genetic correlations between the common liability and other complex traits  
Using the input from the QSNP-filtered GWA of the common liability and the GWA summary 
statistics for 41 traits (cf. sTable 1 in Supplement for details), we found significant correlations with 
36 complex traits after correction for multiple testing (Figure 4). As expected, the largest positive 
correlations were present between the common liability and its “constituents”, i.e., the cigarette, 
alcohol and cannabis use phenotypes used to derive the common liability (mean rg=0.68). Among 
the other traits, the largest genetic correlations were present for cocaine and opioid dependence 
(both rg=0.60), number of sexual partners (rg=0.49), ADHD (rg=0.48) and risk tolerance (rg=0.41). 
Moderate genetic correlations were also present for a number of traits relating to mood, including 
insomnia (rg=0.35) and depression (rg=0.34). No significant (FDR controlled at 5%) associations 
were found with birth weight, openness, obsessive-compulsive disorder, anorexia and cortical 
surface area. 
 
Figure 4. Genetic correlations between the common liability and other traits 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shown are the genetic correlations (rg) 
between the common liability GWA (filtered 
according to QSNP p<5×10−8) and 41 other 
phenotypes, including 35 other traits 
(highlighted in blue) and the six individual 
substance use phenotypes used to derive the 
common liability (highlighted in grey). The 
asterisk indexes significant genetic 
correlations after correction for multiple 
testing (false discovery rate controlled at 5%, 
corrected for 41 tests). The full set of results 
is reported in sTable 12 (Supplement). 
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Evaluation of the causal relationships implied by a common liability model 
Figure 5 displays the results from Mendelian Randomization (MR) analyses, assessing paths 
running from the common liability to the individual substance use phenotypes. Using 42 QSNP-
filtered LD-independent SNPs from the common liability GWA, the MR findings provide support 
for a causal interpretation of the initial descriptive common liability model (cf. Figure 1b) – that is, 
the common liability increases the risk of addiction to nicotine, alcohol and cannabis. More 
specifically, the loadings obtained from the genomic factor model of the common heritable were 
recovered using genetic markers instrumenting the common liability. As shown, the standardized 
causal effects obtained in MR were comparable to the factor loadings of the indicators (highlighted 
in red in Figure 5), as evident for measures of dependence [mean MR estimate: 0.79 (0.10 SD)] 
and measures of frequency of substance use [mean MR estimate: 0.33 (0.12 SD)]. The 
hypothesized structural model also asserts absence of causal effects between indicators belonging 
to a different class of substance (e.g., cannabis dependence  alcohol dependence), which was 
in line with our MR results. Finally, reverse causation (effects of the specific substance use 
indicators on the common liability to addiction) was indicated for three of the indicators. Further 
discussion on the interpretation of reverse causation in this context is included in the Supplement, 
together with the full set of MR results (cf. sTable 13). 
 
 
Figure 5. Mendelian Randomization analysis assessing causality between the common liability and 
the individual substance use phenotypes 

 

Shown are the standardized beta coefficients 
(βstd) obtained from Mendelian Randomization 
(MR) analysis assessing the effects of the common 
liability on the six individual substance use 
phenotypes. Included were 42 genome-wide 
significant genetic variants (p<5×10-8) operating 
through the common liability (QSNP p>5×10-8) as 
instruments for the exposure. The red dots 
indicate the standardized loadings per substance 
use phenotype on the common liability as 
estimated in the structural model shown in Figure 
1B. The full set of MR results can be found in 

sTable 13. 
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Discussion 

To dissect shared from non-shared genetic liability to addiction to nicotine, alcohol and cannabis, 
we conducted a multivariate genome-wide association (GWA) study of a common heritable 
liability to addiction. The top genetic variant operating through the common liability (rs10750025, 
located on the dopamine receptor D2 [DRD2] gene) provides support for the role dopamine in risk 
of addiction. Functional follow-up of common liability-associated genes further highlighted the 
role of widespread neuronal signalling pathways and neurotransmitter functioning beyond 
dopamine, such as GABAergic and glutamatergic pathways. Brain areas implicated in the common 
liability to addiction spanned limbic and cortical areas involved in reward, motivation, memory and 
cognitive control. The genetic overlap between the common liability and other complex traits was 
most prominent for other measures of addiction (e.g., cocaine and heroin use), as well as impulsive 
behaviours (e.g., risk-taking, ADHD) and mood (e.g., depression, insomnia). For cigarette and 
alcohol use, risk genes not operating via the common liability translated into specific 
pharmacogenomic pathways, such as nicotinic acetylcholine receptor functioning. Distinct 
pathways for cannabis use were, however, not identified.  
 
Shared and non-shared genetic risks involved in risk of addiction to nicotine, alcohol and cannabis 

In line with existing evidence, we found substantial genetic correlations between measures 
of cigarette, alcohol and cannabis use. This allowed us to model the common heritable liability to 
addiction, which explained substantial variance (average=39%) in genetic liabilities to individual 
addiction phenotypes. DRD2 was identified as the lead gene operating via the common liability – 
a pathway believed to be a common mechanism by which addictive substances exert their acute 
pleasurable effects. DRD2 in particular is a frequently studied gene implicated in addictive 
behaviours, given its central role in modulating the dopamine reward system that mediates the 
reinforcing effects of addictive substances. Indeed, DRD2 has been identified in numerous 
genome-wide studies on cigarette7,8, alcohol7,8,20 and cannabis use8. Other notable genes linked 
to the common liability included brain-derived neurotrophic factor (BDNF), corticotropin-releasing 
hormone receptor 1 (CRHR1), G protein-coupled receptor 1 (GPCR1), Ankyrin Repeat and Kinase 
Domain Containing 1 (ANKK1) or cAMP responsive element binding protein 3 like 1 (CREB3L). 
While these genes have already been scrutinized in studies using animal models and candidate 
gene approaches64,65 aiming to understanding the molecular basis of addiction, this is the first 
study confirming their involvement using a ‘hypothesis-free’ (i.e., genome-wide) approach.  

Our results also highlight the role of neural signalling pathways involved in the common 
heritable liability to addiction, particularly synaptic functioning and a range of neurotransmitter 
systems beyond dopamine (GABA, glutamate, serotonin). Indeed, while dopaminergic 
mechanisms have been the traditional focus in addiction research, a growing body of research is 
now assessing the role of wider-ranging and interconnected neurotransmission systems in 
addiction vulnerability, involving GABAergic, glutamatergic and serotoninergic projections that 
contribute to modulating reward reinforcement and drug-seeking behaviour66–68. In line with this, 
enrichment analysis implicated the central nervous system and a network of brain areas in the 
common liability, including circuits involved in the processing of information related to reward 
(limbic structures), motivation (basal ganglia), memory (hippocampus) and cognitive control 
(frontal lobe areas).  Since the discussed pathways were most prominently related to the common 
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liability, rather than the individual substance use liabilities, the identified pathways may reflect 
common neural substrates characterizing addiction vulnerability. Indeed, genetic variants 
associated with the individual cigarette and alcohol use phenotypes showed a different molecular 
footprint when compared to variants associated with the common liability. Substance-specific 
genetic risk, defined as genetic risk not operating via the common liability, was most notably 
expressed in pharmacological pathways relevant to nicotine and alcohol. For cigarette use, six of 
the 16 central nervous system-expressed nicotinic acetylcholine receptor genes were associated 
with at least one of the cigarette use phenotypes. For alcohol use, four genes belonging to the 
alcohol dehydrogenase family associated with at least one of the alcohol use phenotypes. The 
existence of these substance-specific genetic risks may help explain why some individuals become 
addicted to either nicotine or alcohol. For cannabis use, there was less clear evidence for distinct 
genetic risk, as only one cannabis-associated gene (GULOP) did not operate through the common 
liability.  
Finally, it is assumed that the brain reward pathways partly link to addictive behaviours via some 
intermediate complex behaviours, such as risk-taking, sensation seeking or impulsivity. While this 
remains to be formally tested, this idea corroborates with our findings of genetic correlations 
between the common liability and maladaptive behaviours, including ADHD, risk-taking and 
cocaine and heroin dependence. We also found large genetic correlations between the common 
liability with internalising symptoms, including depression and insomnia.  
 
Implications for the aetiology of addiction 

Before jumping to aetiological conclusions regarding the shared and non-shared risks 
involved in addiction, it is important to assess if the core causal claims imposed by the common 
liability model hold true. Bi-directional MR was used to evaluate key assumptions, namely (1) the 
common liability to addiction has direct effects on all its indicators (i.e., the individual substance 
use phenotypes) and (2) there is no reverse causation. A third claim typically made by strict latent 
factor models asserts that there are no mutual direct effects between the individual indicators. In 
our study, this assumption was relaxed as we allowed for residual correlations between 
phenotypes belonging to the same class of substance (e.g., between frequency of cigarette use 
and cigarette dependence). Rather, our structural model posits that (3) all observed correlations 
between phenotypes belonging to a different class of substance are explained by the common 
liability. Overall, MR findings provided support for assumption (1), as causality ran from the 
common liability to all of the individual substance use phenotypes. While effects in the reverse 
direction were also present for three indicators – at odds with assumption (2) – this may reflect 
unaccounted pleiotropy (cf. Supplement for further discussion on this point). In line with 
assumption (3), there were no causal relationships between phenotypes belonging to a different 
class of substance. Together, since core assumptions are met (common liability  individual 
phenotypes), the results suggest that a common liability to addiction may usefully capture most 
relationships between substances. Embracing such conceptualization would have important 
implications for intervention. First, targeting modifiable features of the common liability should 
reduce risk of addiction to nicotine, alcohol and cannabis. For example, pharmacological 
treatments targeting dopamine, glutamate and GABA function may reduce craving and the 
euphoric/rewarding responses to cigarettes, alcohol and cannabis69–74. Second, interventional 
targeting of only one specific class of substance (e.g., nicotine) unlikely leads to reductions in use 
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of another class (e.g., alcohol). This conclusion is somewhat inconsistent with previous evidence 
in rodents showing reductions in alcohol use following the administration nicotinic treatments 
(e.g. varenicline75,76), although evidence from RCTs in humans is mixed77,78 and efficacy may not 
translate into the long-term79.  

 
Future directions 

An important goal for future work would be to extend this multivariate analysis to a 
broader array of substance classes (e.g., cocaine, opiate) and addiction phenotypes (e.g., 
tolerance, craving, withdrawal, relapse), once the required GWA data becomes available. Such 
efforts will allow exploration of more fine-grained structural models. Furthermore, multivariate 
approaches as employed here are not just important in terms of GWA discovery, but also essential 
to reducing biases; in our study, a substantial proportion of GWA-significant SNPs associated with 
the individual substance use phenotypes appeared to be mediated by the common heritable 
liability. As such, future GWA studies powerful enough to detect small genetic effects will likely tag 
an increasing number of SNPs with horizontal pleiotropic effects when examining addiction 
phenotypes (i.e., direct effects on several phenotypes). As such, modelling heritable latent factors 
as done in this study, and/or accounting for its contribution as recently proposed80,81 is therefore 
paramount when using genetically informed causal inference methods that are sensitive to the 
presence of heritable confounding. 

Taken together, our results confirm that a common heritable liability partially explains the 
high co-occurrence of addiction to nicotine, alcohol, and cannabis. Functions of the implicated 
genes converged on broad central nervous system pathways beyond the dopaminergic pathways 
long-hypothesised in risk of addiction. 
 
Data access 
Summary statistics of the common liability GWA analysis will be available upon publication of this 
work. References to all publicly available summary statistic files included in this work are listed in 
sTable 1. 
 
Code availability 
The code used to conduct the analyses presented in this work is available on GitHub 
(https://github.com/TabeaSchoeler/TS2021_CommonLiabAddiction) 
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