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ABSTRACT 2 

 3 

IgA nephropathy (IgAN) is a progressive form of kidney disease defined by glomerular deposition of IgA. 4 

We performed a genome-wide association study involving 10,146 kidney biopsy-diagnosed IgAN cases 5 

and 28,751 matched controls across 17 international cohorts. We defined 30 independent genome-wide 6 

significant risk loci jointly explaining 11% of disease risk. A total of 16 loci were novel, including 7 

TNFSF4, REL, CD28, CXCL8/PF4V1, LY86, LYN, ANXA3, TNFSF8/15, REEP3, ZMIZ1, RELA, ETS1, 8 

IGH, IRF8, TNFRSF13B and FCAR. The SNP-based heritability of IgAN was estimated at 23%. We 9 

observed a positive genetic correlation between IgAN and total serum IgA levels, allergy, tonsillectomy, 10 

and several infections, and a negative correlation with inflammatory bowel disease. All significant non-11 

HLA loci shared with serum IgA levels had a concordant effect on the risk of IgAN. Moreover, IgAN loci 12 

were globally enriched in gene orthologs causing abnormal IgA levels when genetically manipulated in 13 

mice. The explained heritability was enriched in the regulatory elements of cells from the immune and 14 

hematopoietic systems and intestinal mucosa, providing support for the pathogenic role of extra-renal 15 

tissues. The polygenic risk of IgAN was associated with early disease onset, increased lifetime risk of 16 

kidney failure, as well as hematuria and several other traits in a phenome-wide association study of 17 

590,515 individuals. In the comprehensive functional annotation analysis of candidate causal genes across 18 

genome-wide significant loci, we observed the convergence of biological candidates on a common set of 19 

inflammatory signaling pathways and cytokine ligand-receptor pairs, prioritizing potential new drug 20 

targets.  21 

 22 

 23 
 24 
 25 
  26 
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 5 

INTRODUCTION 2 

 3 

IgA nephropathy (IgAN) is a common form of immune-mediated glomerulonephritis characterized by 4 

glomerular deposition of IgA-containing immune complexes and manifesting with hematuria, proteinuria, 5 

and often kidney failure. Examination of kidney-biopsy tissue and demonstration of glomerular IgA 6 

deposits is required to establish the diagnosis. No approved targeted therapies presently exist for IgAN, 7 

and a large fraction of cases progress to kidney failure requiring kidney transplantation or dialysis.  There 8 

are no validated molecular predictors of progression to kidney failure.  9 

 10 

As the diagnosis requires a kidney biopsy, genetic discoveries have been hindered by small sample sizes 11 

of the existing genetic cohorts. Approximately 15 independent loci have been previously identified in 12 

association with IgAN, implicating defects in the complement pathway, intestinal network of IgA 13 

production, and innate immunity against mucosal pathogens1-7. These findings have already led to the 14 

reformulation of the existing IgAN pathogenesis model, with most candidate mechanisms mapping to the 15 

immune system rather than the kidney8,9. Nevertheless, prior GWAS had a two-stage design, with sample 16 

size of the discovery stage often limiting the power to discover new loci. 17 

 18 

Herein, we report a well-powered GWAS discovery study for IgAN involving 38,897 individuals (10,146 19 

kidney biopsy-defined cases and 28,751 controls) recruited across 17 international cohorts. With the 20 

discovery of 16 novel non-HLA GWAS loci, we provide strong support for a highly polygenic 21 

architecture of IgAN. We assess functional consequences of the risk alleles, define causal cell types and 22 

signaling pathways, and explore genetic correlations and pleiotropic associations of the risk loci. We 23 

demonstrate that IgAN polygenic score predicts kidney disease outcomes. Importantly, we report 24 

convergence of multiple risk loci on the set of common signaling pathways and ligand-receptor pairs 25 

involved in the regulation of IgA production, prioritizing plausible new molecular drug targets. 26 
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 6 

 2 

RESULTS 3 

 4 

Study Design 5 

 6 

We performed a standardized GWAS and meta-analysis of 17 independent international case-control 7 

cohorts (12 newly genotyped and five previously published GWAS cohorts) comprising a total of 38,897 8 

individuals (10,146 biopsy-proven cases and 28,751 controls). Of the 17 cohorts, 11 were of European 9 

ancestry with participants recruited from nephrology centers in Italy, Poland, Germany, France, Belgium, 10 

Czech Republic, Hungary, Croatia, Turkey, Spain, Sweden, U.K., U.S., Canada, and Argentina, and six 11 

cohorts were of East-Asian ancestry with participants recruited from nephrology centers in China, Japan, 12 

and Korea. A total of 14 cohorts (8,139 cases and 17,713 controls) were genotyped with high-density SNP 13 

arrays, ancestrally matched using principal component-based methods, and imputed using whole genome 14 

sequence reference panels specific for each ethnicity, and three additional cohorts (2,007 cases and 11,038 15 

controls) were genotyped with the Immunochip platform (Supplementary Table 1).  16 

 17 

Detailed description of each cohort, genotyping platform, quality control analysis, and ancestry and 18 

imputation analyses are provided as Supplementary Notes. Our primary discovery involved the 19 

combined analysis of all 17 cohorts under a log-additive genetic model. Additional exploratory analyses 20 

were conducted to identify any potential ancestry-specific and sex-specific locus, including under 21 

alternative (dominant and recessive) genetic models. 22 

 23 

Genome-wide significant loci 24 

 25 

The results of combined meta-analyses across all cohorts are summarized in Figure 1, Tables 2 and 26 

Supplementary Tables 2-4. We confirmed multiple independently genome-wide significant (p<5x10-8) 27 
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 7 

signals in the HLA region, with an overall l=1.048 and 1.042 before and after excluding the HLA region 2 

(Extended Data Figure 1). In addition, we detected 24 independently associated non-HLA loci at a 3 

genome-wide significance, including eight known non-HLA loci (CFH, DEFA1/4, CARD9, 4 

ITGAM/ITGAX, TNFSF13, LIF/OSM, FCRL3, IRF4/DUSP22), 16 novel loci (TNFSF4, CD28, REL, 5 

PF4V1/CXCL1, LY86/RREB1, LYN, ANXA3, TNFSF8/15, REEP3, ZMIZ1/PPIF, OVOL1/RELA, ETS1, 6 

IGH, IRF8, TNFRSF13B and FCAR, see Extended Data Figure 2), in addition to 48 independent 7 

suggestive non-HLA signals at P<1x10-5 (Supplementary Tables 2 and 3). Ethnicity-specific meta-8 

analyses revealed another independent genome-wide significant association that was evident only in the 9 

East-Asian cohorts (CCR6 locus, Extended Data Figure 3a) and 11 additional suggestive signals in this 10 

ancestral group (Supplementary Table 4). One of the suggestive signals in the combined meta-analysis 11 

(PADI3/PADI4 locus) reached genome-wide significance in the East-Asian meta-analysis under a 12 

recessive model (Extended Data Figure 3b). The European-only meta-analysis showed a total of 19 13 

suggestive signals, but no additional new genome-wide significant loci (Supplementary Table 4). No 14 

gender-specific loci were found in a gender-stratified meta-analysis, or in the analysis of sex 15 

chromosomal markers.  16 

 17 

We next performed stepwise conditional analyses of the 24 genome-wide significant non-HLA loci, but 18 

only the CFH locus showed evidence of at least two independent genome-wide significant variants 19 

(Supplementary Table 5 and Extended Data Figure 4a). Stepwise conditional analyses of the HLA 20 

region revealed a complex pattern of association, with at least five independently genome-wide significant 21 

SNPs in the combined analysis of all cohorts (Extended Data Figure 4b, Supplementary Table 6). In 22 

addition, the patterns of association across the HLA region differed when stepwise conditioning was 23 

performed separately in East-Asian and European cohorts – a total of five independent signals were 24 

detected in the European cohorts, and four in the East-Asian cohorts. In the overall meta-analysis, we 25 
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 8 

observed an inverse relationship between minor allelic frequency of the top independently associated 2 

variants and their effect sizes, consistent with the effects of purifying selection (Figure 1b). 3 

Based on genome-wide summary statistics, we estimated the SNP-based heritability of IgAN at 0.23 4 

(95%CI: 0.15-0.30). Excluding the MHC region reduced SNP-based heritability estimate to 0.12 (95%CI: 5 

0.10-0.13), suggesting that HLA and non-HLA loci respectively contribute approximately 50% of the 6 

polygenic risk. Using the genetic risk score (expressed as the sum of the risk alleles weighted by their 7 

individual effect sizes) based on 30 independently genome-wide significant SNPs (30-SNP GRS) 8 

explained 11% of overall disease variance, a significant improvement compared to the 6% explained by 9 

the previous 15-SNP GRS4.  10 

 11 

Classical HLA alleles 12 

 13 

To better understand the signal at the HLA locus, we imputed amino-acid sequences and classical HLA 14 

alleles at four-digit resolution at class II (HLA-DQB1, -DQA1 and -DRB1) and class I (HLA-A, -B, and -C) 15 

genes (see Methods). We used ethnicity-specific reference panels for imputation, followed by association 16 

testing within each ancestral group separately. The analysis of imputed amino-acid sequences in class II 17 

genes pointed to DRB1 as the gene with most strongly associated polymorphic positions in both ancestral 18 

groups (Extended Data Figure 5). In East Asian cohorts, stepwise conditioning of multiallelic sites 19 

demonstrated independently significant associations at DRβ1 positions 11 and 71, and the same positions 20 

were also strongly associated with the disease in Europeans. Specifically, Proline at position 11 (in LD 21 

with Arginine at position 71 and corresponding to DRB1*1501) conveyed significant protection in both 22 

ancestral groups (Supplementary Table 7). There was also an independently significant risk effect of 23 

Arginine at position 71 (in LD with Valine at position 11) with consistent direction of effect across both 24 

ancestries. In Europeans, we additionally observed significant effects of two substitutions at position 11, 25 
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 9 

Glycine (protective) and Leucine (risk). These two substitutions are less frequent in East Asian 2 

populations. 3 

 4 

The association patterns of classical HLA alleles were complex, but generally consistent with the analysis 5 

of amino acid sequences. In East Asians, we observed a protective effect of the DRB1*1501-DQA1*0102-6 

DQB1*0602 haplotype (DR15 serotype), and an independent risk effect of DRB1*0405, with no 7 

significant associations after conditioning for both DRB1*1501 and DRB1*0405 (Supplementary Table 8 

8). In Europeans, we confirmed a strong protective association of the DRB1*1501-DQA1*0102-9 

DQB1*0602 haplotype. DRB1*0405 had low allelic frequency in Europeans, thus this association was not 10 

replicated. Instead, we observed three additional independent European haplotypes (rare in East Asians), 11 

including two protective haplotypes, DRB1*0301-DQA1*0501-DQB1*0201 (DR3 serotype) and 12 

DRB1*0701-DQA1*0201-DQB1*0202/0203 (DR7 serotype), and one risk haplotype DRB1*0101-13 

DQA1*0101-DQB1*0501 (DR1 serotype, Supplementary Table 9). After conditioning for the four 14 

independently significant DRB1 alleles residing on these haplotypes, we observed additional independent 15 

protective associations of DQA1*0102 and DPA1*0103 in Europeans. There were no independently 16 

significant associations for the class I genes. Collectively, these analyses point to MHC class II region, 17 

with DRB1, DQA1, and DPA1 as the most likely candidate genes, but the extended LD across the region, 18 

combined with population differences in haplotype diversity and limitations related to imputation 19 

preclude further dissection of this complex signal. 20 

 21 

Pleiotropic associations of individual IgAN loci 22 

 23 

To describe the full spectrum of pleiotropic associations of individual risk variants, we cross-annotated all 24 

non-HLA signals against all genome-wide association studies listed in the NHGRI GWAS Catalogue 25 

(Supplementary Tables 10-11). We identified both concordant and opposed associations for multiple 26 
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 10 

autoimmune and inflammatory diseases, suggesting that these conditions may share pathogenic pathways 2 

with IgAN. Among the loci with the highest level of pleiotropy were HORMAD2/LIF and ZMIZ1/PPIF. 3 

Other loci with autoimmune pleiotropy were CARD9, TNFSF8/15, REL, OVOL1/RELA, IRF4/DUSP22, 4 

and IRF8.  Additional novel loci, including TNFRSF13B, PF4V1/CXCL1, LY86/RREB1, and ETS1, showed 5 

concordant effects on blood levels of distinct immune cell types and immunoglobulins suggesting that these 6 

loci may act through stimulation of immune cell proliferation and immunoglobulin production. When we 7 

expanded this analysis to all suggestive loci, we found that 14 of the 47 suggestive loci were associated 8 

with the same autoimmune or blood immune cell traits as the genome-wide significant loci, prioritizing 9 

these 14 loci for future follow-up studies (Figure 1c).  10 

 11 

Shared genetic architecture with serum IgA levels and related traits 12 

 13 

To interrogate shared susceptibility between IgAN and other common diseases, we explored genome-wide 14 

genetic correlations with selected immune, infectious, and cardio-metabolic traits using bivariate LD score 15 

regression (Figure 2, Supplementary Table 12)10.  We found negative genetic correlations with primary 16 

sclerosing cholangitis (rg=-0.37, P=4.1x10-3), inflammatory bowel disease (rg=-0.16, P=9.9x10-3), and 17 

Crohn’s disease (rg=-0.17, P=1.0x10-2), and positive  correlations with pneumonia (rg=0.26, P=9.0x10-4) 18 

and urinary tract infection (rg=0.25, P=2.1x10-3).- After excluding HLA, we also observed a positive genetic 19 

correlation with serum IgA levels (rg=0.31, P=2.1x10-3), allergy (rg=0.18, P=5.2x10-3), and tonsillectomy 20 

(rg=0.17, P=0.036), a procedure performed for recurrent pharyngeal infections and also sometimes used to 21 

treat relapsing IgAN11. We next performed look-ups of all independent IgAN risk alleles against our latest 22 

GWAS for serum IgA levels (Supplementary Table 13). Of 25 non-HLA IgAN risk loci, 9 were nominally 23 

(P<0.05) associated with increased serum IgA levels, all with concordant effects. Conversely, of 31 24 

significant loci for IgA levels 12 were nominally associated with the risk of IgAN, also with concordant 25 

effects. The intersection include four highly significant loci in both GWAS: TNFSF13 (GWAS for IgA 26 
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 11 

levels PIgA-level=9.4x10-8), TNFSF8/15 (PIgA-level=3.2x10-10), OVOL1/RELA (PIgA-level=2.6x10-22), and 2 

LIF/HORMAD2 (PIgA-level=6.7x10-17). At the same time, the allelic effects at the HLA locus were either 3 

opposed or not associated with serum IgA levels, consistent with our genetic correlation analyses in which 4 

positive genetic correlation with IgA levels is significant only after exclusion of the HLA region.  5 

 6 

Mouse phenotypes support the role of dysregulated IgA production in IgAN 7 

 8 

We tested the candidate gene set defined by our significant GWAS loci for overlap with human ortholog 9 

gene sets producing 27 phenotype categories when genetically manipulated in mice. We observed top-most 10 

significant enrichments in ‘Immune system phenotype’ (P=1.3x10-12) and ‘Hematopoietic system 11 

phenotype’ (P=3.2x10-9) (Supplementary Table 14).  Within these categories, we observed significant 12 

enrichments in gene sets whose disruption in mice were associated with ‘Abnormal IgA levels’ (P=6.4x10-13 

6) (Extended Data Figure 6), including TNFSF13, TNFSF13B, ITGAM, RELA, REL, CD28, and LYN 14 

genes. These observations corroborate our findings of overlapping GWAS loci between serum IgA levels 15 

and IgAN and further highlight the role of dysregulated IgA production in the disease pathogenesis. 16 

Moreover, this analysis strongly supports the named genes as causal at the corresponding loci and nominates 17 

appropriate animal models for experimental follow-up. 18 

 19 

Global pathway and tissue/cell type enrichment analyses 20 

 21 

We next used several unbiased strategies to explore biological pathway and tissue enrichments using 22 

genome-wide approaches. Pathway-enrichment analysis using MAGMA12 revealed 24 enriched gene sets 23 

(Extended Data Figure 7). The most strongly enriched GO terms after excluding HLA region were 24 

‘Immune System Processes’ (enrichment P=1.4x10-9) and ‘Immune Response’ (enrichment P=2.6x10-9). 25 

Examination of genome-wide significant non-HLA loci revealed significant enrichments in pathways 26 
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involved in innate and adaptive immunity, with the most significant enrichment in the ‘Cytokine-Cytokine 2 

Receptor Interactions’ (enrichment P=4.0x10-11) (Figure 3a), suggesting several cytokine ligand-receptor 3 

interactions may drive disease pathogenesis.  4 

 5 

To map the most likely causal tissues and cell types, we partitioned SNP-based heritability across the 6 

genome by tissue and cell-type-specific functional scores derived using the FUN-LDA method13. We found 7 

the most significant heritability enrichments in blood, immune, and gastrointestinal mucosa cells (Figure 8 

3b, Supplementary Table 15).  The top enriched cell-types were Primary neutrophils from peripheral 9 

blood (P=5.9x10-10), PMA-I-stimulated primary T helper cells (P=2.1x10-9) and Primary B cells from 10 

peripheral blood (P=2.0x10-8). Analogous analysis performed using experimental mouse datasets pointed 11 

to Small intestine inflammatory cells under basal conditions and after Salmonella infection as the top tissue 12 

(Extended Data Figure 7). Additional independent analytical methods (DEPICT14  and GARFIELD15) 13 

similarly prioritized extra-renal tissues as likely causal in IgAN, converging on hematopoietic, immune, 14 

and gastrointestinal tissues as the most likely tissues to harbor causal cell types (Figures 3c and 3d, 15 

Supplementary Tables 16-17).  16 

 17 

Transcription factor enrichment analysis 18 

We tested for potential intersection of GWAS signals with a comprehensive database of transcription factor 19 

(TF) ChIP-seq datasets using the Regulatory Element Locus Intersection (RELI) algorithm16.  In the 20 

analysis of genome-wide significant and suggestive loci, we detected significant intersection with binding 21 

sites for up 32 TFs in 52 immune cell types, with the most significant enrichments for RELA (corrected 22 

P=5.3x10-13) and NFKB1 (corrected P=1.9x10-12, Figure 4d, Supplementary Table 18). Nearly half of 23 

these transcription factors interact with Epstein-Barr-virus super-enhancers, which control B cell 24 

proliferation and have previously been found to intersect multiple autoimmune disease loci16,17. Moreover, 25 

some of the prioritized TFs, such RUNX18 and SMAD19 family, are well known to regulate IgA levels, and  26 
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RUNX3, RUNX2, and RELA loci are significantly associated with IgA levels (see accompanying 2 

manuscript), further suggesting perturbations in IgA homeostasis as a primary pathogenetic factor IgAN.  3 

 4 

Protein-protein interactions and ligand-receptor pairs 5 

 6 

We next tested whether candidate genes within our significant loci encode proteins that are likely to have 7 

physical interactions. Using a refined database of high-confidence PPIs, we constructed a network with 76 8 

candidate proteins defined by GWAS using InWeb_IM20 and GeneMANIA21. The final network composed 9 

of a total of 53 nodes and 63 edges exhibited an excess of direct physical interactions compared to null 10 

expectation (P<1.0x10-16, Figure 4c). Gene set enrichment analyses of individual modules in this network 11 

(Supplementary Table 19) identified strong enrichments in stress and defense responses (module 1), 12 

chemokine signaling pathways (module 4), immune responses (module 5), cytokine-mediated signaling 13 

(module 6), and regulation of NF-kB signaling (module 7).  Consistent with the observed enrichments in 14 

chemokine and cytokine pathways and global cytokine-receptor interactions, we identified enrichment in 15 

soluble ligand-receptor pairs, attributable to 16 ligand-receptor pairs spanning 12 independent significant 16 

or suggestive loci (enrichment P=0.01, Supplementary Table 20). This included APRIL and its receptor 17 

TACI encoded by two independent genome-wide significant loci (TNFSF13 and TNFRSF13B, 18 

respectively), both implicated in IgA homeostasis. Several IL6-related cytokine-receptor pairs were also 19 

identified (IL6-IL6ST, LIF-LIFR/IL6ST, OSM-OSMR/LIFR/IL6ST), with OSM/LIF being encoded by a 20 

single genome-wide significant locus, and related receptors being encoded by two independent suggestive 21 

loci, OSMR/LIFR and IL6ST.  Notably, APRIL is known to alter the glycosylation of IgA22, IL6, LIF and 22 

OSM are involved in mucosal immunity, and IL6 and LIF leads to enhanced production of galactose-23 

deficient IgA123-25.  These ligand-receptor pairs nominate candidate genes within corresponding loci, and 24 

delineate potentially targetable pathogenetic pathways in IgAN.  25 

 26 
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 14 

Functional annotations of individual GWAS loci 2 

 3 

We intersected our association loci with tissue and cell-type specific functional scores and assessed their 4 

co-localization with expression quantitative trait loci (eQTL) in primary immune cells, whole blood, and 5 

other tissues (see Methods)26. We also performed cross-annotation with blood proteome and metabolome 6 

data. The majority of top signals mapped to non-coding regions, with the exception of two risk loci 7 

(rs4077515 CARD9 p.(Ser12Ile), and rs3803800 TNFSF13 p.(Asn96Ser)). The CARD9 risk allele 8 

(rs4077515-T), a nonsynonymous S12N substitution in exon 2 of CARD9, is associated with increased 9 

blood transcript level of CARD9 and a significant splice QTL in GTEx (Extended Data Figure 8).  The 10 

protective allele is associated with a truncation of the functional CARD domain, while the risk allele is 11 

associated with higher levels of the intact, active isoform, affecting both expression and splicing of CARD9.   12 

 13 

For top signals mapping to non-coding regions, we found 79 significant cis-eQTL effects with 17 IgAN co-14 

localizations at 20 independent non-HLA risk loci (Supplementary Tables 21-22 and Figure 4a). Twelve 15 

loci had 27 significant cis-eQTL effects across 13 primary immune cell types, and 17 of the 27 cis-eQTLs 16 

co-localized with IgAN with PP4>0.5 (Supplementary Table 21). In GTEx, we further found 19 cis-eQTL 17 

effects for eight IgAN loci across the 28 available tissues and cell types.  As an example, two loci 18 

(ITGAM/ITGAX and IRF4/DUSP22) mapped specifically to monocytes, an understudied cell type in IgAN. 19 

The top signals at these loci intersect monocyte-specific functional elements by FUN-LDA, and co-localize 20 

with monocyte-specific eQTLs, with the risk alleles associated with up- and down regulation of ITGAX and 21 

IRF4/DUSP22, respectively. As another example of cell type specificity, the ZMIZ1/PPIF locus co-22 

localized with eQTL in NK cells, with the risk allele associated with lower expression of ZMIZ1, which 23 

encodes an inhibitor of JAK/STAT signaling and is also involved in TGF-β signaling and intestinal 24 

inflammation27,28. In whole blood, notable eQTL co-localizations included the FCRL3 risk locus, where the 25 

risk allele was associated with reduced transcript levels of FCRL3 and FCRL5, and with lower levels of 26 
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circulating FCRL3 protein (Supplementary Table 23). As FCRL3 is a specific receptor for secretory 2 

IgA29,30, we prioritized FCRL3 is the most likely causal gene at this locus.  3 

 4 

Three independent IgAN risk loci with colocalizing cis-eQTLs also exhibited trans-eQTL effects, 5 

suggesting that these loci induce a more global transcriptional perturbation in blood cells (Supplementary 6 

Table 24), For example, the CARD9 locus was associated with 12 trans-eQTL effects, nine of which involve 7 

genes in the ‘Type I interferon signaling pathway’ (enrichment P=9.5x10-18). The TNFSF8/15 locus was 8 

associated with eight trans-eQTL effects with three representing ‘Cytokines involved in lymphocyte 9 

differentiation’ (enrichment P=4.3x10-3). Interestingly, ITGAX locus had only one trans-eQTL association, 10 

lowering mRNA level of IGHG4, encoded by an independent IgAN risk locus on chr.14.  11 

 12 

Finally, other loci were associated with perturbations in blood proteome or metabolome. The PF4V1 locus 13 

colocalized with PF4V1 cis-eQTL and exhibited multiple pQTL associations with blood protein levels 14 

(Supplementary Table 23), including 4 cis and 40 trans-pQTLs proteins. These proteins were most 15 

enriched in the GO process of ‘Positive Regulation of Neutrophil Chemotaxis’ (enrichment P=1.3x10-3), 16 

providing further evidence as PF4V1 as the most likely causal gene for IgAN31.  Similarly, the CFH locus, 17 

where a protective allele is known to tag a common deletion of the CFHR1 and CFHR3 genes2, was 18 

associated with reduced expression of CFHR1 and CFHR3 in the liver and other tissues including the kidney 19 

(Supplementary Tables 25-26). This allele was also associated with reduced levels of circulating FHR1 20 

(encoded by CFHR1) and higher levels of Factor H in blood (Supplementary Table 23). Moreover, this 21 

locus exhibited a widespread proteomic and metabolomic signature in blood, with 64 additional trans-pQTL 22 

associations including seven proteins involved in the ‘Regulation of complement cascade’ (enrichment 23 

P=2.1x10-10, Figure 4b), and altered blood levels of multiple inflammation-related metabolites 24 

(Supplementary Table 27)32,33.  25 

 26 
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 16 

Integrative prioritization of biological candidate genes  2 

 3 

To systematically prioritize the 311 candidate genes encoded within the 25 significant non-MHC risk loci,  4 

we scored for convergence of in silico annotation methods by assigning one point for each of the following 5 

criteria: 1) genes most proximal to the top SNP at the locus; 2) genes with a non-synonymous coding 6 

variant tagged (r2³0.8) by the top SNP; 3) genes with a 3D chromatin interaction predicted by the Activity-7 

by-Contact (ABC) model34 or 4) GeneHancer35, with enhancers that are intersected by variants tagged 8 

(r2³0.8) by the top SNP or contained within a 95% credible set for the locus; 5) e-genes controlled by at 9 

least one eQTL (any GTEx tissue) tagged by the top SNP; 6) e-genes co-localizing with the risk locus in 10 

peripheral blood or 7) primary immune cells at PP4>0.5; 8) p-genes encoding blood proteins controlled by 11 

at least one cis-pQTL tagged by the top SNP; 9) genes prioritized by PPI network connectivity analysis at 12 

P<0.05; 10) genes with shared mouse knockout phenotypes; 11) genes within shared MAGMA pathways; 13 

12) genes prioritized by DEPICT, and 13) genes prioritized by manual review of the literature as related to 14 

IgAN, IgA production, or mucosal immunity. Using this approach, we prioritized 27 ‘biological candidate 15 

genes’, 20 (74%) of which were also most proximal genes to the top SNP (Figure 5). 16 

 17 

Prioritization of plausible drug targets 18 

 19 

To facilitate drug repurposing and to prioritize new targets with GWAS support, we evaluated whether any 20 

of the 311 genes contained within significant loci encoded a protein or directly interacted with a protein 21 

that was a pharmacologically active drug target either approved or in development for any human disease. 22 

In total 13 GWAS loci (52%) encoded 17 proteins that were already targeted by existing drugs, and 11 loci 23 

(44%) encoded 14 proteins with a direct PPI drug target (Supplementary Table 28 and Figure 6). Among 24 

the top 27 high priority ‘biological candidates’ defined by our scoring system, 11 (40%) were targeted 25 

directly or indirectly by the existing drugs. This included the following drug categories: (1) new inhibitors 26 
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of the alternative complement pathway, such as APL-2, AMY-101, and several others36 that are currently 2 

in clinical trials for C3 glomerulopathies and age-related macular degeneration; (2) drugs that block the 3 

activation of B cells by inhibiting APRIL or TACI interactions such as Atacicept and related drugs that are 4 

already in clinal trials for IgAN; (3) drugs that inhibit T cell activation by targeting ligands of the T-cell 5 

stimulatory CD28 protein, such as Belatacept (approved for kidney allograft rejection) or Abatacept 6 

(approved for rheumatoid arthritis); (4) drugs that inhibit IL8 (ABX-IL8) or IL8 receptor (Clotrimazole); 7 

and (5) drugs that inhibit NF-kB pathway, such as Bardoxolone that is already in clinical trials for 8 

glomerular disorders. We also note that some of our top prioritized causal genes with expression increased 9 

by the risk alleles, such as CARD9, ITGAX, PF4V1, CFHR1, or FCAR do not yet have effective drug 10 

inhibitors. Other loci encode secreted proteins that appear protective, such as FCRL3 and TNFSF4, 11 

suggesting that targeting their upregulation may present a rational therapeutic strategy. Our data 12 

additionally implies that activation of transcriptional programs controlled by ZMIZ1 and IRF4, but reduced 13 

activation of NF-kB, may also convey a protective effect. 14 

 15 

Genome-wide polygenic risk and clinical correlations 16 

 17 

Based on GWAS summary statistics after excluding Immunochip cohorts, we designed and optimized a 18 

genome-wide polygenic risk score (GPS) for IgAN. The best-performing GPS was based on LDPred 19 

method and assumed 1% causal variants genome-wide. When tested in the independent GCKD Study37,38, 20 

the GPS explained approximately 7.3% of disease risk (P=3.1x10-12, C-statistic 0.65, 95%CI: 0.61-0.68). 21 

We hypothesized that higher polygenic risk captured by the GPS was associated with disease severity and 22 

faster progression among cases diagnosed with IgAN. To test this hypothesis, we performed a 23 

comprehensive analysis of clinical disease features in association with the GPS (Supplementary Table 24 

29). Consistent with previous observations for the 15-SNP GRS4, the GPS was inversely associated with 25 

the age at diagnosis, with individuals in the top 20% tail of the GPS distribution diagnosed 2.2 years sooner 26 
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(95%CI: 1.3-3.1, P=2.5x10-6) compared to the rest of the cohort. The GPS was also significantly associated 2 

with faster progression to kidney failure among 2,879 IgAN cases with long-term follow-up data (HR=1.17 3 

per standard deviation, 95%CI 1.09-1.24, P=3.3x10-6). For example, individuals in the top 20% tail of the 4 

GPS distribution had 34% increased risk of kidney failure (HR=1.34, 95%CI=1.15-1.56, P=2.0x10-4), while 5 

individuals in the top 10% tail had 48% increased risk of kidney failure (HR=1.48, 95%CI 1.22-1.79, 6 

P=6.6x10-5) compared to the rest of the cohort (Figure 7a). 7 

 8 

To explore additional clinical associations of the GPS, we performed meta-phenome-wide association study 9 

(meta-PheWAS) including a total of 590,515 participants with GWAS data liked to electronic health 10 

records, combining UK Biobank and Electronic Health Records and Genomics-III (eMERGE-III) 11 

consortium datasets (Figure 7b). We detected a significant positive correlation of the GPS with hematuria, 12 

the most common manifestation of IgAN (OR per standard deviation=1.06, P=7.3x10-21). Other notable 13 

associations included a protective association with celiac disease (ORSD=0.60, P=4.2x10-148) and several 14 

risk associations, including with rheumatoid arthritis (ORSD=1.15, P=1.1x10-39), hypothyroidism 15 

(ORSD=1.05, P=2.0x10-15), epistaxis or throat hemorrhage (ORSD=1.09, P=2.6x10-9), and asthma 16 

(ORSD=1.02, P=1.5x10-6). The above associations remained significant after removing the HLA region from 17 

the GPS (Figure 7c, Supplemental Table 30). Notably, the directions of effect were generally consistent 18 

with our genome-wide genetic correlation analyses of IgAN with related traits, providing an independent 19 

validation of the shared polygenic architecture for these traits.  20 

 21 

 22 

DISCUSSION: 23 

 24 

Our GWAS of 10,146 cases and 28,751 controls provided support for a highly polygenic architecture of 25 

IgAN with estimated SNP-based heritability of ~23%. We identified 16 novel susceptibility loci for 26 
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IgAN, bringing the total number of known risk loci to over 30 and explaining ~11% of the variance in 2 

disease risk. The higher polygenic risk was associated with earlier disease onset and greater lifetime risk 3 

of kidney failure, suggesting that polygenic background is predictive of a more aggressive disease. Future 4 

studies are needed to test if our polygenic stratification is useful in the diagnosis, clinical risk assessment, 5 

or prediction of treatment responsiveness. 6 

 7 

Our results reinforce the hypothesis that the genetic regulation of IgA production represents the key 8 

pathogenic pathway in IgAN. Significant risk loci were enriched in human orthologs of mouse genes that, 9 

when genetically modified, cause abnormal IgA levels. We also observed positive genetic correlation 10 

between IgAN and serum IgA levels. Moreover, 21 of 25 independent genome-wide significant non-HLA 11 

risk loci for IgAN appear to have concordant effect on serum IgA levels, and four of these 21 are also 12 

genome-wide significant in a GWAS for serum IgA levels, including loci encoding TNFSF8, APRIL, 13 

LIF, and RELA. 14 

 15 

We observed positive genetic correlations with IgA levels, infections, and tonsillectomy indicating a 16 

genetic link between IgA system, common infections, and IgAN. The association with tonsillectomy is 17 

especially intriguing, because IgAN is often triggered by pharyngitis, and tonsillectomy has been 18 

employed as a treatment for IgAN11. In contrast, the observed negative genetic correlations with 19 

inflammatory bowel disease may be due to genetically increased production of secretory IgA that has 20 

known homeostatic anti-inflammatory and immunosuppressive effects at the level of the gut mucosa39. 21 

Moreover, our analyses of partitioned heritability clearly support extra-renal tissues as the most likely 22 

culprit, prioritizing cells of the immune and hematopoietic systems, and intestinal mucosal tissue, and this 23 

extra-renal mapping of causal tissues is fully consistent with the well-established clinical observation that 24 

IgAN commonly recurs in kidney allografts after transplantation40.  In addition, our cell-type specific 25 
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analyses point to the role of neutrophils, monocytes, and NK cells in IgAN. These cell types have not 2 

been generally considered as relevant to the IgAN pathogenesis based on prior evidence. 3 

 4 

Our GWAS loci encoded proteins that were more likely to interact physically despite being encoded by 5 

distant genomic regions. This included several ligand-receptor pairs that are amenable to therapeutic 6 

targeting. IgAN currently lacks effective targeted therapies, and recent pharmaceutical database analyses 7 

indicate that drug targets with genetic support are more likely to advance in the development pipeline41. 8 

Based on our results, we prioritized several candidate genes whose products are targeted by drugs that are 9 

presently approved or in clinical development for another condition, and which could be repurposed for 10 

IgAN. Mechanistic studies are still needed to confirm our candidate target genes prioritized by our in 11 

silico annotations.  12 

 13 

Our study has several limitations. In the meta-analysis, we pooled data across multiple heterogenous 14 

cohorts recruited across diverse clinical settings, ancestries, and nationalities. Nevertheless, we used 15 

stringent biopsy-based diagnostic criteria, standardized covariate definitions, genetic matching by 16 

platform and ancestry, and uniform statistical analysis for each cohort. It is worth pointing out that our 17 

dataset is dominated by European (66%) and East Asian (34%) ancestry cases, therefore our results may 18 

not be generalizable to other patient populations. Notably, IgAN is less frequent among individuals of 19 

African ancestry, including African Americans, suggesting that protective genetic effects may exist, but 20 

further studies are needed to address this hypothesis. We were also not able to evaluate the contribution of 21 

rare variants in this study, and sequencing studies are still needed to evaluate relative contributions of rare 22 

and common variants to the overall disease risk. 23 

 24 
 25 
 26 
 27 
 28 
 29 
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ONLINE METHODS 2 

 3 

Study Cohorts, Genotyping, Genotype Quality Control and Imputation 4 

The recruitment of patients, genotyping, imputation, and detailed quality control analyses are described by 5 

cohort in the Supplemental Notes.  6 

 7 

Association Analyses and Meta-analyses 8 

We conducted genome-wide association analysis in each of the 17 cohorts using imputed genotype dosage 9 

data under a logistic regression additive model with adjustment for cohort-specific significant PCs in 10 

PLINK v1.942. Subsequently, a fixed effects inverse-variance-weighted meta-analysis was performed to 11 

combine results from all cohorts using METAL version 2011-03-2543. Genome-wide distributions of p-12 

values were examined visually using quantile-quantile (QQ) plots for each individual cohort as well as for 13 

the combined analysis. We also estimated the genomic inflation factors for each cohort. The final meta-14 

analysis QQ plot showed no departure from the expected distribution of p-values, and the genomic inflation 15 

factor (l) was estimated at 1.04 (Extended Data Figure S1). In addition, logistic regression association 16 

analysis assuming a dominant or a recessive genetic model was performed in PLINK using expected 17 

genotype counts, with no evidence of genomic inflation (l=1.03 for dominant and 0.94 for recessive model) 18 

(Extended Data Figure S3). IgAN is more common in males; thus, we also performed sex-specific 19 

analyses, including chromosome X. Genome-wide logistic regression analyses were conducted separately 20 

in males and females within each cohort and subsequently meta-analyzed using METAL. A total of 21,236 21 

males and 17,661 females were used in the meta-analysis with overall genomic inflation factors of 1.01 for 22 

males and 0.99 for females. A total of 1,990,322 high quality imputed chromosome X markers (r2>0.8 and 23 

MAF>0.01) were analyzed separately by sex, encoding genotypes as (0, 2) in males and (0, 1, 2) in females. 24 

Significant PCs for each cohort were included as covariates in each model. We defined a locus as genome-25 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.21265383doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.19.21265383
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

wide significant if at least one SNP in the locus had p-value £ 5.0E-08 and it was successfully typed or 2 

imputed in > 50% of analyzed cohorts. Signals with a p-value £ 1.0E-05 were considered as suggestive. 3 

Summary of meta-analysis results are provided in Table 1 and Supplementary Tables S2-4.  4 

 5 

Conditional Analyses 6 

To detect multiple independent associations at individual genomic loci, we conducted a stepwise 7 

conditional analysis using a multi-SNP-based conditional and joint association analysis (COJO)44. This 8 

method approximates the variance-covariance matrix between association statistics with the LD 9 

information from an external reference panel and independent SNPs are selected in a stepwise manner 10 

using the GCTA tool version 1.92.0beta44,45. Using our overall meta-analysis summary statistics, we 11 

conducted the GCTA conditional analysis with a threshold of P£5.0E-08 and the LD reference composed 12 

of all European and East Asian cohorts from the 1000 Genomes Project Phase 3. Subsequent conditional 13 

analyses were performed for makers with a conditioned P£5.0E-08 until no residual genome-wide 14 

significant associations were observed (Supplementary Table S5).   15 

 16 

HLA Imputation and Statistical Analysis 17 

We used the SNP2HLA software to impute classical HLA alleles46. The Type 1 Diabetes Genetics 18 

Consortium (T1DGC) reference panel of 5,225 Europeans and 8,961 markers was used as a reference set 19 

for our European-ancestry cohorts46, and the Pan-Asian reference panel of 530 individuals and 8,245 20 

markers was used for our East-Asian cohorts47. Only common and high-quality markers (MAF>0.01, 21 

R2>0.8) were used for association analysis. We analyzed each variant using a logistic regression model, 22 

assuming additive dosage effects and controlling for significant PCs of ancestry. For testing multi-allelic 23 

loci, we used the following logistic regression model: 24 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.21265383doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.19.21265383
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

log(odds) 	= 	b0	 + , β.X.,1 +	
234

.54

,β6P6,1	
8

654

 2 

where m indicates a total number of alleles at a specific multi-allelic locus, j indicates a specific allele 3 

being tested, and Xj,i is the imputed dosage for allele j for individual i; b0 represents the intercept and bj 4 

represents the additive effect of an allele j; Pk,i denotes the value for kth PC of individual i, n is the total 5 

number of significant PCs in the dataset; bk is the effect size of principal component k. We compared log-6 

likelihoods of two nested models: the full model containing the test locus (fitted model) and relevant 7 

covariates with the reduced model (null model) without the test locus, but with the same set of covariates. 8 

The deviance (D) was defined as – 2 x log likelihood ratio, which follows a 𝜒: distribution with m-1 9 

degrees of freedom, from which we calculated p-values: 10 

𝐷 = 	−2𝑙𝑛
𝐿A
𝐿4
, 𝐷	~	𝜒:	(𝑚 − 1) 11 

where D is the log-likelihood test value (deviance), L0 is likelihood of the null model and L1 the likelihood 12 

of the fitted model. To identify statistically independent effects, we first tested all bi-allelic and multi-13 

allelic variants under the logistic regression model, as described above, and ranked them based on the p-14 

value of the log likelihood test.  Next, in a forward stepwise approach, we included in the logistic 15 

regression model the most statistically significant variant as a covariate, analyzed all remaining variants 16 

and ranked them based on the new p-value of the respective log likelihood test. We repeated the same 17 

steps until no variant or no HLA gene had P£5.0E-08.  18 

 19 

HLA Peptide Sequence Analysis 20 

HLA amino-acid polymorphisms have multiple possible residues at each peptide position. To test the 21 

effects of individual amino acid substitution sites we applied a conditional haplotype analysis using fully 22 

phased haplotypes across the HLA region. We tested each single amino acid position by first identifying 23 
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the m possible amino-acid residues occurring at that position and then using m-1 degrees of freedom test 2 

to derive p-values with a single amino-acid residue arbitrary selected as a reference. For conditioning on 3 

individual amino-acid sites, we used the following procedure: by adding a new amino-acid position to the 4 

model, a total of 𝑘 additional unique haplotypes were generated and tested over the null model (without a 5 

new amino-acid position) using the likelihood ratio test with 𝑘 degrees of freedom. If the new position 6 

was independently significant, we further updated the null model to include all unique haplotypes created 7 

by all amino-acid residues at both positions to identify another independent position. The procedure was 8 

repeated until no statistically significant (conditioned P£5.0E-08) position was observed.  9 

 10 

Heritability and Genetic Correlations 11 

SNP-based heritability was estimated using LD score regression (LDSC software)10 based on final meta-12 

analysis summary statistics and LD scores estimated from 1000 Genomes phase 3 European and East 13 

Asian populations combined48. To assess the contribution of HLA region, we also estimated SNP 14 

heritability after excluding the entire MHC region (Chr.6: 28,000,000-33,000,000 bp). To investigate 15 

evidence for possible shared genetic effects between IgAN and other traits, we estimated genetic 16 

correlations using bivariate LD score regression10. For each phenotype, we used GWAS summary 17 

statistics from the largest GWAS available with a minimum coverage of 2 million SNPs. We excluded 18 

traits with estimated SNP-based heritability <1%. Genetic correlations were calculated with and without 19 

the HLA region. GWAS summary statistics for the relevant immune and cardio-metabolic traits were 20 

provided by corresponding consortia, or downloaded from the LD-hub or GWAS catalog; summary 21 

statistics for infection-related phenotypes were provided by 23andMe49.  22 

 23 

Pleiotropy Maps 24 
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All GWAS loci were cross-annotated against the studies listed in the GWAS catalogue (last update: January 2 

31, 2019). For each locus, we selected all variants in strong LD (r2 ³ 0.8) with the top SNP. We then queried 3 

the GWAS catalogue for genome-wide significant (p<5.0E-08) associations of the selected SNPs with other 4 

diseases and traits. The results were then manually verified by reviewing the original publications to 5 

confirm the direction of allelic effects. In cases where there were multiple GWAS for the same trait, we 6 

selected the SNP associations based on the largest sample size/lowest P-value and highest LD with our top 7 

SNP(s). To evaluate the overlap of pleiotropic effects between significant and suggestive IgAN loci, the 8 

traits associated with significant IgAN loci were queried themselves against GWAS catalogue for 9 

associations with any of the suggestive SNPs or their proxies. The results were represented as a shared 10 

susceptibility network map created in Cytoscape v3.7.0 software. 11 

 12 

Polygenic Risk Models 13 

To assess the cumulative effect of independent significant and suggestive loci, we performed a genetic 14 

risk score (GRS) analysis. We first created two new GRS models based on the combined meta-analysis 15 

results: the 30-SNP model which comprises 30 independent genome-wide significant SNPs (25 non-HLA 16 

plus 5 HLA SNPs), and the 77-SNP GRS model which includes the same 30 SNPs plus 47 additional 17 

independent SNPs representative of the suggestive loci (p<1.0E-05). Each GRS was defined as the sum of 18 

the number of risk alleles weighted by their effect sizes. We required imputation R2>0.3 for including a 19 

SNP in the GRS calculation; individuals typed with Immunochip were excluded. Each GRS was 20 

standardized using a Z-score transformation with the mean and standard deviation of the control 21 

distribution. We evaluated the performance of each GRS by estimating two goodness of fit measures, 22 

Nagelkerke’s pseudo R2 and the area under the receiver operating characteristics curve (AUROC). 23 

Genome-wide polygenic score (GPS) was calculated using LDpred50 and LD-pruning and p-value 24 

thresholding (P+T) methods, similar to the methods in recent studies51,52. We used the combined meta-25 
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analysis including high quality imputed SNPs that overlapped across all cohorts (2,408,512 SNPs) but 2 

excluding Immunochip cohorts. In the LDPred method, the genetic architecture prior for variant effect 3 

sizes is a Gaussian distribution that has two parameters: heritability and a fraction of causal variants. 4 

Heritability was estimated using LD score regression, and the fraction of causal variants was used as a 5 

tuning parameter (ρ) across the following range: 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 3.0E-04, 1.0E-04, 6 

1.0E-05, 1.0E-06. Using LDPred, a genome-wide predictor was calculated for each value of ρ and the best 7 

performing score was selected. The P+T method prunes variants in LD and considers only variants with a 8 

p-value under a certain threshold. Using a range of different r2 (0.2, 0.4, 0.6, 0.8) and p-value thresholds 9 

(1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 3.0E-04, 1.0E-04, 3.0E-05, 1.0E-05, 1.0E-06, 1.0E-07, 5.0E-08, 10 

1.0E-08), we again selected the best performing model. The performance of 30-SNP GRS, 77-SNP GRS, 11 

and best GPS were compared to the previously published 15-SNP GRS4. We additionally tested these 12 

models in the German Chronic Kidney Disease (GCKD) study37,38, including 314 histologically 13 

confirmed IgAN cases versus 663 disease controls with a biopsy-diagnosed kidney disease of anther cause 14 

(see Supplemental Note). The analyses were implemented in R v.3.5.2 software. 15 

 16 

Gene Set and Pathway Enrichment Analyses 17 

We defined each IgAN-associated genomic locus by first selecting all proxy SNPs in LD (r2³0.5) with the 18 

lead SNP, then extending the genomic region 250 kb upstream and downstream of the first and last proxy 19 

SNP based on genomic position. Each region was then annotated using BiomaRt package, which retrieves 20 

Ensembl human gene annotations. Gene sets were created for all genome-wide significant and suggestive 21 

loci but excluding the HLA region. For gene set enrichment analysis, we used established gene sets from 22 

the Molecular Signatures Database (MSigDB), including GO, KEGG, BioCarta, REACTOME, chemical 23 

and genetic perturbations (CGP), and transcription factor targets (TFT). Statistical significance for 24 

enrichment was set at FDR q-value<0.05. We additionally applied a genome-wide gene set enrichment 25 
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testing approach (excluding the HLA region) using Multi-marker Analysis of GenoMic Annotation 2 

(MAGMA) method with default parameters12. We also used DEPICT v1 release 19414 to perform 3 

pathway/gene set enrichment and tissue/cell-type analyses. For this analysis, we first used PLINK to 4 

identify independently associated SNPs setting P<5.0E-05 and r2<0.05 in a physical window of 500 kb. 5 

We then used DEPICT to prioritize genes, identified reconstituted gene sets that are enriched in genes 6 

from associated regions, and identified tissue and cell-type annotations in which genes from associated 7 

regions are highly expressed. Specifically, for each tissue, the DEPICT method performs a t-test 8 

comparing the tissue-specific expression of IgAN-associated genes versus all other genes. Next, for each 9 

tissue, empirical enrichment p-values are computed by repeatedly sampling random sets of loci from the 10 

entire genome to estimate the null distribution for the enrichment statistic as previously described53,54.  11 

 12 

Prioritization of Causal Tissues and Cell Types  13 

We estimated heritability enrichment of SNPs from GWAS summary statistics for functional categories in 14 

tissue and cell-type specific regulatory elements using stratified LD score regression. This method 15 

regresses the chi-squared statistics of SNPs from summary statistics on their LD scores10, and partitions 16 

SNP heritability by functional annotation55. We used summary statistics obtained from the meta-analysis 17 

of all case-control cohorts excluding the MHC region and excluding the cohorts typed with Immunochip. 18 

Heritability enrichment was defined as the proportion of SNP heritability in a specific category, divided 19 

by the proportion of SNPs that belong to that category. We first calculated heritability enrichment for a 20 

baseline model of 96 non-cell-type-specific functional categories. Along with the 1000 Genomes 21 

reference panel, we used this baseline model as a control to assess heritability enrichment in cell-type 22 

specific functional annotations. We used functional annotations from the ENCODE and Roadmap 23 

Epigenomics Consortium56, as well as mouse immune cell-specific functional categories from the 24 

Immunological Gene Project (ImmGen)57. Using the same method, we evaluated tissue- and cell-specific 25 
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heritability enrichments based on the FUN-LDA functional scoring system13. As an alternative method, 2 

we also used GARFIELD v215 to assess enrichment within the ENCODE and Roadmap-derived 3 

regulatory regions. 4 

 5 

Analysis of Relevant Phenotypes in Mice 6 

As a complementary approach to prioritize genes within each locus, we used the Mouse Genome 7 

Informatics (MGI) database to identify potential genes the disruption of which causes relevant phenotypes 8 

in mice58. All phenotypes in MGI are categorized based on the Mammalian Phenotype (MP) ontology and 9 

emerge as a result of different genetic models, including targeted knockout animals and chemically 10 

induced (ENU) and spontaneous mutations. MGI includes a total of 17,101 mouse genes with Human 11 

orthologs59. We defined a gene set of 62 genes with mouse orthologs across the 24 non-HLA risk loci for 12 

testing against MGI phenotypes to define significantly enriched categories. 13 

 14 

Functional Annotations of Individual Loci 15 

For the purpose of detailed functional annotation, we calculated 95% credible sets for each of the genome 16 

wide significant loci using CAVIAR software60. We added variants that were neither typed or imputed in 17 

our data, but in strong LD with the top SNP based on external reference (r2³0.8 in 1000G European and 18 

East Asian populations). These SNP sets were annotated using ANNOVAR to first define any coding 19 

variants and their predicted effects. Using FUN-LDA method, we next calculated the posterior probability 20 

of a functional effect for each of the selected variants across 127 tissues and cell types as described 21 

previously13. These SNPs were also interrogated against the following datasets: (1) eQTLs for 13 human 22 

immune cell types from the Database of Immune Cell eQTLs (DICE) project61; (2) blood eQTLs from the 23 

eQTLGen Consortium26 (31,684 individuals), (3) GTEx tissue eQTLs62 (4) GTEx splicing QTLs (sQTLs); 24 

(5) kidney eQTLs (glomerular and tubular) from the Kidney eQTLs Atlas63, (6) blood mQTLs from KORA 25 
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(N=2,820) and TwinsUK (N=7,824) studies64,65, and (7) blood pQTLs from three recent well-powered 2 

studies66-68. We additionally performed co-localization analysis between IgAN and eQTL summary 3 

statistics for each GWAS locus using COLOC software69. We considered PP4>0.5 as supportive of a shared 4 

causal variant.  5 

 6 

Protein-Protein Interactions  7 

Protein-protein interactions across genome wide significant and suggestive genes have been predicted 8 

using InWeb_InBioMap (InWeb_IM)70. InWeb_IM is a curated and computationally derived protein-9 

protein network of 420,000 protein-protein interactions that has 2.8 times more interactions than other 10 

comparable resources. We used high confidence PPIs from InWeb_IM using the recommended cut off 11 

confidence score ³ 0.1. All annotated genes within the 76 significant and suggestive IgAN loci were used 12 

to probe the PPI database; the final network contained a total of 53 nodes connected by 63 edges. 13 

Enrichment P-value was computed using a hypergeometric test and corrected for multiple testing using 14 

the method of Benjamini and Hochberg. The network components were grouped into modules based on 15 

their pathway categorization; the GLay community clustering algorithm was implemented for module 16 

detection and modules were visualized in GeNets71.  Subsequently, the Clustering with Overlapping 17 

Neighborhood Expansion (ClusterONE) algorithm72 implemented in Cytoscape73 was used to extract 18 

protein clusters using the default parameters and the InWeb_IM confidence score as edge weights. 19 

Functional and pathway enrichments within the PPI networks were identified using STRING74 based on 20 

Gene Ontology (GO), KEGG, and Reactome databases. In addition, we used ToppGene Suite75 to 21 

calculate protein-protein interaction enrichment p-values. A Bonferroni-corrected P < 0.05 was used as 22 

enrichment significance cut-off. 23 

 24 

Transcription Factor-DNA Binding Interactions 25 
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To identify TF binding sites enriched across IgAN risk loci, we used the RELI (Regulatory Element 2 

Locus Intersection) algorithm16. RELI uses a set of genetic variants as input, expands the set using LD 3 

blocks (r2>0.8) and calculates the statistical intersection of the resulting loci with ChiP-seq datasets by 4 

counting the number of loci with one or more variants intersecting the TF ChiP-seq peaks. The LD blocks 5 

were calculated using 1000 Genomes Project East Asian and European populations combined. The null 6 

distribution was generated using 2,000 random repeats of the procedure and was used to calculate z-scores 7 

and empirical p-values for the observed intersection. The final reported p-values are Bonferroni-corrected 8 

(Pc) for the 1,544 TF datasets tested, as previously published16. As input, we used a set of 28 independent 9 

genome-wide significant loci (P£5.0E-08) and a set of 76 loci including genome-wide significant and 10 

suggestive variants (P<1.0E-05). A Pc<1.0E-04 was used as a significance cut-off for each set. 11 

 12 

Ligand-Receptor Pairs 13 

To identify the number of potential ligand-receptor pairs significantly associated with IgAN, we queried 14 

The Database of Ligand-Receptor Partners (DLRP)76. This database includes cytokines, chemokines, and 15 

growth, angiogenesis, and developmental factors, and contains 175 protein ligands, 131 protein receptors 16 

and 451 experimentally determined ligand-receptor pairings. To test for ligand-receptor enrichment in our 17 

dataset, we used a hypergeometric test for overlap between this dataset and the gene set defined by our 18 

significant and suggestive GWAS loci. 19 

 20 

Analysis of Drug Targets  21 

We obtained drug target genes and corresponding drug information from DrugBank77, the Therapeutic 22 

Targets Database (TTD)78, the Open Targets Platform79, and GlobalData combined with manual literature 23 

searches. To search for potential drug targets, we extracted all genes in direct PPIs with IgAN risk genes 24 

by using the In_Web_IM database. We selected drug target genes that had pharmacological activities and 25 
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human orthologues, and that were targeted by any of the drugs that are approved or currently in 2 

development (experimental or in clinical trials). 3 

 4 

Overall Prioritization of Biological Candidate Genes 5 

Each of the positional candidate genes was scored adopting the following criteria and calculating the 6 

number of the satisfied criteria, including: (1) genes most proximal to the top SNP; (2) genes with coding 7 

variants in 95% credible sets and/or high LD (r2>0.8) with the index SNP; (3) genes with promoter 8 

chromatin interaction by Activity-by-Contact (ABC) model34 or (4) GeneHancer35 involving regions 9 

intersected by top SNP and its 95% credible sets/high LD proxies; (5) e-genes controlled by at least one 10 

eQTL (any tissue) tagged by the top SNP in any tissues (primary immune cells, whole blood, kidney, 11 

GTEx); (6) e-genes co-localized with the risk locus in blood or (7) primary immune cells with PP4>0.5; 12 

(8) p-genes controlled by at least one blood pQTL tagged by the top SNP; (9) genes prioritized by PPI 13 

network connectivity analysis at P<0.05; (10) genes that when knocked out in mice produce at least two 14 

phenotype labels: ‘immune system’, ‘haematopoietic system’, or ‘cellular phenotype’; (11) genes 15 

prioritized by MAGMA, (12) DEPICT with gene-based p<0.05, or (13) manual review of the literature as 16 

related to IgAN, IgA production, or mucosal immunity. 17 

 18 

Genotype–phenotype Correlations 19 

Our polygenic risk models (15-SNP, 30-SNP, 77-SNP, and GPS) were tested for clinical correlations in 20 

the subset of cases with available clinical data. We fitted each standardized risk score in a regression 21 

model to predict clinical disease features at the time of diagnosis, including age at biopsy, estimated 22 

glomerular filtration rate (GFR), proteinuria, microhematuria, hypertension (HTN), and gross hematuria. 23 

The GFR was estimated using the CKD-EPI formula in adults80 and Schwartz formula in pediatric 24 

cases81. The estimated GFR was normalized with a natural logarithm transformation; proteinuria was 25 
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normalized with a ln(P24+1) transformation; microhematuria was assessed with urinary dipstick and 2 

defined as positive if 1+ or greater; gross hematuria was defined by the reported history of red urine 3 

before a diagnostic biopsy; hypertension was defined as systolic blood pressure ≥ 140 mmHg and/or 4 

diastolic blood pressure ≥ 90 mmHg, or anti-hypertensive medication use. For the analysis of longitudinal 5 

outcomes, we performed survival analysis with the primary outcome of kidney failure defined as 6 

eGFR<15ml/min/1.73 m2 or initiation of kidney replacement therapy (dialysis or kidney transplantation). 7 

All analyses were adjusted for age, gender, site, and race/ethnicity. The analyses were implemented in R 8 

v3.5.2. 9 

 10 

Phenome-wide association studies (PheWAS) 11 

We performed meta-analysis of PheWAS results (meta-PheWAS) across two large biobank-based 12 

datasets: Electronic Medical Records and Genomics-III (eMERGE-III) and the UK Biobank (UKBB).  13 

The eMERGE-III network provides access to EHR information linked to GWAS data for 102,138 14 

individuals; detailed quality control analyses of genetic data have been described previously82-84. Briefly, 15 

GWAS datasets were imputed using the latest multiethnic Haplotype Reference Consortium (HRC) panel 16 

using Michigan Imputation Server85. The imputation was performed in 81 batches across the 12 17 

contributing medical centers participating in eMERGE-I, II, and III. For post-imputation analyses, we 18 

included only markers with minor allele frequency (MAF) ≥ 0.01 and 𝑅: ≥ 0.8 in ≥ 75% of batches. A 19 

total of 7,529,684 variants were retained for the GPS analysis. For principal component analysis (PCA), 20 

we used FlashPCA86 on a set of 48,509 common (MAF>0.01) and independent variants (pruned in 21 

PLINK with --indep-pairwise 500 50 0.05 command). The UKBB is a large prospective population-based 22 

cohort that enrolled individuals ages 40-69 for the purpose of genetic studies87. This cohort is comprised 23 

of 488,377 individuals recruited since 2006, genotyped with high-density SNP arrays, and linked to 24 

electronic health record data. All individuals underwent genome-wide genotyping with UK Biobank 25 
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Axiom array from Affymetrix and UK BiLEVE Axiom arrays (~825,000 markers). Genotype imputation 2 

was carried out using a 1000 Genomes reference panel with IMPUTE4 software88-90. We then applied QC 3 

filters similar to eMERGE-III, retaining 9,233,643 common (MAF ≥ 0.01)	variants imputed with high 4 

confidence (𝑅: ≥ 0.8). For principal component analysis by FlashPCA86, we used a set of 35,226 variants 5 

that were common (MAF>0.01) and pruned using the following command in PLINK --indep-pairwise 6 

500 50 0.05. In order to test the GPS for associations phenome-wide across both eMERGE and UKBB 7 

datasets, we first harmonized the coded diagnoses data by converting all available ICD-10-CM codes to 8 

ICD-9-CM system. This approach was motivated by the fact that the great majority of data for eMERGE-9 

III participants is already coded using ICD-9 system, and ICD-10 codes are more granular, thus a reverse 10 

conversion leads to mapping errors. After the conversion, the 102,138 genotyped eMERGE participants 11 

had a total of 20,783 ICD-9 codes that were then mapped to 1,817 distinct phecodes (disease-specific 12 

groupings of ICD codes). The 488,377 UKBB participants had a total of 10,221 ICD-9 codes that that 13 

were mapped to 1,817 phecodes. Phenome-wide associations were performed using the PheWAS R 14 

package91. The package uses pre-defined “control” groups for each phecode. The case definition requires 15 

a minimum of two ICD-9 codes from the “case” grouping of each phecode. In total, all 1,817 phecodes 16 

were tested using logistic regression with each phecode case-control status as an outcome and the 17 

polygenic score IgA nephropathy adjusted for age, sex, study site or batch, and 3 principal components of 18 

ancestry as a predictor. We then performed meta-PheWAS across both datasets combined using metagen 19 

with fixed effect in PheWAS R library91. To establish significant disease associations in PheWAS, we set 20 

the Bonferroni-corrected statistical significance threshold at 2.75E-05 (0.05/1,817) correcting for 1,817 21 

independent phecodes tested. 22 

 23 
 24 
 25 
  26 
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Web Resources 2 
 3 
COLOC: https://cran.r-project.org/web/packages/coloc/   4 
DICE: https://dice-database.org/ 5 
EAGLE: https://data.broadinstitute.org/alkesgroup/Eagle/ 6 
eQTLGen: https://www.eqtlgen.org/ 7 
DEPICT: https://data.broadinstitute.org/mpg/depict/index.html 8 
DLRP: https://dip.doe-mbi.ucla.edu/dip/DLRP.cgi 9 
DrugBank: https://www.drugbank.ca 10 
FUN-LDA: http://www.columbia.edu/~ii2135/funlda.html 11 
GARFIELD: https://www.ebi.ac.uk/birney-srv/GARFIELD/ 12 
GCTA-COJO: https://cnsgenomics.com/software/gcta/#COJO 13 
GeNets: http://apps.broadinstitute.org/genets  14 
GlobalData: https://www.globaldata.com/industries-we-cover/pharmaceutical 15 
GSEA: http://software.broadinstitute.org/gsea/msigdb/ 16 
GTEx: https://gtexportal.org/home/ 17 
GWAS catalog: https://www.ebi.ac.uk/gwas  18 
InWeb: http://apps.broadinstitute.org/genets#InWeb_InBiomap 19 
KING: http://people.virginia.edu/~wc9c/KING/  20 
Kidney eQTL Atlas: http://susztaklab.com/eqtl 21 
LD hub: http://ldsc.broadinstitute.org/ldhub 22 
LDpred: https://github.com/bvilhjal/ldpred 23 
LDSC: https://github.com/bulik/ldsc 24 
Metabolomics GWAS Server: http://metabolomics.helmholtz-muenchen.de/gwas/ 25 
METAL: http://csg.sph.umich.edu/abecasis/Metal/ 26 
MGI:  http://www.informatics.jax.org  27 
MINIMAC3: http://genome.sph.umich.edu/wiki/Minimac3  28 
MIP: https://imputationserver.sph.umich.edu 29 
NEPTUNE eQTL Browser: http://nephqtl.org/ 30 
Open Targets: https://www.targetvalidation.org  31 
PheWAS: https://github.com/PheWAS/PheWAS 32 
PheWeb: http://pheweb.sph.umich.edu/SAIGE-UKB/ 33 
PLINK: https://www.cog-genomics.org/plink/1.9/ 34 
RELI: https://github.com/WeirauchLab/RELI 35 
SNP2HLA: http://software.broadinstitute.org/mpg/snp2hla/snp2hla_manual.html 36 
STRING: https://string-db.org   37 
ToppGene: https://toppgene.cchmc.org 38 
TTD: https://db.idrblab.org/ttd 39 
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Table 1. New and known genome-wide significant loci based on meta-analysis. 2 

Chr Location 
(bpa) SNPb Locus Risk 

Allele 

Freq. 
European 
Controls 

Freq. 
Asian 

Controls 
OR P-value Q test I2 Supporting 

Cohorts New 

1 157,542,162 rs849815 FCRL A 0.66 0.50 1.14 3.9E-09 0.57 0 GWAS + IC Known 
1 173,146,357 rs4916312 TNFSF4 A 0.35 0.07 1.14 5.0E-08 0.68 0 GWAS + IC New 
1 196,686,918 rs6677604 CFH G 0.80 0.93 1.21 1.5E-17 0.97 0 GWAS + IC Known 
1 196,603,302 rs12029571 CFH A 0.22 0.35 1.12 2.5E-06 0.88 0 GWAS Known 
2 61,092,678 rs842638 REL T 0.44 0.15 1.17 9.6E-10 0.002 63.8 GWAS New 
2 204,584,759 rs3769684 CD28 T 0.95 0.49 1.19 5.1E-11 0.93 0 GWAS + IC New 
4 74,725,320 rs6828610 PF4V1/CXCL8 G 0.16 0.27 1.14 3.5E-08 0.98 0 GWAS New 
6 249,571 rs12201499 IRF4/DUSP22 C 0.12 0.28 1.18 3.1E-11 0.39 5.1 GWAS Known 
6 7,214,676 rs12530084 LY86 C 0.77 0.51 1.13 1.3E-09 0.49 0 GWAS New 
6 32,389,305 rs9268557 HLA-DRA C 0.51 0.57 1.24 4.5E-47 0.00 72.4 GWAS + IC Known 
6 32,667,829 rs9275355 HLA-DQB/DQA C 0.23 0.33 1.26 1.7E-34 0.21 24.8 GWAS Known 
6 32,599,999 rs9272105 HLA-DQA A 0.60 0.45 1.25 1.2E-28 0.001 73.2 GWAS + IC Known 
6 32,681,631 rs9275596 HLA-DQB/DQA T 0.66 0.81 1.33 3.2E-36 0.05 45.9 GWAS + IC Known 
6 33,074,288 rs3128927 HLA-DPA/ DPB C 0.73 0.83 1.22 1.5E-25 0.38 6.1 GWAS + IC Known 
6 167,445,139 rs2282859c CCR6 C 0.01 0.15 1.20 3.9E-08 0.06 43.8 GWAS + IC New 
8 6,808,722 rs2075836 DEFA T 0.31 0.30 1.21 5.8E-11 0.90 0 GWAS Known 
8 56,852,496 rs75413466 LYN A 0.02 0.06 1.40 1.4E-10 0.80 0 GWAS + IC New 
8 124,765,474 rs34354351 ANXA3 T 0.17 0.32 1.15 3.5E-08 0.84 0 GWAS New 
9 117,643,362 rs13300483 TNFSF8/15 T 0.24 0.31 1.13 1.3E-08 0.88 0 GWAS + IC New 
9 139,266,496 rs4077515 CARD9 T 0.41 0.29 1.14 2.6E-11 0.41 1.8 GWAS + IC Known 
10 65,363,048 rs57917667 REEP3 G 0.02 0.19 1.22 1.1E-08 0.91 0 GWAS New 
10 81,043,743 rs1108618 ZMIZ1 A 0.60 0.49 1.14 1.9E-10 0.43 0.3 GWAS + IC New 
11 65,555,524 rs10896045 RELA A 0.30 0.48 1.18 4.7E-13 0.03 50.6 GWAS New 
11 128,487,069 rs7121743 ETS1 C 0.16 0.47 1.13 3.4E-08 0.79 0 GWAS New 
14 107,222,014 rs751081288 IGH A 0.43 0.53 1.17 1.9E-08 0.74 0 GWAS New 
16 31,357,760 rs11150612 ITGAM A 0.64 0.27 1.16 8.4E-14 0.10 36.8 GWAS+IC Known 
16 86,017,715 rs1879210 IRF8 T 0.64 0.86 1.14 9.9E-09 0.96 0 GWAS+IC New 
17 7,462,969 rs3803800 TNFSF13 A 0.21 0.32 1.15 1.2E-10 0.19 27.1 GWAS+IC Known 
17 16,851,450 rs57382045 TNFRSF13B A 0.11 0.33 1.16 3.4E-09 0.84 0 GWAS New 
19 55,397,217 rs1865097 FCAR A 0.30 0.38 1.12 7.7E-09 0.49 0 GWAS+IC New 
22 30,512,478 rs4823074 HORMAD2/LIF G 0.54 0.67 1.16 7.8E-15 0.51 0 GWAS Known 

 3 
Chr., chromosome; freq., frequency; Q test, p-value for Cochrane's Q statistic; I2, heterogeneity index; IC, Immunochip 4 
a  Genome Reference Consortium Human Build 37 (hg19).  5 
b Only independent SNPs in each locus are included.  6 
c East Asian genome-wide significant specific signal.  7 
 8 

 9 
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Figure 1. Transethnic GWAS for IgAN: (a) Manhattan plot for the combined meta-analysis across 38,897 individuals; the dotted 2 
horizontal line indicates a genome-wide significant p-value 5.0E-08; y-axis shows -log10 of p-values and is truncated to 3 
accommodate the HLA signal; x-axis shows genomic position for each chromosome (1-22 and X); red: novel genome-wide 4 
significant loci associated with IgAN; dark blue: previously known loci reaching genome-wide significance in this study; locus name 5 
based on the top candidate gene based on our biological prioritization strategy; (b) Effect size (beta, y-axis) as a function of minor 6 
allelic frequency (MAF, x-axis) for suggestive and significant GWAS loci; minor alleles with positive effect sizes (risk alleles) are 7 
represented at the top and negative effect sizes (protective alleles) are represented at the bottom; a 3-degree polynomial 8 
regression curve was fitted to illustrate positive and negative correlations; correlation coefficients (R) and their corresponding P-9 
values (P) are also provided; light-blue circles represent genome-wide significant loci and are labeled using the most likely 10 
candidate gene per locus, blue triangles represent suggestive loci. (c) Pleiotropic effects of non-HLA GWAS loci for IgAN based 11 
on the NHGRI GWAS catalogue; only genome-wide significant associations in LD (r2 > 0.5) with IgAN top SNPs are included as 12 
edges; yellow are diseases and traits sharing at least one locus with IgAN; edge thickness is proportional to the LD between the 13 
IgAN top SNP and the lead association SNP for GWAS catalogue traits; concordant effects are indicated in red, opposed effects 14 
in blue; green nodes represent IgAN GWAS loci, light-blue nodes are IgAN suggestive loci; only 13 suggestive loci sharing at least 15 
one pleiotropic association with a genome-wide significant IgAN locus are depicted. 16 
 17 
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Figure 2. Genome-wide genetic correlation analysis between IgA nephropathy and other complex traits (a) including HLA 2 
region and (b) excluding HLA region. The traits are organized by immune-mediated (blue), infectious (green), and 3 
cardiometabolic (orange) categories and sorted based on the genetic correlation coefficient (rg); point estimates are provided with 4 
their 95% confidence intervals. PSC: primary sclerosing cholangitis, MN: membranous nephropathy, SLE: systemic lupus 5 
erythematosus, CD: Crohn’s disease, IBD: inflammatory bowel disease, MS: multiple sclerosis, UC: ulcerative colitis, T1D: type 1 6 
diabetes, AS: ankylosing spondylitis, RA: rheumatoid arthritis, Chol: total serum cholesterol levels, TG: total serum triglycerides 7 
levels, LDL: low-density lipoprotein levels, BUN: blood urea nitrogen, eGFR Cr: estimated glomerular filtration rate using serum 8 
creatinine levels, T2D: type 2 diabetes, BMI: body mass index, eGFR Cystatin: estimated glomerular filtration rate using serum 9 
cystatin levels, HTN: essential hypertension, FEV1/FVC: forced expiration volume at 1 second over forced vital capacity, CAD: 10 
coronary artery disease. * phenotypic correlations at P<0.05. 11 
 12 
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Figure 3. Global pathway, cell type, and tissue enrichment analyses: (a) KEGG, REACTOME and BIOCARTA pathway 2 
enrichment map based on the gene set defined by genome-wide significant IgA nephropathy loci after excluding HLA region; the 3 
top 10 most significantly enriched pathways and their intersecting GWAS genes are shown; a node size reflects −log10-4 
transformed P-values of the multiple-testing adjusted hypergeometric enrichment test in GSEA. (b) Cell type-specific heritability 5 
enrichment for functional annotations based on FUN-LDA scoring system for all ENCODE and Roadmap Epigenomics cell types 6 
and tissues; the histogram shows the results of partitioned heritability by cell type-specific FUN-LDA functional annotations; only 7 
significant results grouped by the tissue type are depicted; a solid red line represents the Bonferroni-corrected -log10 of the p-8 
value threshold of significance (P=3.9x10-4); a dotted black line represents the -log10 of the nominal p-value of 0.05; the most 9 
significant heritability enrichment were found in blood and immune cells and as well as gastrointestinal mucosal tissues. (c) Tissue 10 
and cell-type enrichment analysis with DEPICT; only cells and tissues with a false discovery rate < 0.05 are shown; Y-axis 11 
represents the -log10 of the p-value and x-axis shows the first level MeSH tissue and cell type annotations; the strongest 12 
enrichment is observed for blood and immune cells. (d) Global GWAS enrichment in DNase I–hypersensitive sites (DHS) using 13 
GARFIELD; radial lines show odds ratios at two GWAS p-values thresholds (T) for all DHS cells and tissues on the outer circle; 14 
dots in the inner ring of the outer circle denote significance of GARFIELD enrichment at T<1.0x10-5 (outermost) and T<1.0x10-8 15 
(innermost) after multiple-testing correction for the number of effective annotations. The dots colored with respect to the tissue 16 
cell type tested (the font size of tissue labels reflects the number of cell types from that tissue, only tissues). Similar to FUN-LDA, 17 
GWAS results are most enriched in DHS sites in blood and immune cells, and intestinal mucosal tissue. 18 
 19 
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Figure 4. Summary of candidate causal gene prioritizations across IgAN GWAS loci excluding HLA region: (a) cis-eQTL 2 
effects in primary immune cells: x-axis: 13 immune cell types of the Database of Immune Cell expression QTL epigenomics (DICE) 3 
project; posterior probability for a shared causal variant (PP4) is shown for the e-QTL effects that co-localize at PP4>0.50; y-axis: 4 
significant eGene-eSNP pair with shared GWAS loci depicted by a color bar; *eGenes with detectable blood cis-eQTLs. (b) pQTL 5 
effects in blood: IgAN risk alleles or their proxies (yellow nodes) with significant blood pQTLs depicted by blue (reduced protein 6 
levels) and red (increased protein levels) nodes; edge thickness corresponds to the LD between the lead pQTL SNP and the top 7 
IgAN GWAS SNP at a given locus. (c) Protein-protein interaction (PPI) network for candidate genes at GWAS loci based on 8 
InWeb_IM: modules represent genes that are more connected to one another than they are to other genes; each module exhibits 9 
a functional enrichment network based on Gene Ontology (GO) biological processes: module 1 represents response to stress and 10 
defense response networks (orange), module 2 represents regulation of inflammatory response network (light blue), module 3 11 
represents mRNA splicing via spliceosome network (red), module 4 represents chemokine-mediated signaling pathway network 12 
(green), module 5 represents immune response network (purple), module 6 represents cytokine-mediated signaling pathway 13 
network (pink), module 7 represents regulation of I-Kappa B kinase/NF-kappaB signaling and apoptotic signaling pathway 14 
networks (dark blue) and module 8 represents innate immune response in mucosa and antibacterial humoral response networks 15 
(yellow); the gray module has no functional enrichment. Overall, this network has more connectivity than expected by chance 16 
(permutation P<2e-03). (d) Intersection with transcription factor (TF) ChIP-seq peaks with the significant (top) and suggestive 17 
(bottom) IgAN risk loci; x-axis: IgAN risk loci; y-axis: top significant TFs ranked by the number of intersecting loci; a colored box 18 
at the intersection indicates that at a given locus has at least one IgAN-associated variant located within a ChiP-seq peak for the 19 
given TF; Datasets were considered significant if their RELI corrected p-values were less than 1E-04; TFs binding to EBNA2 20 
super-enhancers colored in red; ChiP-seq dataset cell type indicated in parentheses; related cell lines for a given TF (e.g., 21 
GM12878 and GM12891) were merged for clarity. 22 
 23 

 24 
 25 
 26 
 27 
 28 
 29 
 30 

Mon
oc

yte
s

Non
−c

las
sic

al 
Mon

oc
yte

s

NK ce
lls

Naiv
e B

 ce
lls

Naiv
e C

D4+
 T 

ce
lls

Naiv
e C

D8+
 T 

ce
lls

Acti
va

ted
 N

aiv
e C

D4+
 T 

ce
lls

Acti
va

ted
 N

aiv
e C

D8+
 ce

lls

Naiv
e T

reg
 ce

lls

Mem
ory

 Tr
eg

 ce
lls

TH
1 c

ell
s

TH
1/1

7 c
ell

s

TH
17

 ce
lls

TH
2 c

ell
s

TF
H ce

lls

NIPSNAP1  rs5763821*
TNC  rs34187507
IGHV3-33-2  rs6576205
NLRP7  rs12972637
ATP1B2  rs11078694*
IGHVII78-1  rs7140392
IGHV3-47  rs11624734
NCR1  rs10402324
RAPH1  rs59789950
IGHV3-64  rs8018138
IGHV3-38  rs10142951
IGHV3-66  rs7140392
NONOP2  rs842636
IGHV4-61  rs11624734
IGHV1-69  rs10139058
IGHV3-65  rs11624734
LIF  rs2412970
TNFSF8  rs35097049
ZMIZ1  rs942793*
DUSP22  rs6596865
NRBF2  rs76460998*
IRF4  rs12195338
CTB−61M7.2  rs10402324
FCAR  rs10402324*
FGFROP1  rs112074021*
ITGAX  rs12599388*0.60 0.79

0.65

0.63

0.58

0.75

0.68

0.59

0.83

0.94

0.57

0.76

0.79

0.62

0.92

0.67

a

GALK1

PRLR

DLL3

BIRC5

RMTL1

OPG

C1S

PPP2R3A

F13B

CFHR1

PDGFRA

CFHR4

XRCC4

FYN

LRC19

Calnexin

HPX

CFHR5

CFH

LTBR

P3C2A

ERVV1

JAM-B

PTP-1B

PRP16

GPD1L

FRK

TSNA1

CLK2

SPTA2

APOD

AUGN

HXK4

MCEM1

DCNL5

SARP-1

OSM

ZNF276

PCDB4

CD63

KLK14

RGS8

GL8D1

CFP

PGRC2

MA1B1

APC8

APC7

GSKIP

MLL2

TNFRSF18

CEACAM7

ANAPC7

NDUFS4

CFB

LIRA5

TST

CFH

FCRL1

VTN

CD22

C1T9A

ARHGA

FCRL4

SLAF7

FCRL3

ETNK1

RAB39B

EMC1

RIC3

CREBBP

EVA1B

SCGB2A1

STX1B

KPNA4

EIF4EBP2

PF4V1
DNAJC11

WFDC13

TRIL

VPS29

ZPBP

CXCL5

AXIN2

DDR1

PSG5

SCG2

ARMC5

SULT1E1IFNLR1

PGK1

CXCL6
WISP3

PF4V1

PSMD9

HERC1

NLGN4X

PCDH15
RELB

CXCL1

TNFAIP8 SLC3A2

FGFR3
RAP1GDS1NPPA

TMCC3

GSTT2B
KITLG

ARL1

ID2

SNAB

IGFL3

sFRP-3

IL10RA

BATF3

STIM1

ATP4B

ACP2

EPHB3KLK6

EFCAB14 DEFA1 DEFA

FCRL

DB119IGH

KI2LAFCAR

b

c
NFKB1 (lclgm12878)
RUNX3 (GM12878)
SPI1 (blood_monocyte)
POLR2A (GM12878)
ATF2 (GM12878)
FOXM1 (GM12878)
RELA (GM12878 + TNFa)
TBL1XR1 (GM12878)
NFKB1 (lclgm18951)
CEBPB (GM12878)
RFX5 (H1-hESC)
STAT4 (cd4-il12)
SMARCA4 (bcell)

IT
G
A
X

LI
N
C
01
18
5

C
A
R
D
9

R
E
E
P
3

LY
N

ZM
IZ
1

H
LA
-D
Q
A
1

H
O
R
M
A
D
2

O
V
O
L1

H
LA
-D
P
B
2

FC
R
L4

FA
M
91
A
1

D
U
S
P
22

TN
FS
F4

TN
FR
S
F1
3B

TN
FS
F8

H
LA
-D
Q
B
1

IR
F8

C
D
28

D
E
FA
8P

H
LA
-D
Q
A
2

P
F4
V
1

C
FH

R
R
E
B
1

E
TS
1

TN
FS
F1
3

B
TN
L2

FC
A
R

HMGN1 (CD4+)
POLR2A (CD4+_T_cells_invitrogen)
RUNX3 (GM12878)
SPI1 (GM12891)
STAT5A (GM12878)
NFKB1 (lclgm12878)
PAX5 (GM12878)
IRF1 (CD14+)
EBNA2 (Mutulll)
PML (GM12878)
NFATC1 (GM12878)
NFKB1(lclgm12891)
NFATC2 (Naive_CD4_Tcell_EI_5h_8)
ATF2 (GM12878)
EBF1 (GM12878)
SP1 (GM12878)
FOXM1 (GM12878)
RELB (GM12878)
NFKB2 (GM12878)
RUNX1 (CD34+)
NFIC (GM12878)
RELA (GM12878 + TNFa)
SMAD1 (U937 + BMP4)
STAT1 (CD14+)
VDR (lclgm10861_calcitriol)
TBL1XR1 (GM12878)
EP300 (GM12878)
MTA3 (GM12878)
IRF3 (Bcells + Sendai_Virus)
IRF4 (GM12878)
BCL3 (GM12878)
CEBPB (GM12878)
MED1 (BCells+Sendai_Virus)

FG
FR
1O
P

IF
T8
1

P
E
R
1

IT
G
A
M

ZM
IZ
1

K
LF
6

LI
N
C
01
18
5

C
C
A
T1

LO
C
10
01
30
47
6

LY
N

H
LA
-D
Q
A
1

P
P
IL
3

IN
P
P
5B

O
V
O
L1

C
A
R
D
9

H
O
R
M
A
D
2

LO
C
64
66
26

C
A
8

R
E
E
P
3

B
3G
N
T2

S
E
M
A
4D

LO
C
10
27
23
85
4

D
U
S
P
22

FC
R
L4

C
LP
TM
1

H
LA
-D
P
B
2

A
N
K
R
D
55

IR
F8

TN
FS
F4

FA
M
91
A
1

S
H
3B
P
2

C
X
C
R
2

IL
7R

P
A
D
I4

LO
C
10
19
27
95
0

R
B
M
S
3

IK
ZF
1

P
S
D
3

TO
M
M
40
L

TN
FR
S
F1
3B

S
LC
22
A
1

E
TS
1

TN
FS
F8

H
LA
-D
Q
B
1

IN
P
P
5D

P
TG
E
R
4

C
D
28

P
F4
V
1

N
IP
S
N
A
P
1

S
IP
A
1L
3

H
LA
-D
Q
A
2

M
IR
57
08

FH
A
D
1

D
E
FA
8P

C
FH

X
IR
P
1

W
LS

TN
FS
F1
3

TA
G
P

FC
G
R
2A

S
E
R
IN
C
5

R
R
E
B
1

P
M
FB
P
1

B
TN
L2

LO
C
40
12
86

LO
C
15
22
25

S
C
N
9A

TC
F7

TH
S
D
7A

R
O
B
O
2

C
TN
N
A
3

E
S
Y
T2

FC
A
R

IL
12
B

P
TR
F

O
S
M
R

IRF8

REL

NOTCH1

RELA

ASCC2
IRF4

CXCL1

LY86

CXCL3

CXCL8

PF4

CFH

CFHR1

ITGAM

FCGR2B

IL31A

NF2

IL6ST

MAP3K11

OSMR

LIFR

LIF

OSM

FCGR2A

CTLA4

FASLG

FCAR
LYN

TNFSF12

KAT5
IL7R

TP53

PYCARD

DEFA1

CASP8

DEFA3

CASP10

TNFSF13

PYDC1

CXCL2

CXCL5

CXCR1 CXCR2

PPBP

CXCL6 EIF4A1

POLR2AFUSSF3A1

CFL1

EHBP1L1

TNFRSF13BIL12BNot assigned

Module 1
Module 2
Module 3
Module 4
Module 5
Module 6
Module 7
Module 8

5 10

-log10(P)

IgAN Loci:
REL
CD28
IRF4
CCR6
TNFSF8/15
ZMIZ1/PPIF
REEP3
IGH
ITGAM/ITGAX
TNFSF13
FCAR
LIF

Blood eGene*

d

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.21265383doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.19.21265383
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45 

Figure 5. Prioritization of candidate genes at non-HLA loci: blue boxes indicate prioritization criteria based on genomic 2 
coordinates (the nearest gene to the index SNP, exonic variant in LD with the top SNP, or top signal intersecting chromatin 3 
interaction site with the gene promoter); red boxes indicate the presence of additional functional criteria (any GTEx eQTL effect, 4 
blood and immune cell eQTL co-localization, pQTL effects, PPI network connectivity, shared mouse KO phenotype, shared 5 
pathways by MAGMA, prioritized by DEPICT, and prioritized by manual PubMed review). The priority score represents a sum of 6 
the 13 scoring criteria depicted in blue and red. The genes with the maximum score at each locus (green boxes) were defined as 7 
‘biological candidate genes’. Additional annotation indicates drug target genes (yellow boxes). Only 56 of 311 positional candidate 8 
genes with a score >3 are depicted. 9 
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Figure 6: Drug targets among candidate causal genes. IgAN risk alleles (green), prioritized positional candidate genes (gray), 2 
related genes in PPI (e.g. ligands/receptors) or same pathway (yellow), targeting drugs approved or currently in clinical trials 3 
including agonists and antagonists (blue), and diseases targeted by these drugs (orange); high priority targets defined in Figure 5 4 
are indicated by an asterisk; GWAS loci with candidate causal genes not targeted by the existing drugs are not depicted.  5 
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Figure 7. Clinical associations of the genome-wide polygenic risk score (GPS) for IgA nephropathy. (a) Survival analysis 2 
of a lifetime risk of kidney failure for IgAN cases in the top 90th percentile of the GPS distribution (N=2,879 cases with follow up 3 
data). The x-axis shows age starting from 18 years, the y-axis shows survival probability without kidney failure with the number of 4 
participants at risk at each age cut-off of 20, 40, 60, and 80 years depicted below; HR: hazard ratio (95% confidence interval) of 5 
kidney failure adjusted for sex, site, and ancestry. (b) Phenome-wide association study (PheWAS) for the GPS, including (c) the 6 
GPS without the HLA region, based on joint meta-analysis of eMERGE-III (N=102,138) and UKBB (N=488,377) datasets. The x-7 
axis indicates electronic health record phenotypes (phecodes) grouped by system and sorted by significance. The y-axis indicates 8 
the level of statistical significance expressed as -log(P-value). An upward triangle indicates a positive association (increased risk) 9 
and a downward triangle indicates a negative association (decreased risk) with increasing GPS. Dotted horizontal line represents 10 
the significance threshold after Bonferroni correction for the number of phenotypes; significant associations are labeled. 11 
 12 
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