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Abstract 37 

Type 2 diabetes mellitus (T2D) presents a major health and economic burden that could be 38 

alleviated with improved early prediction and intervention. While standard risk factors have 39 

shown good predictive performance, we show that the use of blood-based DNA methylation 40 

information leads to a significant improvement in the prediction of 10-year T2D incidence risk. 41 

Previous studies have been largely constrained by linear assumptions, the use of CpGs one-at-42 

a-time, and binary outcomes. We present a flexible approach (via an R package, MethylPipeR) 43 

based on a range of linear and tree-ensemble models that incorporate time-to-event data for 44 

prediction. Using the Generation Scotland cohort (training set ncases=374, ncontrols=9,461; test 45 

set ncases=252, ncontrols=4,526) our best-performing model (Area Under the Curve (AUC)=0.872, 46 

Precision Recall AUC (PRAUC)=0.302) showed notable improvement in 10-year onset 47 

prediction beyond standard risk factors (AUC=0.839, PRAUC=0.227). Replication was 48 

observed in the German-based KORA study (n=1,451, ncases = 142, p=1.6x10-5).49 
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Introduction 50 

Diabetes mellitus is one of the most prevalent diseases in the world and a leading cause of 51 

mortality. Around half a billion people live with diabetes worldwide, with type 2 diabetes 52 

(T2D) making up about 90% of these cases [1]. Individuals with diabetes can suffer from 53 

debilitating complications including nerve damage, kidney disease and blindness [2]. The 54 

disease also increases the future risk of dementia and cardiovascular disease [3], with recent 55 

studies highlighting obesity and T2D as risk factors for COVID-19 disease severity and ICU 56 

admission [4]. Furthermore, risk of complications increases over time and is exacerbated if 57 

blood-glucose levels are poorly managed. Despite developments in the way T2D can be 58 

managed for patients, these treatments are reactive, focusing on patients that have already been 59 

diagnosed. Early intervention with metformin or lifestyle changes have been shown to delay 60 

onset of T2D, although they did not reduce the risk of all-cause mortality [5].  61 

Beyond public health costs, T2D also presents a substantial financial burden to the NHS, with 62 

estimated annual spending of £10 billion on diabetes in the UK. Around 80% of these costs are 63 

for treatment of complications, many of which are preventable with early intervention [6]. 64 

While the mechanisms of insulin resistance in T2D are well-known, the interactions between 65 

genetic and environmental factors that increase T2D susceptibility are less understood. 66 

Previous T2D risk prediction models have used a range of health risk factors [7]. However, 67 

these have not utilised epigenetic information. Epigenetics is the study of heritable changes to 68 

DNA that do not modify its nucleotide sequence. A commonly studied form of this is DNA 69 

methylation (DNAm), whereby methyl groups are attached to the DNA molecule - most 70 

commonly to the 5-carbon on a cytosine in a cytosine-guanine pair (CpG). Due to its 71 

involvement with gene expression and gene-environment interactions, DNAm can provide 72 

dynamic predictive information for disease risk for an individual. For example, Epigenetic 73 
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Scores (EpiScores) built via penalised regression models have been used to show that weighted 74 

linear CpG predictors can explain a substantial proportion of phenotypic variance (R2) of 75 

modifiable health factors including body mass index (BMI) (12.5%), HDL cholesterol (15.6%) 76 

and smoking status (60.9%) [8]. Blood-based DNAm is of particular interest in predictive 77 

modelling and biomarker development due to its comparatively non-invasive sampling 78 

procedure. EpiScores have also shown the ability to explain up to 58% of variance in plasma 79 

protein levels are associated with a number of incident diseases including T2D and several 80 

comorbidities [9]. Epigenome-wide association studies (EWAS) have identified a number of 81 

CpG sites significantly associated with T2D [10-14] as well as related risk factors such as 82 

cardiovascular disease [15] and obesity [16, 17]. While these provide some predictive 83 

performance for T2D prevalence, incident T2D has been less well studied. One such EWAS 84 

with 563 cases and 701 controls identified 18 CpGs associated with incident T2D but did not 85 

consider any prediction models [10]. Given that preventative lifestyle changes have been 86 

shown to effectively reduce T2D onset [18], prediction of T2D incidence years ahead of time 87 

would be greatly beneficial in stratifying populations so those at high risk can be monitored 88 

and treated with early interventions.  89 

Currently, most studies generating DNAm predictors consider marginal CpG effects or assume 90 

only linear additive effects between CpGs. The use of predictive models that can incorporate 91 

both interaction and non-linear effects could capture more complex relationships between 92 

variables, resulting in greater prediction accuracy. Therefore our study aims to evaluate both 93 

the additional predictive benefit that DNAm can provide for 10-year T2D risk and the 94 

applicability of linear and tree-ensemble survival models. 95 

Here, we use one of the world's largest studies with paired genome-wide DNAm and data 96 

linkage to electronic health records (EHR), Generation Scotland (n=14,613, n=626 incident 97 

T2D cases over 15 years of follow-up), to develop and validate epigenetic EpiScores for T2D. 98 
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We show the added contribution of these EpiScores to prediction over and above standard risk 99 

factors e.g. age, sex and BMI and externally validate these results in the KORA S4 cohort.  100 

 101 

Methods 102 

Reporting of Analysis Pipeline and Results 103 

To enhance reproducibility, the analysis pipeline and results presented in this study have been 104 

reported via the TRIPOD checklist [19] (Supplementary File 1). 105 

Generation Scotland 106 

Blood-based DNAm and linked health data were obtained from Generation Scotland [20], a 107 

family-structured population-based cohort. The cohort consists of 23,960 volunteers across 108 

Scotland aged 18-99 years at recruitment (between 2006 and 2011), of whom over 18,000 109 

currently have genome-wide DNAm data available (Illumina EPIC array). In DNAm quality 110 

control, CpG sites were filtered by removing those with low bead count in ≥5% of samples or 111 

a high detection p-value (>0.05) in more than 5% of samples. Probes on X and Y chromosomes 112 

were also removed. Samples were filtered by removing those with a mismatch between 113 

predicted and recorded sex or ≥ 1% of CpGs with detection p-value > 0.05. Missing CpG values 114 

were mean-imputed. To enable the predictors to be applied to existing cohort studies with older 115 

Illumina array data, CpGs were filtered to the intersection of the 450k and EPIC array sites 116 

(n=453,093 CpGs).  117 

This study considered DNAm data from three large subsets of the GS cohort, with 5,087 (Set 118 

1), 4,450 (Set 2) and 8,877 (Set 3) individuals. Processing took place in 2017, 2019 and 2021 119 

respectively. Set 1 and Set 3 included related individuals within and between each set while all 120 

individuals in Set 2 were unrelated to each other and to individuals in Set 1 (genetic relationship 121 
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matrix (GRM) threshold <0.05). In our experiments, the training set consisted of Sets 2 and 3 122 

combined and Set 1 was used as the test set. To avoid the presence of families with individuals 123 

across both the training and test set, any individuals in the training set from the same family as 124 

an individual in the test set were excluded from the analysis (nexcluded=3,138).  125 

Participant health measures including age, BMI, sex, self-reported hypertension and family 126 

(parent or sibling) history of T2D were taken at baseline (DNAm sampling) via questionnaire. 127 

BMI was calculated as the individual's weight in kilograms divided by the square of their height 128 

in metres. Missing values in the Set 1 health measures were treated as missing-completely-at-129 

random and the corresponding individuals were excluded (nSet 1=99). This was not performed 130 

in Sets 2 and 3 as the health measures were used for incremental modelling (Set 1 only). 131 

Disease cases were ascertained through data linkage to NHS Scotland health records consisting 132 

of hospital (ICD-10 codes) and GP records (Read2 codes). Prevalent cases were identified from 133 

a baseline questionnaire (self-reported) or from ICD-10/Read2 codes dated prior to baseline 134 

and removed from the dataset. Type 1 and juvenile cases were treated as control observations. 135 

A total of 757 incident cases were observed over the follow up period (from recruitment date 136 

to 01/2022) and after preprocessing, 626 cases remained. Mean time-to-T2D-onset was 5.9, 5.4 137 

and 6.0 years for Sets 1, 2 and 3 respectively, with ranges of 0.2 – 14.8 (Set 1), 0.2 – 14.8 (Set 138 

2) and 0.1-14.8 (Set 3) years. In GP record-derived cases, 81% of cases had a C10F. “type 2 139 

diabetes mellitus” code; 12% had a C10.. “diabetes mellitus” code and 4% had a C109. “Non-140 

insulin dependent diabetes mellitus” code. The full list of included and excluded terms are 141 

given in Supplementary Table 1.  142 

 143 

Composite Protein EpiScore 144 
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A composite protein EpiScore model for incident T2D was trained using a set of 109 protein 145 

EpiScores previously shown to associate with a range of incident diseases [9]. For each protein, 146 

the EpiScore was calculated for each subject in the training and test sets. A Cox proportional-147 

hazards (Cox PH) lasso model was fit to the training set with the 109 protein EpiScores (scaled 148 

within set to mean of 0 and variance 1) as features. The linear predictor from the Cox PH lasso 149 

model was then used as the composite protein EpiScore in the incremental test set model. 150 

 151 

Direct EpiScore 152 

The direct EpiScore Cox PH lasso model for incident T2D was fit to the DNAm data in the 153 

training set. Due to memory limitations in the model fitting R package (glmnet [21]), the CpGs 154 

were filtered to the 200,000 sites with highest variance. The linear predictor from the Cox PH 155 

lasso model was then used as the direct EpiScore in the incremental test set modelling. For tree 156 

ensemble models, the Cox PH lasso-selected CpGs were used as input and the 10-year onset 157 

risk was subsequently used as the direct EpiScore. 158 

 159 

Outcome Definition for 10-Year Onset Prediction 160 

Linkage to NHS Scotland health records provided dates for disease diagnoses from which age-161 

at-onset was calculated. Along with age at baseline (DNAm sampling), these were used to 162 

calculate the time-to-event, measured in years, for each individual. For incident T2D cases and 163 

controls, time-to-event was defined as the time from baseline to disease onset and censoring, 164 

respectively. Controls were censored at the latest date of available GP records (09/2020). 165 

While all models were trained as survival models, our primary prediction outcome was incident 166 

T2D diagnosis within 10 years. Therefore, predictions on the test set were calculated using the 167 
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10 year onset probability (one minus survival probability). When calculating binary outcome 168 

metrics, cases with time-to-event (TTE) > 10 were treated as controls. These metrics included 169 

confusion matrices, area under the receiver operating characteristics curve (AUC) and area 170 

under the precision-recall curve (PRAUC). After preprocessing and case thresholding (TTE > 171 

10), there were 218 cases and 4,560 controls in the test set. 172 

The numbers of individuals/cases and controls after each preprocessing step are shown in 173 

Supplementary Figure 1. 174 

 175 

Incremental Modelling 176 

Composite protein EpiScores and direct EpiScores were generated in the training dataset using 177 

different machine learning methods, via the MethylPipeR package (Figure 1), before being 178 

applied to the test set in an incremental modelling approach (further detail in Supplementary 179 

Methods). In the test set, a (null) risk factors-only model was defined via a Cox PH model for  180 

T2D with age, sex, BMI, self-reported hypertension, and self-reported family (sibling or 181 

parental) history of diabetes as predictors. A multitude of risk factors have been used in 182 

previous T2D risk prediction tools, a majority of which include the set that we have used in 183 

this study. While additional risk factors, such as waist-hip ratio, may also be relevant [7], we 184 

selected the null model covariates based on those used in the Diabetes UK type 2 diabetes 185 

‘Know Your Risk’ tool to compare our results to an existing widely utilised tool. This was with 186 

the exception of ethnicity, due to the relative homogeneity of the GS cohort. These also closely 187 

match the top risk factors identified in a systematic review of previous T2D risk predictors (see 188 

Figure 2 in ref. [7]). 189 

 190 

Penalised Regression Predictors 191 
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Since the number of CpGs (nCpG=200,000) was much greater than the number of rows in the 192 

training set (n=9,835 after preprocessing), a regularisation method was required to reduce 193 

overfitting of the Cox PH regression models.  194 

Penalised regression models reduce overfitting by applying a regularisation penalty in the 195 

model fitting process. This forces regression parameters to remain small, or possibly to shrink 196 

them to zero. The latter allows the method to be used for variable selection, by keeping only 197 

the variables with resulting non-zero coefficients. 198 

Lasso penalisation was fit to the training set DNAm and protein EpiScores using glmnet [21, 199 

22] via MethylPipeR with the best shrinkage parameter (λ) chosen by 9-fold cross-validation.  200 

 201 

Tree Ensemble Models 202 

Tree ensembles are non-parametric models capable of estimating complex functions using a 203 

set of decision trees. Two tree ensemble approaches were used: random survival forest (RSF) 204 

[23] and survival Bayesian Additive Regression Trees (sBART) [24]. Random forest [25] is an 205 

ensemble machine learning model that estimates a function by averaging the output from a set 206 

of independently trained decision trees. During model fitting, each tree is built using a different 207 

subset of the variables from the training set to prevent individual trees from overfitting to the 208 

whole dataset. sBART is a non-parametric method that estimates a function as a sum over a set 209 

of regression trees. sBART incorporates the ability to model both additive and interaction 210 

effects and has shown high predictive performance in comparison with similar methods [24, 211 

26].  212 

RSF and sBART were fit to the training set using R packages randomForestSRC (version 213 

2.11.0) [27] and BART (version 2.9) [28] respectively, via MethylPipeR. Details on 214 

hyperparameter selection are given in Supplementary Methods. 215 
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Due to computational limitations and probable overfitting in using the tree ensemble models 216 

on all CpGs in the dataset, variable pre-selection was based on the coefficients in the penalised 217 

Cox PH models. Each tree-ensemble model was evaluated with the features corresponding to 218 

non-zero coefficients from the Cox PH lasso model. 219 

 220 

Evaluating Predictive Performance 221 

Survival models can be used to predict the risk of incident T2D for an arbitrary prediction 222 

period. Here we focus on classification performance for the binary outcome defined by 10-year 223 

T2D incidence. EpiScores were calculated as one minus 10-year survival probabilities and the 224 

binary outcomes were calculated by truncating observed TTE at 10-years (see Outcome 225 

Definition for 10-Year Onset Prediction). 226 

AUC and PRAUC were calculated as measures of predictive performance as the discrimination 227 

threshold was varied. PRAUC is more informative in situations where there is a class imbalance 228 

in the test set [29]. Additionally, binary classification metrics consisting of sensitivity (recall), 229 

specificity, positive predictive value (PPV/precision) and negative predictive value (NPV) 230 

were calculated. These metrics require selection of a discrimination threshold to assign 231 

positive/negative class predictions and have varying behaviour as this threshold is altered. 232 

Therefore, each of the metrics were calculated at a range of thresholds between 0-1 in 233 

increments of 0.1. 234 

Model calibration was examined by comparing predicted probabilities with actual case/control 235 

proportions. The test data was sorted by predicted probability and divided into bins; the mean 236 

predicted probability and the proportion of cases was calculated for each bin. 237 

 238 
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Selected-CpG Comparison with EWAS Catalog 239 

The CpG sites selected by the Cox PH lasso were queried in the EWAS Catalog [30] to identify 240 

traits that have previously been linked to these sites. The EWAS catalog is a database allowing 241 

users to search EWAS results from existing literature. We performed a tissue-agnostic query 242 

using the selected CpGs and filtered results to those with an epigenome-wide significance 243 

threshold of P < 3.6 x 10-8 in studies with a sample size > 1,000 [31]. Almost all (739 out of 244 

742; 99.6%) of the post-filter results were from blood-based studies. The remaining results 245 

were from saliva and prefrontal cortex-based studies. 246 

 247 

Validation in KORA S4 248 

The Cox PH lasso model using the direct EpiScore was applied to the KORA S4 cohort [32]. 249 

This cohort consisted of 1,451 individuals in southern Germany, aged 25-74 years. Cohort 250 

summary details are shown in Supplementary Table 2.  Individuals with missing values in 251 

the health measures were removed from the dataset. Missing CpG values in the DNAm data 252 

were mean-imputed. Similar to the approach in the Generation Scotland test set, an EpiScore 253 

was computed for each individual in the KORA dataset. Evaluation was then performed using 254 

an incremental modelling approach. Additional cohort and methods details (such as the 255 

outcome definition, follow-up period and preprocessing numbers) are provided in 256 

Supplementary methods. 257 

 258 

EpiScore Prediction of Ongoing Symptomatic COVID-19/Hospitalisation 259 

The subset of the Generation Scotland cohort with reported COVID-19 infection (clinically-260 

diagnosed or positive test from linked test data), who had also participated in the CovidLife 261 
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study [33] were used for prediction of ongoing symptomatic COVID-19 and hospitalisation 262 

from COVID-19 (n=713). Ongoing symptomatic COVID-19 cases were defined here as 263 

individuals with self-reported symptoms lasting ≥ 4 weeks [34]. Hospitalisation cases were 264 

defined as hospital admissions with accompanying ICD10 codes U07.1 (confirmed COVID-265 

19 test) and U07.2 (clinically diagnosed), derived from the Scottish Morbidity Records 266 

(SMR01). Details of the method and summary statistics are shown in Supplementary methods 267 

and Supplementary Table 3. 268 

 269 

Results 270 

After preprocessing, the mean time-to-onset of T2D was 5.7 and 5.9 years for the training 271 

(n=374 cases) and test (n=252 cases) sets, respectively. Mean age-at-onset was also similar 272 

between the training and test set at 61.2 and 60.4 years and the mean BMI for cases (at baseline) 273 

was 31.7 and 32.2 kg/m2. The full set of cohort summary details for cases and controls in both 274 

sets are shown in Table 1. The machine learning prediction pipeline of the MethylPipeR 275 

package is shown in Figure 1. 276 

 277 

Null Model for the Incremental Modelling Approach 278 

A Cox PH model in the test set with age, sex, BMI, self-reported hypertension, and family 279 

history of diabetes as predictors yielded good classification metrics: AUC=0.839, 280 

PRAUC=0.227. 281 

 282 

Incremental model using Direct EpiScore derived using Cox PH lasso, RSF and sBART 283 
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In the risk factors + direct EpiScore test set model, Cox PH lasso performed the best, showing 284 

an AUC and PRAUC of 0.870 and 0.299, respectively (p=3.6x10-27 for the EpiScore 285 

coefficient). This corresponds to an increase of 3.1% and 7.2% over the standard risk factors 286 

model.  287 

Overall, the tree-ensemble models used for the direct EpiScore resulted in lower performance 288 

compared to Cox PH lasso. AUC values for RSF and sBART were 0.852 and 0.840 and 289 

PRAUC values were 0.247 and 0.230, respectively (Supplementary Table 4). P-values for the 290 

EpiScore coefficients and ROC curves for all models are given in (Supplementary Table 5). 291 

Incremental model using Composite Protein EpiScore derived using Cox PH lasso 292 

The composite protein EpiScore showed good performance with AUC and PRAUC of 0.864 293 

and 0.270, respectively (EpiScore coefficient p=1.61x10-18). The increase in PRAUC was 294 

smaller for the composite protein EpiScore compared to the direct EpiScore but still a notable 295 

improvement over using risk factors only.  296 

 297 

Incremental model using Composite Protein and Direct EpiScores 298 

The full model (risk factors + composite protein EpiScore + direct EpiScore) with a Cox PH 299 

lasso direct EpiScore gave an AUC and PRAUC of 0.872 and 0.302 respectively. The full 300 

models with RSF- and sBART-derived direct EpiScores showed AUCs of 0.866 and 0.864, 301 

respectively. The corresponding PRAUC values were 0.273 and 0.270. Therefore, the best 302 

overall model used direct and composite protein EpiScores from Cox PH lasso models. The 303 

ROC and PR curves for the full models and risk factor only model are shown in Figure 2. 304 

 305 

Binary Classification Metrics and Model Calibration 306 
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Supplementary Table 6 shows how confusion matrix metrics vary for the null (risk factors 307 

only) model and the Cox PH lasso model across a range of probability classification thresholds. 308 

As expected, as the classification probability threshold is increased, sensitivity and NPV 309 

decrease while specificity increases. The effects of these differences on the number of true 310 

positives and true negatives are illustrated in Figure 3. The two models also show differences 311 

in their calibration plots (Supplementary Figure 2). In addition, the difference in number of 312 

correctly classified individuals between the two models are given. These are calculated 313 

assuming, arbitrarily, a 10-year incidence rate of 33%, for example, in a scenario where high-314 

risk individuals have been selected for screening. 315 

  316 

Selected CpGs 317 

The Cox PH lasso model assigned non-zero coefficients to 145 CpGs (Supplementary Table 318 

7). After filtering the EWAS Catalog by p-value (p<3.6x10-8) [31] and sample size (n>1,000), 319 

119 (82%) of the model-selected CpGs were present. These CpGs corresponded to 742 entries 320 

and showed epigenome-wide associations with traits including: serum HDL cholesterol, serum 321 

triglycerides, smoking, C-reactive protein, BMI and age (Supplementary Table 8).  322 

 323 

Selected Protein EpiScores 324 

The composite protein EpiScore Cox PH lasso model assigned non-zero coefficients to 46 325 

protein EpiScores. Details on the corresponding proteins and genes are given in 326 

Supplementary Table 9. Out of the selected protein EpiScores, 21 have previously shown 327 

associations with incident T2D [9]. 328 

 329 
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Validation in KORA S4 330 

Prediction of incident diabetes in the KORA S4 cohort using the Cox PH lasso model showed 331 

good replication of direct EpiScore performance (p=1.6x10-5) with increases of 1.6% and in 332 

absolute terms above the null model values for both AUC and PRAUC. Further details are 333 

provided in Supplementary Table 10. 334 

 335 

EpiScore Prediction of Ongoing Symptomatic COVID-19/Hospitalisation 336 

In all models, incident T2D was predictive of hospitalisation with COVID-19 infection. 337 

However, neither the composite-protein nor the direct EpiScore were predictive of the same 338 

outcome (Supplementary Table 11). Additionally, neither the EpiScores nor incident T2D 339 

were predictive of ongoing symptomatic COVID after COVID-19 infection. 340 

 341 

Discussion 342 

Utilising a large cohort with genome-wide epigenetic data and health records linkage to 343 

longitudinal primary and secondary care, we have shown that DNAm-based predictors 344 

augment standard risk factors in the prediction of incident type 2 diabetes. The best model with 345 

traditional risk factors yielded an AUC of 0.839 compared to 0.872 when DNAm was also 346 

considered and the PRAUC increased from 0.227 to 0.305. Using a variety of linear and non-347 

linear survival models, we showed that overall, the Cox PH lasso model produced the most 348 

predictive direct EpiScore. A composite protein EpiScore also notably increased predictive 349 

performance. The direct EpiScore also showed good external validation performance in the 350 

KORA S4 cohort. Beyond the T2D analysis presented here, we have developed the 351 

MethylPipeR R package, along with a user-interface MethylPipeR-UI, to facilitate reproducible 352 
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machine learning time-to-event and binary prediction using DNAm or other types of high-353 

dimensional omics data.  354 

Determining a 'best' model is complicated and depends on the trade-off that a user wishes to 355 

make. Here, we optimised AUC and PRAUC but binary classification metrics vary by method 356 

and/or classification threshold. When using classifiers in clinical settings, decisions need to be 357 

made about the number of patients that can be recommended for intervention as well as the 358 

acceptable proportion of false positives and false negatives. We showed an increase in correct 359 

identification of positives/negatives at varying probability thresholds when adding direct and 360 

composite EpiScores above standard risk factors. For instance, given an (arbitrary) incidence 361 

rate of 33% (commonly used as a cut-off for high-risk of T2D) [35] over 10 years in a sample 362 

of 10,000 individuals, our best model would correctly classify an additional 448 individuals 363 

compared to the risk factors only model at a threshold of 0.2 (Supplementary Table 6). Given 364 

the costs of treating T2D-related complications, our study gives evidence for possible benefits 365 

of EpiScores on public health that could also alleviate the financial burden to the NHS. In 366 

addition, an assessment of calibration is also critical [36]. Investigation of these related criteria 367 

could assist in deciding an optimal threshold given clinical constraints and provide a more 368 

comprehensive assessment of model predictions than AUCs or metrics at the commonly-369 

utilised threshold of 0.5.  370 

Several CpGs from the direct EpiScore were previously identified as epigenome-wide 371 

significant correlates of traits commonly linked to T2D [14, 17, 37-41]. Future work could 372 

investigate overlap between these and time-to-event EWAS studies. Further studies could also 373 

include DNAm predictors for traditional risk factors that are included in the null model, such 374 

as BMI [8]. 375 
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Limitations include the relatively small number of disease cases in the dataset, the limited 376 

hyperparameter optimisation performed for sBART and the relatively simple variable pre-377 

selection method for tree-ensemble methods. Given the lower performance of these methods 378 

compared to the best models in this study, there is potential for additional improvement in 379 

predictive performance with further investigation of more advanced feature (pre-)selection. 380 

This is particularly important when we consider that the pre-selection step utilised linear 381 

models prior to the non-linear model fitting. The model fitting and pre-selection were also 382 

performed using the same training set which may have introduced issues associated to post-383 

selection inference [42, 43]. In addition, factors such as overfitting, related individuals in the 384 

test set and batch effects between the three rounds of DNAm data processing may all have an 385 

effect on test-set AUC. Finally, a small proportion of the linkage codes used to define diabetes 386 

included broad terms that were non-specific to T2D; however, late age of onset in these 387 

individuals meant there was a high likelihood that they had developed T2D. EpiScores for 388 

T2D-associated proteins have also been shown to replicate incident T2D-protein associations 389 

within this sample [9] suggesting that the case definitions we use capture biological signals 390 

relevant to T2D.  391 

There are numerous strengths to our study. Firstly, the models used capture relationships 392 

between CpGs as well as time-to-event information, which is not possible using traditional 393 

EWAS methods. Secondly, data linkage to health care measures provided comprehensive T2D 394 

incidence data in a very large cohort study, Generation Scotland. Validation performance in 395 

the KORA cohort also strengthened evidence for the applicability of the models to other 396 

populations. Finally, the R package, MethylPipeR, encourages reproducibility and allows 397 

others to develop similar predictors on new data with minimal setup. 398 

In conclusion, we have demonstrated the potential for DNA methylation data to provide notable 399 

improvement in predictive performance for incident T2D, as compared to traditional risk 400 
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factors (age, sex, BMI, hypertension, and family history). We evaluated different models with 401 

a systematic approach and presented a framework with the ability to generalise to other traits 402 

and datasets for training and testing predictors in future studies. 403 
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Supplementary Methods 471 

MethylPipeR and MethylPipeR-UI 472 

The analysis pipeline was implemented via a new R package, MethylPipeR, along with 473 

accompanying user interface, for systematic and reproducible development of complex trait 474 

and incident disease predictors. MethylPipeR provides functionality for tasks such as model 475 

fitting, prediction and performance evaluation as well as automatic logging of experiments and 476 

trained models. This is complemented by MethylPipeR-UI which provides an interface to the 477 

R package functionality while removing the need to write scripts. While MethylPipeR was 478 

applied to incident T2D prediction with DNA methylation in our experiments, the package is 479 

designed for generalised development of predictive models and is applicable to a wide range 480 

of omics data and target traits. MethylPipeR and MethlyPipeR-UI are publicly available at 481 

https://github.com/marioni-group/MethylPipeR and https://github.com/marioni-482 

group/MethylPipeR-UI respectively. Supplementary Figure 3 shows an example from the 483 

MethylPipeR-UI interface including functionality such as data upload, specification of model 484 

options and visualisation of model diagnostics. 485 

 486 

Methylation Risk Scores and Incremental Modelling 487 

Composite protein EpiScore models were fit to the training set using 109 protein EpiScores as 488 

features [9]. This trained model was used to create a composite protein EpiScore for each 489 

individual in the test set. Similarly, direct predictors were fit to the training set using 200,000 490 

CpGs as features and used to create a direct EpiScore for each test set individual. 491 

The following Cox PH models were then fit to the test set to assess the difference in metrics 492 

such as the area under the curve (AUC) and area under the precision-recall curve (PRAUC): a 493 

risk factors only model; risk factors + protein EpiScore; risk factors + direct EpiScore and a 494 
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full model (risk factors + protein EpiScore + direct EpiScore). To obtain 10-year survival 495 

probabilities in the test set, the cumulative baseline hazard at t=10 was calculated for each 496 

model using the Breslow estimator [44].  497 

Calculating Predictions 498 

To obtain predictions from the incremental models, the following should be applied. 499 

Direct EpiScore 500 

For the Cox lasso model, the direct EpiScore can be obtained by summing over the CpG values 501 

weighted by their corresponding coefficients (for all non-zero coefficients), as given in 502 

Supplementary Table 12.  503 

𝐷𝑖𝑟𝑒𝑐𝑡 𝐸𝑝𝑖𝑆𝑐𝑜𝑟𝑒 = 𝛽1𝐶𝑝𝐺1 +  𝛽2𝐶𝑝𝐺2 + ⋯ + 𝛽𝑝𝐶𝑝𝐺𝑝 504 

For sBART and RSF, the direct EpiScore requires use of the model object to obtain predictions 505 

on new data. These can be found in https://github.com/marioni-group/ and utilised with 506 

MethylPipeR’s predict function. 507 

Composite Protein EpiScore 508 

The composite protein EpiScore can be obtained by summing over the protein EpiScores 509 

weighted by their corresponding coefficients (for all non-zero coefficients), as given in 510 

Supplementary Table 12. 511 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝐸𝑝𝑖𝑆𝑐𝑜𝑟𝑒 = 𝛽1𝑃𝐸𝑆1 +  𝛽2𝑃𝐸𝑆2 + ⋯ + 𝛽𝑞𝑃𝐸𝑆𝑞 512 

where 𝑞 is the number of protein EpiScores with a non-zero coefficient. 513 

Each protein EpiScore is calculated as the sum over CpG values weighted by their 514 

corresponding coefficients (for all non-zero coefficients); the coefficients for each of these can 515 

be found in the supplementary materials in Gadd et al. [9] 516 
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Incremental Cox PH 517 

The linear predictor in an incremental Cox PH model can be calculated by multiplying the 518 

relevant EpiScores and risk factors by their corresponding coefficient, given in 519 

Supplementary Table 12. The cumulative baseline hazard is calculated using the basehaz.gbm 520 

function in the gbm R package version 2.1.8 [45]. The 10-year survival probabilities can then 521 

be calculated as 𝑆(𝑡) = 𝑒𝑥𝑝[−(𝛬0(𝑡))]𝑒𝑥𝑝(𝑙) at 𝑡 = 10, where 𝛬0(𝑡) is the cumulative baseline 522 

hazard and 𝑙 is the linear predictor. The 10-year onset probability is therefore 1 − 𝑆(10). 523 

Penalised Cox Proportional-hazards Regression 524 

Since the number of features (200,000) was much greater than the number of individuals in the 525 

training set (=9,835 after data preprocessing), a regularisation method was required to reduce 526 

overfitting of the Cox PH models. 527 

Cox PH models with lasso penalisation was fit to the training set using glmnet (version 4.1-1) 528 

[21, 22] via MethylPipeR.  529 

Hyperparameter optimisation and cross validation (CV) were used to select the λ that 530 

minimised the partial-likelihood for each Cox PH model corresponding to the minimum partial-531 

likelihood. The training set was divided equally into nine partitions. For each pre-selected value 532 

of λ, nine models were fit, each using eight of the partitions as the training set and the ninth for 533 

prediction. The mean partial likelihood over the nine models was then calculated. The model 534 

using the λ that minimised this was chosen to evaluate on the test set. Nine-fold CV was used 535 

to balance the advantages provided by using a greater number of folds with the limitations of 536 

the number of cases in each fold as well as required computation time.  In addition, individuals 537 

belonging to the same family were assigned to the same fold and each contained a similar 538 

number of cases to avoid folds with too few cases. 539 
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 540 

Random Forest 541 

Random forest [25] is an ensemble machine learning model that estimates a function by 542 

averaging the output from a set of independently trained decision trees. During model fitting, 543 

each tree is built using a different subset of the variables and the training set to prevent 544 

individual trees from overfitting to the whole dataset. In addition, random survival forests 545 

adapts the original method to incorporate right-censored time-to-event data [23]. 546 

The hyperparameters corresponding to the number of trees (ntrees), the number of variables 547 

considered at each tree split (mtry) and the minimum terminal node size (nodesize) were 548 

selected using a grid-search CV method. Supplementary Table 13 shows the set of values that 549 

were considered for each hyperparameter. The R package randomForestSRC (version 2.11.0) 550 

[27] was used for fitting random survival forests via MethylPipeR. 551 

 552 

Bayesian Additive Regression Trees 553 

Bayesian Additive Regression Trees (BART) [26] is a nonparametric method that estimates a 554 

function as a sum over a set of regression trees. BART incorporates the ability to model both 555 

additive and interaction effects and has shown high predictive performance in comparison with 556 

similar methods. To reduce overfitting and model uncertainty in parameters and predictions, 557 

BART uses prior distributions over tree-related parameters. Posterior estimates are obtained in 558 

a Bayesian framework through Markov Chain Monte Carlo (MCMC).  559 

A variant of BART for survival analysis [24] was used for 10-year onset prediction. 1,000 560 

posterior samples for model parameters were kept after 500 burn-in samples. These were used 561 

to generate 10-year survival probabilities on the test set. This resulted in 1,000 survival 562 
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probabilities for each individual in the test set, the mean of which was used as their survival 563 

prediction. MCMC convergence was assessed using Geweke’s diagnostic (gewekediag 564 

function in the BART R package). This was calculated on the BART output (yhat.test with 565 

t<=10 [24]) for the 1,000 posterior samples using 30 randomly chosen individuals in the test 566 

set. Most Z-values (77%) fell within the interval [-1.96, 1.96] suggesting convergence. 567 

Due to the computation time requirements of MCMC sampling and the apparent robustness of 568 

BART to hyperparameter misspecification [26], the sBART model was run with 569 

hyperparameters set to default. This was performed using the R package BART (version 2.9) 570 

[28] via MethylPipeR. 571 

 572 

Validation of Best Performing Model in KORA S4 573 

The present analyses are based on a subsample of the participants of the KORA S4 study. 574 

KORA (Cooperative Health Research in the Region of Augsburg) is a research platform 575 

performing population-based surveys and subsequent follow-ups in the region of Augsburg in 576 

Southern Germany [46]. Participants were of German nationality, aged between 25-74 years, 577 

50% female, and sampled from the population registers in the study area where main place of 578 

residence was: Ausburg city town, county Ausburg or county Aichach-Friedberg. Each 579 

participant completed a health questionnaire, providing details on health status and medication. 580 

Blood samples were also taken for assaying of omics data. KORA S4 participants were 581 

recruited between 25/10/1999-28/04/2001.  This study used a subsample of the 1,451 582 

participants of the KORA S4 study with DNAm and incident T2D data available and no 583 

prevalent diabetes at baseline. 584 

The best performing model selected for the Generation Scotland cohort (Cox PH lasso) was 585 

used for prediction of incident T2D in the KORA S4 cohort.   586 
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For diabetes morbidity, the data are limited to a follow-up of 10 years - starting from KORA 587 

S4 recruitment. For incident T2D all prevalent diabetics as well all other diabetes types except 588 

T2D cases are excluded. Age, BMI, hypertension, sex as well as self-reported family (mother 589 

or father) history of T2D were taken at the baseline of KORA S4. BMI was calculated as the 590 

individual's weight in kg divided by the square of their height in metres.  591 

 592 

EpiScore Prediction of Ongoing Symptomatic COVID-19/Hospitalisation 593 

Self-reported COVID-19 phenotypes were available in a subset of individuals from the 594 

Generation Scotland DNA methylation sample who had also participated in the CovidLife 595 

surveys (n=2,399) [33]. Ongoing symptomatic COVID-19 phenotypes were ascertained from 596 

CovidLife survey 3, (n=1,802 Generation Scotland participants with DNAm profiled), where 597 

participants were asked about the total overall time they experienced symptoms in their 598 

first/only episode of illness, as well as the whole of their COVID-19 illness. Ongoing 599 

symptomatic COVID-19 was defined here as symptoms persisting for at least 4 weeks from 600 

infection and is correct as of February 2021, when the survey 3 was administered. 601 

Hospitalisation information, derived from the Scottish Morbidity Records (SMR01), was used 602 

to obtain COVID-19 hospital admissions using ICD10 codes U07.1 (lab-confirmed COVID-603 

19 diagnosis), and U07.2 (clinically-diagnosed COVID-19). Hospitalisation data is correct as 604 

of February 2021. Logistic regression was used to assess the predictive performance of the 605 

T2D EpiScores in relation to ongoing symptomatic COVID-19 and severe COVID-19 (i.e. 606 

hospitalisation), adjusting for the standard risk factors and incident T2D before a positive 607 

COVID-19 test.   608 

 609 

Figure 1. The prediction pipeline and functionality provided in MethylPipeR 610 
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Figure 2. ROC and PR curves for the full models with Cox PH Lasso, Random Survival 615 

Forest and Survival BART direct EpiScores. 616 

 617 
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Figure 3. Confusion matrix plot of true/false positives/negatives for the risk factors only and 621 

full model in the Generation Scotland test dataset. (Full model uses direct and composite 622 
protein EpiScores from Cox PH Lasso.) 623 

 624 

 625 
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 627 

Table 1. Summary information for the Generation Scotland training and test sets. Summary 628 

information is mean (SD) or n (%). 629 

 Training Test 

  Cases Controls Cases Controls 

n 374 9461 252 4526 

Time-to-event (Years to 

Onset or Censoring) 
5.7 (3.4) 11.1 (1.8) 5.9 (3.4) 11.3 (1.7) 

Age (Onset or Censoring) 61.2 (10.7) 58.1 (14.6) 60.4 (9.4) 59.2 (13.9) 

Sex (Male) 184 (49.2) 3903 (41.3) 133 (52.8) 1681 (37.1) 

BMI (kg/m2) 31.7 (5.7) 26.3 (4.8) 32.2 (6.2) 26.5 (5.0) 

Self-reported Parent or 

Sibling Diabetes 
137 (36.6) 1553 (16.4) 105 (41.7) 858 (19.0) 

Self-reported Hypertension 117 (31.3) 1022 (10.8) 90 (35.7) 575 (12.7) 

 
    

     

     

     

     

     

     
 630 

 631 

 632 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 1, 2022. ; https://doi.org/10.1101/2021.11.19.21266469doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.19.21266469
http://creativecommons.org/licenses/by/4.0/


 633 

Supplementary Figure 1. Preprocessing steps for Generation Scotland with number of 634 

individuals/cases and controls after each step. 635 

 636 

 637 
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Supplementary Figure 2. Calibration plots for the full model (risk factors + composite 638 

protein EpiScore + Cox PH lasso direct EpiScore) (top-left) and the risk factors only model 639 

(bottom-left). The grey area shows 95% confidence intervals calculated from 2000 bootstrap 640 

samples. The ideal calibration line (observed = predicted) is shown in red. The histogram 641 

shows the distribution of predicted probabilities. The wider confidence intervals at higher 642 

predicted probabilities are due to the small number of predictions in those ranges. Most 643 

predictions are low in the probability range, emphasised in the zoomed-in plots (top-right and 644 

bottom-right). 645 

 646 

 647 
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Supplementary Figure 3. An example from the MethylPipeR-UI Shiny app. 650 
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