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Abstract 

Northern European countries and countries bordering the Baltic Sea have witnessed an 

increase of vibriosis cases during recent heatwaves. Here, we described the epidemiology of 

vibriosis cases and the genetic diversity of Vibrio isolates from Norway, Sweden, Denmark, 

Finland, Poland, Estonia, and Latvia in 2018, a year with an exceptionally warm summer. 

We conducted a retrospective study and analysed demographics, geographic distribution, 

seasonality, causative species, and severity of non-travel related vibriosis cases in 2018. Data 

sources included surveillance systems, national laboratory notification databases and/or 

nationwide surveys to public health microbiology laboratories. Moreover, we performed 

whole genome sequencing and multilocus sequence typing of available isolates from 2014-

2018 to map their genetic diversity. 

In 2018, we identified 445 non-travel related vibriosis cases in the study countries, which 

was considerably higher than the median of 126 cases between 2014-2017 (range: 87-272). 

The main reported mode of transmission was exposure to seawater. We observed a species-

specific geographic disparity of vibriosis cases across the Nordic-Baltic region. Developing 
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severe vibriosis was associated with infections of Vibrio vulnificus (adjOR: 17.2; 95% CI: 3.3-

90.5) or Vibrio parahaemolyticus (adjOR: 2.1; 95% CI: 1.0-4.5), being ≥65 years of age (65-79 

years, adjOR: 3.9; 95% CI: 1.7-8.7; 80+ years, adjOR: 15.5; 95% CI: 4.4-54.3) or acquiring 

infections during summer (adjOR: 5.1; 95% CI: 2.4-10.9). Although phylogenetic analysis 

revealed diversity between Vibrio isolates, two V. vulnificus clusters (<10 SNPs) were 

identified. A share sentinel surveillance system for vibriosis during summer months might be 

highly valuable to monitor this emerging public health issue. 

 

Keywords: vibriosis; seawater; emerging pathogens; heatwaves; global warming. 

 

Introduction 

The habitat of Vibrio bacteria is fresh and brackish water with moderate salinity. Non-

toxigenic Vibrio cholerae, as well as several human pathogenic non-cholera Vibrio species, 

including Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio vulnificus, cause vibriosis 

after seawater exposure or consumption of contaminated seafood [1]. Clinical 

manifestations range from mild gastroenteritis and otitis to wound infections that may lead 

to severe necrotizing fasciitis and septicaemia with a potentially fatal outcome [2-5]. 

The Baltic Sea region is one of the areas where increasing numbers of cases related to Vibrio 

species causing vibriosis (VCV) have been reported in the last decades [6]. Several studies 

have shown how the occurrence of heatwaves, that lead to an increase of sea surface 

temperature, are linked with an increase of the number of reported vibriosis cases [4, 7-12]. 

For instance, 2006, 2010, and particularly 2014 (the warmest year in historical records to 

that date), were the years with a significantly warm summer in the Baltic Sea region, and 

were also the years with the largest number of vibriosis cases reported [6, 11]. 
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However, there is a notable gap in surveillance data of vibriosis [1, 6], since it is not a 

notifiable disease in the majority of European countries. Therefore, the aim of this multi-

country study was to describe the epidemiology of vibriosis cases in countries bordering the 

North and Baltic Seas area during the most recent exceptionally warm year of 2018 [13, 14], 

in order to investigate the extension of these infections in the study countries, map their 

genetic diversity, understand the predictors for developing severe vibriosis, and to propose 

recommendations for public health measures.  

Methods 

Study design and case definition 

We conducted a retrospective cross-sectional study to analyse the epidemiology of VCV 

infections reported in 2018 in Norway, Denmark, Sweden, Finland, Poland, Estonia, and 

Latvia, further referred to as the study countries. Available data of vibriosis cases since the 

last warmest summer (2014) were used to contextualize the number of VCV infections of 

2018. 

A case of vibriosis was defined as a laboratory confirmed VCV infection from the study 

countries; those related to travel were excluded. For few cases (n=18) more than one Vibrio 

species were recorded concurrently in the same patient. In such cases only the species and 

sample type related to a more severe infection was included. 

Data source and collection 

Each country used different data sources including compulsory comprehensive passive 

surveillance systems for vibriosis (Sweden, Finland, Poland, and Estonia), national laboratory 

notification databases (Denmark and Latvia) or nationwide surveys to public health 

microbiology laboratories (Norway) (Table S1).  
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The reporting criteria varied between countries that had a surveillance system in place in 

2018. In Sweden, a confirmed case was defined as an isolation of Vibrio spp. other than 

toxigenic V. cholerae O1 or O139. In Finland, a case was defined as (i) V. cholerae including 

non-O1, non-O139 from faecal sample, culture or polymerase chain reaction (PCR) (or other 

nucleic acid detection); (ii) V. parahaemolyticus from faecal sample, culture or PCR (or other 

nucleic acid detection) and (iii) any Vibrio spp. from blood sample or cerebrospinal fluid, 

culture or PCR (or other nucleic acid detection). In Poland, a case was defined according to 

the International Classification of Diseases 10th revision, diagnosis A05.3 for V. 

parahaemolyticus. In Estonia, a vibriosis case was considered as any case meeting the clinical 

criteria (otitis, wound infection, gastroenteritis, septicaemia) and laboratory criteria 

(detection of Vibrio spp., V. cholerae non-O1, non-O139 in a clinical specimen detected by 

any method). Meanwhile, the criteria for Vibrio spp. infections reported from national 

laboratory notification databases (Denmark) and laboratory nationwide surveys (Norway) 

were based on detection of Vibrio spp. other than toxigenic V. cholerae O1 or O139. No 

surveillance system for vibriosis was in place in Latvia. 

We compiled the vibriosis cases from all study countries into a harmonized dataset that 

included: patients’ sex, age group, year and month of infection, country, European NUTS3 

(nomenclature of territorial units for statistics 3) region [15], identified VCV, type of sample 

and, if known, source of exposure and travel status at the probable time of infection. The 

severity of an infection was inferred from the sample type: blood/serum (n=60) and wound 

swabs (n=144) were considered as a proxy of severe infections, while skin swabs (n=28), ear 

secretion (n=176), faeces (n=19), urine (n=2), nasal swab (n=1) and other unspecified (n=15) 

sample types were considered linked to non-severe infections. Seasons were defined 

according to the northern hemisphere seasons (spring: March – May; summer: June – 
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August; autumn: September – November; winter: December – February). Population data as 

per 31 December 2018 were publicly available from national statistics authorities. 

Epidemiological investigation and statistical analysis 

We described the epidemiology of vibriosis cases reported in 2018 in the study countries per 

country and as total counts. Data presented included the sex-ratio, notification rate per 

100,000 inhabitants, median age, distribution of cases across age groups, season and 

identified VCV (Table S2). Case numbers were presented by country and by region (NUTS3) 

while seasonality was further depicted by month of infection. Severity of infection was 

described by age group, and month of infection. Association of sex, age group, season, and 

VCV with developing severe vibriosis was further analysed by estimation of crude odds ratios 

(OR) and 95% confidence intervals (CI) by univariate logistic regression analysis. Adjusted OR 

(adjOR) with 95% CI were estimated in a multivariable analysis. Binary outcome was 

severe/non-severe vibriosis. 

Data analysis was performed using Stata version 15.0 (2017. Stata Statistical Software: 

Release 15. College Station, TX: StataCorp LP. USA). Categorical variables were described as 

proportions with 95% CI and were compared using chi-squared test. Continuous variables 

were described using mean and standard deviation or median and range, and were 

compared using t-test or non-parametric Wilcoxon rank-sum test. Trends were assessed 

using a nonparametric test across ordered groups. Observations with missing values for 

variables under comparison were excluded from the respective analysis.  

We used an alpha level of 0.05 for all statistical tests. Stata outputs of p-values p<0.000 are 

reported as p<0.001. 

Sampling of VCV isolates, MLST and WGS analyses 
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We collected available clinical VCV isolates in 2018 from the national public health institutes 

or regional laboratories, and complemented them with available clinical (2014-2017) and 

environmental (2018) isolates (Table S3). DNA was extracted and sequenced using standard 

operating procedures and Illumina sequencers. WGS raw files are available at the European 

Nucleotide Archive (https://www.ebi.ac.uk/ena) under study project accession number 

PRJEB43461. Accession numbers of all sequenced isolates are listed in Table S4. 

Raw reads from each country were analysed together using a common pipeline for species 

identification, MLST, and phylogenetic analyses. We used BBmap (version 38.69) to clean the 

raw reads and FastQC (version 0.11.8) to generate quality reports of samples. Additionally, 

we used Kraken2 (version 2.0.8_beta) to confirm the species and Shovill (1.0.9) to assemble 

(using SPAdes version 3.13.1) the genomes.  

We searched the PubMLST database (https://pubmlst.org/) using Ariba (2.14.4). Assignment 

of sequence type (ST) was performed for isolates of non-toxigenic V. cholerae, V. 

parahaemolyticus, V. vulnificus and V. alginolyticus according to their respective MLST 

schemes (Figure 4 and 5, S1-S2). 

We used Parsnp (v1.2) and a neighbour-joining algorithm to build the phylogenetic trees, 

and Snp-dists (0.7.0) to calculate the single nucleotide polymorphism (SNP) distance 

between isolates. A cluster was defined as two or more isolates within 30 SNPs difference. 

An in-house pipeline was used for sequence mapping, generation of consensus sequences, 

alignment calculation, and SNP filtering (exclusion distance = 300). We used R package 

ggtree [16] to visualise the phylogenetic trees generated by the in-house pipeline 

(https://github.com/folkehelseinstituttet/Vibrio-Project). 

 

Results 
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Descriptive epidemiology of vibriosis cases 

In 2018, 445 non-travel related cases of vibriosis were reported in the study countries, which 

was the highest single year case number compared to the four previous years (n=610) 

(Figure 1A, Table 1 and S2). 

 

Figure 1. Occurrence of vibriosis cases in study countries during 2014-2018 (A) and 

distribution of cases by age and sex (B) in 2018.  

Table 1. Summary of epidemiological parameters of vibriosis cases per species in the study 

countries, 2018.  

    
Total 

vibriosis 
(N=445) 

Vibrio 
 alginolyticus 

(N=152) 

Non-toxigenic  
Vibrio cholerae 

(N=100) 

Vibrio 
parahaemolyticus 

(N=89) 

Vibrio  
vulnificus 

(N=45) 

Non-subtyped 
Vibrio spp. 

(N=59) 

    n % n % n % n % n % n % 

Sex 
Female  168 37.8 68 45.0 26 26.0 38 43.0 14 31.0 22 37.3 

Male  277 62.2 84 55.0 74 74.0 51 57.0 31 69.0 37 62.7 

Age group 

0-4 9 2 2 1.3 4 4.0 0 0.0 1 2.2 2 3.4 

5-14 91 20.4 47 30.9 23 23.0 7 7.9 0 0.0 14 23.7 

15-24 47 10.6 24 15.8 10 10.0 4 4.5 0 0.0 9 15.3 

25-44 54 12.1 26 17.1 12 12.0 7 7.9 1 2.2 8 13.6 

45-64 83 18.7 24 15.8 24 24.0 20 22.5 6 13.3 9 15.3 

65-79 109 24.5 24 15.8 19 19.0 36 40.5 21 46.7 9 15.3 

>80 52 11.7 5 3.3 8 8.0 15 16.9 16 35.6 8 13.6 

Season 
Summer 326 73.3 97 63.8 74 74.0 78 87.6 44 97.8 33 55.9 

Autumn 96 21.6 45 29.6 22 22.0 6 6.7 1 2.2 22 37.3 
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Winter 13 2.9 6 4.0 2 2.0 3 3.4 0 0.0 2 3.4 

Spring 10 2.2 4 2.6 2 2.0 2 2.3 0 0.0 2 3.4 

Country 

Norway 92 20.7 63 41.5 2 2.0 12 13.5 9 20.0 6 10.2 

Denmark 170 38.2 70 46.1 3 3.0 55 61.8 16 35.6 26 44.1 

Sweden 147 33 19 12.5 64 64.0 19 21.4 19 42.2 26 44.1 

Finland 30 6.7 0 0.0 26 26.0 3 3.4 1 2.2 0 0.0 

Poland, Estonia 6 1.3 0 0.0 5 5.0 0 0.0 0 0.0 1 1.7 

Sample 
type 

Blood 60 13.5 3 2.0 20 20.0 4 4.5 31 68.9 2 3.4 

Faeces 19 4.3 2 1.3 11 11.0 3 3.4 0 0.0 3 5.1 

Ear-related 176 39.6 91 59.9 43 43.0 14 15.7 1 2.2 27 45.8 

Wound-related 144 32.4 45 29.6 13 13.0 54 60.7 12 26.7 20 33.9 

Other 46 10.3 11 7.2 13 13.0 14 15.7 1 2.2 7 11.9 

Exposure 

Food/water 6 1.3 2 1.3 3 3.0 1 1.1 0 0.0 0 0.0 

Bathing/seawater 109 24.5 17 11.2 38 38.0 12 13.5 25 55.6 17 28.8 

Other 1 0.2 1 0.7 0 0.0 0 0.0 0 0.0 0 0.0 

Unknown 329 73.9 132 86.8 59 59.0 76 85.4 20 44.4 42 71.2 

Severe 
infection 

Yes 204 45.8 48 31.6 33 33.0 58 65.2 43 95.6 22 37.3 

No 241 54.2 104 68.4 67 67.0 31 34.8 2 4.4 37 62.7 

Note: No cases were reported for Latvia. 

The vibriosis notification rates ranged between 0.5 in Finland and 2.9 per 100,000 

inhabitants in Denmark. Due to limited number of cases (n=6), the notification rate was not 

calculated for Poland and Estonia. Latvia reported no cases (Table S2). The majority of the 

cases were male (n=277, 62.2%) (Table 1) and the highest number of cases was reported in 

the age group 65-79 (n=109, 24.5%) followed by age groups 5-14 (n=91, 20.4%) and 45-64 

years old (n=83, 18.7%) (Figure 1B, Table 1).  

Most of the infections were caused by V. alginolyticus (n=152, 34.2%), followed by non-

toxigenic V. cholerae (n=100, 22.5%), V. parahaemolyticus (n=89, 20%), V. vulnificus (n=45, 

10.1%), and non-subtyped Vibrio spp. (n=59, 13.2%). The most common type of infections 

reported were ear infections (n=176; 39.6%), followed by wound infections (n=144; 32.4%) 

(Table 1). 

We observed a difference in the proportions of species affecting each age group. The 

proportions of V. vulnificus and V. parahaemolyticus infections followed an upward trend 
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with increasing age group (both p<0.001), with the opposite pattern for V. alginolyticus 

(p<0.001), and no trend was observed for non-toxigenic V. cholerae infections (p=0.081) 

(Table 1). 

Information on exposure was collected in two countries (Norway and Sweden) that 

constituted 239 cases of this study. The reported exposures were seawater/bathing (n=107, 

44.8%), food/water poisoning (n=6, 2.5%), other (unspecified) (n=1, 0.4%) or unknown 

(n=125, 52.3%) (Table 1). 

Geographic distribution of vibriosis cases 

The geographic distribution of the vibriosis cases differed between Vibrio species (Figure 2). 

 

Figure 2. Geographical distribution (NUTS3 level) of vibriosis cases in relation to the identified 

species in the study countries in 2018. Note: Latvia reported no cases. 

V. alginolyticus and V. parahaemolyticus infections were reported mainly from regions 

adjacent to the North Sea as well as around the connecting sounds between the Baltic and 

the North Sea: southern and western regions of Norway, all of Denmark and southwest coast 

of Sweden (Figure 2A and 2C). Non-toxigenic V. cholerae infections were almost exclusively 

reported from coastal regions of the Baltic Sea: the east coast of Sweden and regions in 

Finland, Poland, and Estonia (Figure 2B). V. vulnificus infections, similar to V. alginolyticus 
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and V. parahaemolyticus infections, mainly occurred in the coastal regions around the 

connecting sounds between the Baltic and the North Sea, particularly Oslo fjord in Norway, 

southwest Sweden and eastern Denmark (Figure 2D). 

Severity of Vibrio infections 

The proportion of severe VCV infections increased significantly with increasing age (p<0.001) 

and it differed by VCV (p<0.001) (Figure 3A and Table 2).  

 

Figure 3. Severity of vibriosis cases. Proportion of cases per age group (A) and total numbers 

per months (B) in the study countries, 2018. 

We observed the highest proportion of severe infections for V. vulnificus (95.6%) and V. 

parahaemolyticus (65.2%), while these were lower yet substantial for non-toxigenic V. 

cholerae (33.0%) and V. alginolyticus (31.6%) (Table 1 and 2). The exposure of these severe 

infections with non-toxigenic V. cholerae and V. alginolyticus was largely unknown (48% and 

70%, respectively) or cases were exposed to seawater/bathing (48% and 25%, respectively). 

In terms of age, these infections were shifted slightly towards the younger age group. On the 

contrary, more than 70% of the severe V. vulnificus and V. parahaemolyticus infections 

occurred in the age groups 65-79 and 80+, while it was 58% and 41% of the severe V. 

cholerae and V. alginolyticus cases respectively that belonged to these age groups. 
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All VCV were more frequently reported in summer, when the majority of cases occurred 

(n=326, 73.3%; ranging per species from 63.8% to 97.8%) (Table 1). No difference in the 

seasonal distribution of vibriosis cases was observed between countries (Figure 3B, Table 

S2). According to our multivariable model, the likelihood of developing a severe infection 

was significantly increased among the elderly (65-79 years: adjOR=3.9; 95% CI: 1.7-8.7; 80+ 

years: adjOR=15.5; 95% CI: 4.4-54.3), for infections caused by V. vulnificus (adjOR=17.2; 95% 

CI: 3.3-90.5) or V. parahaemolyticus (adjOR=2.1; 95% CI: 1.0-4.5), as well as among infections 

occurring in summer (adjOR=5.1; 95% CI: 2.4-10.9) (Table 2). 

Table 2. Predictors without and with adjustment of severe and non-severe vibriosis cases in 

the study countries, 2018. 

Characteristics 
 

All cases (N=445) 

Severe infections Non-severe infections Univariate logistic 
regression a 

OR (95% CI)  

MVA a 

 
adjOR (95% CI) 

n % n % 

204 45.8 241 54.2 

Sex        

Female 89 53.0 79 47.0 1 1 

Male  115 41.5 162 58.5 0.6 (0.43-0.93) 0.7 (0.42-1.27) 

Age group        

0-4 1 11.1 8 88.9 0.3 (0.03-2.35) 0.1 (0.01-1.69) 

5-14 7 7.7 84 92.3 0.2 (0.07-0.47) 0.1 (0.05-0.41) 

15-24 7 14.9 40 85.1 0.4 (0.14-1.02) 0.4 (0.16-1.26) 

25-44 17 31.5 37 68.5 1 1 

45-64 41 49.4 42 50.6 2.1 (1.04-4.35) 1.9 (0.86-4.18) 

65-79 83 76.1 26 23.9 6.9 (3.37-14.33) 3.9 (1.73-8.68) 

80+ 48 92.3 4 7.7 26.1 (8.1-84.2) 15.5 (4.41-54.31) 

Season        

Summer 184 56.4 142 43.6 7.6 (4.13-13.93) 5.1 (2.40-10.86) 

Autumn 14 14.6 82 85.4 1 1 

Winter 3 23.1 10 76.9 1.8 (0.43-7.19) 3.1 (0.52-18.04) 

Spring 3 30.0 7 70.0 2.5 (0.58-10.88) 1.5 (0.27-8.49) 

Vibrio species        

V. alginolyticus 48 31.6 104 69.1 0.9 (0.55-1.61) 1.6 (0.79-3.31) 

Non-toxigenic V. cholerae 33 33.0 67 67.0 1 1 

V. parahaemolyticus 58 65.2 31 35.8 3.8 (2.08-6.94) 2.1 (1.00-4.49) 

V. vulnificus 43 95.6 2 4.4 43·7 (9.96-191) 17.2 (3.28-90.45) 

Vibrio spp. 22 37.3 37 62.7 1·2 (0.62-2.36) 2.1 (0.86-5.30) 
a Data of Poland and Estonia were not included in the logistic regression analyses. No cases reported from Latvia. 

Microbiological and molecular investigations 

We analysed whole genome sequences of 135 clinical Vibrio isolates isolated in 2018. 

Additionally, we included 16 available clinical isolates from travel related cases, 14 clinical 
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isolates from 2014-2017 period and 13 Finnish environmental non-toxigenic V. cholerae 

isolates to investigate the genetic diversity of Vibrio in the study countries (Table S3).  

Phylogenetic analysis 

SNP analysis showed a high diversity of isolates for all species with several clusters of non-

travel related cases (Figure 4 and 5, S1-S2).  

 

Figure 4. SNP based phylogeny of 100 non-toxigenic V. cholerae genomes from study 

countries. Nine V. cholerae clusters with ≤30 SNPs difference are shaded in steel blue. The 

non-toxigenic V. cholerae ASM674v1 sequence was used as reference. The scale bar indicates 

number of substitutions per site. Note: VC – non-toxigenic V. cholerae, DK – Denmark, FI – 

Finland, NO – Norway, SE – Sweden, ST – sequence type. The first number represents the 

isolation year and the second number denotes the isolate number.  

 

Figure 5. SNP based phylogeny of 27 V. vulnificus genomes from study countries.  

Two V. vulnificus clusters with ≤30 SNPs difference are shaded in steel blue. The V. vulnificus 

ASM221513v1 sequence was used as reference. The scale bar indicates the number of 

substitutions per site. Note: VV – V. vulnificus, DK – Denmark, FI – Finland, NO – Norway, SE – 

Sweden, ST – sequence type. The first number represents the isolation year and the second 

number denotes the isolate number.  

 

Nine clusters with two or three cases each of non-toxigenic V. cholerae isolates (≤30 SNPs 

difference) were identified in Sweden (n=4), Sweden/Finland (n=4), and Finland (n=1) (Figure 

4). Cases whose isolates clustered were sampled close in time (median 7 days; range 2-86 

days) but detailed information on place of infection was not available. 
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Additionally, two clusters of V. vulnificus isolates with <10 SNPs difference were detected 

(Figure 5): one cluster with nine isolates in Norway, where the cases had been infected 

within 40 days and about 60 kilometres apart, and one cluster with two isolates in Sweden, 

where the cases had been infected 30 days and about 55 kilometres apart. 

MLST analysis 

Within the 178 isolates included in this study, 20 groups of isolates with the same ST were 

identified. Of these, ten groups were pairs of isolates from a single country (Sweden, Norway 

or Finland), three were pairs from two countries (Denmark/Sweden, n=1, or 

Sweden/Finland, n=2), six included 3-4 isolates each, and the largest group of nine V. 

vulnificus isolates (ST534) was detected in Norway (Figure 4 and 5, Table S4). Finally, a single 

V. parahaemolyticus isolate from Norway, found in a gastrointestinal infection in spring of 

2014, was identified as the pandemic ST3 (Table S4, Figure S3). 

Discussion 

Our study provides a detailed overview on the occurrence of vibriosis in the Nordic and 

Baltic Sea regions in 2018. In context of epidemiological and microbiological findings as well 

as conducted studies from 2014-2018 [11, 12], our results highlight the importance of 

vibriosis as a concern to public health in this geographic area. Even though the data have 

been collected using different systems, the study countries reported similar patterns in 

terms of population affected by sex and age-group distribution. Two-thirds of all vibriosis 

cases from 2014-2018 occurred in the years, 2014 and 2018, reported as two remarkably 

warm years in the literature [6, 11-14]. Moreover, though V. vulnificus infections are usually 

considered rare in this region [17], 45 such infections were detected in 2018 compared with 

the preceding years where eight (2014), none (2015), one (2016), and two (2017) V. 

vulnificus infections were identified. Interestingly, one V. vulnificus case occurred at about 
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60 degrees North latitude in Finland, which, to the best of our knowledge, is the highest 

latitude northward at which V. vulnificus has been reported. These findings underline a 

concern about the spread of this pathogen due to seawater warming [18]. 

It is well documented that vibriosis is more frequently reported in summer [2, 6, 11, 12, 18]. 

Our results from 2018 confirm this pattern with the majority of infections occurring in 

summer months. Additionally, in this study almost half of all infections reported in 2018 

were categorised as severe infections that also mainly occurred during summer season.  

Mild ear infections may have long reporting delays up to months until a patient seeks 

medical care [19, 20] compared with rapidly developing severe blood or wound infections. 

We observed a similar pattern for the cases in this study, which could explain why reporting 

of mild vibriosis stretched more into autumn and winter and reporting of severe infections 

concentrated in summer months. More accurate information on the probable infection date 

would be needed to confirm this hypothesis. The likely source of infection was available for a 

subset of cases suggesting that the mode of transmission was mostly through seawater 

rather than through consumption of contaminated seafood. 

The majority of vibriosis cases in the study countries were domestic and males were more 

frequently affected than females, consistent with other reports [12, 21]. Even though the 

majority of cases were present among adults, about a fifth of the detected cases were 

among children up to 14 years of age, who mostly had ear infections and mild vibriosis; 

severe infections on the other hand were found to be associated with increasing age. This is 

likely due to underlying conditions being overrepresented among elderly people. In addition 

to increasing age, we also found that being infected by V. vulnificus or V. parahaemolyticus 

was a risk factor for a more severe VCV infection likely due to the greater pathogenicity of 

these microorganisms [1, 2]. On the other hand, despite V. cholerae and V. alginolyticus 
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predominantly causing mild infections, in our study, about one third of cases infected by 

these species were sampled from blood/serum or wounds. Thus, in absence of systematic 

data on hospitalisation and symptoms, these infections were also considered as severe. 

These cases were of a lower median age compared to V. vulnificus and V. parahaemolyticus 

infections, and the exposure was largely unknown with only some cases exposed to 

seawater/bathing. Given a substantial proportion of cases classified as severe, V. cholerae 

and V. vulnificus should therefore not be underestimated in vibriosis diagnosis, as was also 

pointed out previously [22]. 

We observed a geographic disparity in the distribution of VCV in the study countries. V. 

alginolyticus and V. parahaemolyticus infections concentrated in the coastal regions 

connecting the North Sea to the Baltic Sea, including the Danish Sounds, where V. vulnificus 

was mainly reported. Infections with non-toxigenic V. cholerae were mostly detected along 

the coasts of the Baltic Sea. This is in line with previous environmental detection of Vibrio 

species in different areas [2, 23-26] and reported clinical V. vulnificus infections from 

Germany [4]. Reasons for the geographic disparity could be related to differences in sea 

surface temperature and salinity, which represent major factors influencing Vibrio growth, 

and are continuously monitored in the European Centre for Disease Prevention and Control 

Vibrio suitability tool [27]. Additional factors, such as phytoplankton composition and 

nutrient presence in the water [23-25, 28], could have also played a role. Additional research 

studies on the water environment and presence of Vibrio in seafood could provide useful 

information on the ecological niches and geographical distribution of such bacteria 

particularly for species associated with a potentially severe clinical outcome. 

Our MLST analysis showed a genetic heterogeneity between clinical Vibrio spp. isolates, the 

majority of which belonged to new STs. SNP-based phylogenetic analysis revealed small 
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clusters of V. cholerae, containing two to three isolates each, without a clear epidemiological 

link. The same V. cholerae strains detected in one or more countries might be due to 

common exposure to contaminated seafood or environmental spread of clones through e.g. 

sea currents [25], plastic pollutants [29], ship ballast water [30], and waterbirds [31]. 

The occurrence of two V. vulnificus clusters, one in Norway and one in Sweden, detected 

between 30-40 days apart and within an area of around 50-60 kilometres, highlights the 

possibility of emerging V. vulnificus clones that caused infections after seawater exposure 

during the exceptional warm summer in 2018. This was further supported by the 

epidemiological investigations of the first reported V. vulnificus waterborne outbreak after 

seawater exposure [32]. 

Some limitations apply to our investigation. There were differences in data sources and data 

availability between the study countries. Notification rates should therefore be compared 

carefully as vibriosis is not notifiable in all study countries or not for all species. Especially 

mild infections might have been reported with a delay and/or underreported. Conversely, in 

some cases a disease could have been misclassified as vibriosis when the identified Vibrio 

species were merely opportunistic microorganisms present at the site of infection. Case 

severity classification used in this analysis was not reported directly in any study country, but 

was inferred based on the sample type. Additionally, cases without known travel history 

were considered as non-travel related, which could have potentially led to an overestimation 

of vibriosis cases in the Baltic Sea region. Furthermore, the place of residence was used as 

proxy when place of infection was not available. Regarding the molecular findings, SNP 

analysis needs to be carefully evaluated since recombination is one of the major sources of 

genomic changes in Vibrio. Therefore, the removal of changes caused by recombination 

could have provided a better insight from the evolutionary perspective. Finally, laboratory 
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methodology, capacity and priorities to diagnose and report VCV infections likely differed 

among the study countries. 

During our investigation, we have performed a systematic and consistent analysis of 

epidemiological data from different countries, and we have combined it with the genomic 

analysis of strains from cases to achieve a comprehensive understanding of the occurrence 

of VCV infections in this affected region. Despite the low incidence, severe VCV infections 

are clinically costly [33] and climate changing predictions as well as population and 

socioeconomic projections for the upcoming years suggest that they are likely to increase in 

the future due to more favourable growth conditions for VCV [18, 34]. It is therefore of 

interest to detect and report the VCV infections in countries bordering the Baltic Sea and 

connecting regions to the North Sea to further monitor the situation, especially during 

summer heatwaves. Moreover, such surveillance would facilitate risk assessments and allow 

for targeted interventions, including risk communication to raise awareness between 

clinicians and populations at risk towards vibriosis. Thereby, countries without 

comprehensive surveillance could benefit from establishing or expanding dedicated 

surveillance systems to detect and prevent vibriosis cases. In particular, a shared sentinel 

system during summer months might be highly valuable. 
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