
 1

Diagnostic signature for Heart Failure with Preserved Ejection Fraction (HFpEF): A 1 

Machine Learning Approach Using Multi-Modality Electronic Health Record Data  2 

Short Title:  Diagnosis of HFpEF: A Machine Learning Approach 3 

Nazli Farajidavar,1* Kevin O’Gallagher,1,4* Daniel Bean,1,2,3 Adam Nabeebaccus,1,4 Rosita 4 

Zakeri,1,4 Daniel Bromage,1,4 Zeljko Kraljevic,2 James TH Teo,4 Richard J Dobson,1,2,3,5 Ajay M 5 

Shah.1,4 6 

*joint authors 7 

 8 

1King's College London British Heart Foundation Centre of Excellence, School of 9 

Cardiovascular Medicine & Sciences, London, UK; 10 

2Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and 11 

Neuroscience, King’s College London, London, UK; 12 

3Health Data Research UK London, Institute of Health Informatics, University College London, 13 

London, U.K 14 

4King’s College Hospital NHS Foundation Trust, London, UK; 15 

5NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and 16 

King’s College London, London, UK. 17 

 18 

Correspondence: Prof Ajay M Shah, School of Cardiovascular Medicine & Sciences, King’s 19 

College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK. Tel: 0044-20 

207848-5189. Email: ajay.shah@kcl.ac.uk 21 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.18.21266560doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.11.18.21266560
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

Word count: 3414  22 

ABSTRACT 23 

Aims: Heart failure with preserved ejection fraction (HFpEF) is thought to be highly prevalent  24 

yet remains underdiagnosed. We sought to develop a data-driven 25 

diagnostic model to predict from electronic health records (EHR) the likelihood 26 

of HFpEF among patients with unexplained dyspnea and preserved left ventricular EF.  27 

Methods & Results: The derivation cohort comprised patients with dyspnea and 28 

echocardiography results. Structured and unstructured data were extracted using an automated 29 

informatics pipeline. Patients were retrospectively diagnosed as HFpEF (cases), non-HF 30 

(control cohort I), or HF with reduced EF (HFrEF; control cohort II). The ability of clinical 31 

parameters and investigations to discriminate cases from controls was evaluated by extreme 32 

gradient boosting. A likelihood scoring system was developed and validated in a separate test 33 

cohort.  34 

The derivation cohort included 1585 consecutive patients: 133 cases of HFpEF (9%), 194 non-35 

HF cases (Control cohort I) and 1258 HFrEF cases (Control cohort II). Two HFpEF diagnostic 36 

signatures were derived, comprising symptoms, diagnoses and investigation results. A final 37 

prediction model was generated based on the averaged likelihood scores from these two models. 38 

In a validation cohort consisting of 269 consecutive patients (with 66 HFpEF cases (24.5%)), the 39 

diagnostic power of detecting HFpEF had an AUROC of 90% (P<0.001) and average precision 40 

(AP) of 74%.  41 
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Conclusion:  This diagnostic signature enables discrimination of HFpEF from non-cardiac 42 

dyspnea or HFrEF from EHR and can assist in the diagnostic evaluation in patients 43 

with unexplained dyspnea. 44 

 45 

Key words: HFpEF, machine learning, dyspnea  46 
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INTRODUCTION 47 

Heart Failure with preserved ejection fraction (HFpEF) is a highly prevalent yet under-diagnosed 48 

clinical syndrome[1, 2].  The hallmarks are the signs and symptoms of heart failure (HF) and a 49 

preserved left ventricular ejection fraction (LVEF).  HFpEF is thought to be underpinned by 50 

structural and functional abnormalities of both the heart and vasculature. Patients with HFpEF 51 

typically display diastolic dysfunction[3, 4] and other abnormalities such as vascular 52 

stiffening[5] and impaired ventricular-vascular coupling[6-10]. Unlike HF with reduced Ejection 53 

Fraction (HFrEF), no evidence-based therapies are available for HFpEF[11-13].  This may in 54 

part reflect the heterogeneity of HFpEF pathophysiology as well as issues of clinical trial 55 

design[13-15]. 56 

While the diagnosis of HFpEF is straightforward in acutely decompensated patients, stable 57 

euvolemic patients present a greater challenge[16]. Exertional dyspnea and fatigue are non-58 

specific symptoms that occur in many other conditions, including obesity and physical 59 

deconditioning. Expert transthoracic echocardiography (ideally with exercise) or invasive cardiac 60 

catheterization to document raised LV filling pressures may not be immediately available to the 61 

non-specialist. A recent study found that among more than 44,000 community-based patients 62 

likely to have HF, only 50% had a documented LVEF[17]. Furthermore, those eventually 63 

diagnosed as having HFpEF required many more pre-diagnosis investigations and consultations 64 

than HFrEF patients.   65 

In previous epidemiological studies, identification and extraction of HFpEF cases from 66 

Electronic Health Records (EHR) has typically relied on diagnostic codes, additional medical 67 

record abstraction, and/or adjudication based on various expert criteria e.g. European Society of 68 
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Cardiology criteria[18]. The EHR is however increasingly amenable to rapid and automated 69 

extraction of multiple clinical parameters, including the use of advanced natural language 70 

processing (NLP) algorithms to identify clinical concepts recorded in the unstructured text[19-71 

21].   72 

The aim of this study was to extract and analyze data from the EHR to develop an automated 73 

approach to identify patients likely to have HFpEF.    74 

  75 
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METHODS  76 

Approvals 77 

This project was conducted under London South East Research Ethics Committee approval 78 

(reference 18/LO/2048) granted to the King’s Electronic Records Research Interface (KERRI), 79 

project ID 202020201. 80 

Derivation Cohort 81 

We performed a retrospective study using de-identified data of patients attending King’s College 82 

Hospital NHS Foundation Trust (KCH) in London (UK) between 2000 and 2019. We focused on 83 

patients who had undergone echocardiography as part of their inpatient or outpatient evaluation. 84 

With this starting point, a number of different patient cohorts were derived based on the LVEF, 85 

confirmed or possible HF, symptoms of dyspnea, and NT-proBNP (or BNP) level (see 86 

Supplementary materials Sections I and II). We identified confirmed HFpEF cases and two 87 

control cohorts: those with no evidence of HF (non-HF, Control cohort I) and those with HFrEF 88 

(Control cohort II).  HFpEF cases were defined as patients with a preserved LVEF ≥50% (with 89 

no evidence of LVEF <50% at any stage), a confirmed diagnosis of HF based on discharge 90 

ICD10 codes I50.0, I50.1 or I50.9, dyspnea, and a raised NT-proBNP or BNP level (according to 91 

age-specific thresholds), in accordance with ESC diagnostic criteria[18]. Patients with valvular 92 

heart disease (ICD10 codes I05-I09 and I35) were excluded. 93 

Test Cohorts  94 

We generated 4 test cohorts from patients who lacked at least one of the above diagnostic 95 

features for a confirmed diagnosis of HFpEF (see Supplementary Table S1 and Flowchart S1).  96 

We randomly sampled 100 patients from each of these four test subsets for analysis and removed 97 
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samples where the clinical annotations disagreed or there was more than 70% missingness in 98 

signature predictors, leaving 269 in total.  99 

Data extraction and evaluation 100 

Clinical and demographic data were retrieved from the structured and unstructured components 101 

of the EHR using the CogStack informatics platform[20].  Automated parsing of the EHR was 102 

achieved with a state-of-the-art enterprise search and well-validated natural language processing 103 

(NLP) tools, including MedCAT[22] and the Unified Medical Language System repository[23] 104 

as previously used by our group.[24] Clinical term extraction was restricted to concepts which 105 

represent clinical findings, diseases (apart from HF), medications, and signs and symptoms. This 106 

was linked to searches of structured data from an internal database containing echocardiographic 107 

data and ICD codes. Continuous variables were cleaned prior to cohort selection; e.g. conversion 108 

of text references of LVEF to numerical values and removal of measurement outliers (see 109 

Supplementary material Section III). We used both platforms to arbitrate discrepancies in our 110 

derivation dataset as neither source proved to be comprehensive, in line with previous work[20, 111 

21].   112 

Echocardiographic data were based on studies performed according to British Society of 113 

Echocardiography guidelines[25] (which are consistent with American and European 114 

guidelines)[26]. Structured data recorded in echocardiography results were boosted with 115 

numerical data reported in the EHR text. Additionally, when appropriate (e.g. patient had 116 

echocardiography but a numerical value for LVEF was not documented) we used a deep learning 117 

model to infer whether the LVEF was preserved based on the echocardiography report (see 118 

Supplementary materials Section III). 119 
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BNP or NT-proBNP results were obtained from samples drawn at any time in the study period 120 

and the maximum value for each subject was used.  121 

All cases in the derivation dataset that were identified by the data pipeline as HFpEF were 122 

validated by manual review of the EHR by a cardiologist. 123 

 124 

Potential modeling predictors 125 

A binary diagnostic outcome indicating the presence or absence of HFpEF was considered for 126 

modeling. Potential predictors to be included in a diagnostic signature included those used in 127 

previous HFpEF epidemiological studies[14, 15]. In addition, we adopted a comprehensive 128 

approach that included physiological variables, laboratory results, echocardiographic data and 129 

clinical concept references[27]. Structured data were collected within a two-month temporal 130 

window around the last echocardiography result (or NTproBNP/BNP test result if available). 131 

Unstructured data were analyzed from the entire EHR prior to the date of the echocardiography 132 

result for each patient.  133 

We made a second level predictor grouping according to whether the variables were initially 134 

recorded as (a) structured data: demographic and physiological parameters, and laboratory and 135 

echocardiography measurements; or (b) unstructured text in the EHR, extracted via the NLP 136 

platform. We adopted the bag-of-words[28] approach to transform clinical concept annotation 137 

into word vectors for modeling purposes. Concepts which were mentioned in <10% of the 138 

derivation cohort were excluded. Data from the other predictor categories were collected and 139 

imputed prior to training, using the k-nearest neighbor (Scikit-learn python package v0.22) after 140 
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min-max normalization. Following imputation, data items were rescaled into their original range 141 

to preserve the explainability of the final model.   142 

Data modelling, feature selection and validation 143 

We used the tree-based multivariable extreme gradient boosting[29] algorithm (XGBoost, python 144 

package v0.9) for modeling, enabling inclusion of mixed data types and smooth handling of 145 

missing values and sparsity issues. As such, when a value is missing in the sparse predictor 146 

vector, the instance is classified into a default direction (see[29] for further details) that is learnt 147 

as optimal using derivation data.   148 

SHAP[30] analysis (SHapley Additive exPlanations; SHAP python package v0.33) was used to 149 

order the predictors according to their prominence in discriminating cases from controls. Once 150 

the full model was created, we took a stepwise forward insertion scheme to include the 151 

more significant variables one at a time, in order to determine the minimal number of predictors 152 

that gave an acceptable performance relative to the use of all predictors. The final predictive 153 

models were trained and evaluated using the obtained optimal subset of predictors. 154 

Model validation was undertaken in the test cohorts described earlier, using clinical assessment 155 

criteria from the H2FPEF score[16] as a comparator. A random sample of 400 patients from the 156 

test datasets was manually reviewed by two teams each comprising two cardiologists, in order to 157 

validate diagnoses. Any cases of clinician disagreement were removed from the evaluation, 158 

leaving a total of 269 patients in the test datasets (see Results, Table 1). 159 

Statistical analysis of predictors 160 
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Data are presented as mean and standard deviation (SD) or median and interquartile range (IQR) 161 

as appropriate. Differences between cases and controls were evaluated by the Mann-Whitney U 162 

test or unpaired t test, as appropriate. The area under the receiver-operating characteristic curve 163 

(AUROC), F1-score (macro and weighted2) and average precision (AP) were used as 164 

performance metrics.  165 

A stratified 5-fold cross-validation scheme (to ensure each fold is a good representative of the 166 

whole data in terms of class prevalence) was utilized for feature selection and derivation set 167 

validation. As such, the derivation data was divided into five subsets, four of which were used 168 

for training the model and the final one for validation/testing. The derivation and test subsets 169 

were shuffled until all five subsets were evaluated. The final performance was then reported as 170 

mean and standard deviation of all five tests.  171 

The AUROC and AP were used as performance metrics and the Kappa statistic was used to 172 

measure the inter-rater agreement of proposed models. All tests were 2-sided, with P<0.05 173 

considered significant.   174 

To evaluate the generalizability of the model to a new sample, Harrell optimism was calculated 175 

with 1000 boot-strap replicates[31]. To evaluate discrimination power of the proposed model 176 

beyond existing criteria, we compared the model’s AUROCs and AP performance against the 177 

recently proposed H2FPEF scoring system[16] using the Random Forest (predecessor 178 

to XGBoost).   179 

Statistical analyses were performed in Python 3 using SciPy and Scikit-learn packages (v0.22).   180 

Data availability 181 
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The data included in the study will not be made available to other researchers due to hospital 182 

information governance regulations. However, we will share our models and the analytical 183 

methods to facilitate the replication of the study on data collected from other hospitals.  184 

  185 
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RESULTS   186 

1854 patients were included in the study of whom 1585 were in the derivation cohort (Table 1).  187 

HFpEF patients in the derivation cohort (n=133) were older than those with non-HF or HFrEF, 188 

with a higher proportion of females and a higher BMI.  They also had a higher prevalence of 189 

hypertension, atrial fibrillation, diabetes and chronic kidney disease. Systolic and diastolic 190 

pressures were higher in the HFpEF group compared to HFrEF.  Patients with HFpEF had lower 191 

end-diastolic and end-systolic volumes and higher septal E/e’ ratios than the non-HF control 192 

group.  193 

 194 

Structured, unstructured and combined signatures for HFpEF diagnosis 195 

We initially divided the predictors into two sets based on the source of data being structured data 196 

or clinical concepts and conditions extracted from the unstructured historical EHR (see 197 

Methods). We excluded the BNP/NT-proBNP assessment data and HF concept references from 198 

both predictor sets to avoid biasing models by information on outcome. Separate 199 

XGBoost models were trained on each predictor set.  SHAP analysis was adopted to select the 200 

optimal number of features from each predictor set using five-fold cross-validation. We then 201 

compared the discriminant power of these signatures to distinguish HFpEF cases either from 202 

non-HF patients (Control set I) or HFrEF patients (Control set II). 203 

The minimum number of variables required to maintain an acceptable level of performance for 204 

each model were selected (Figure 1). Following an early-fusion modeling strategy, we merged 205 

the selected predictors from the two sets of structured and unstructured variables and trained 206 
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an XGBoost model for discrimination and termed the derived signature as the combined 207 

signature.  208 

SHAP analysis to assess feature importance showed that individual predictors had different value 209 

in discrimination of HFpEF versus non-HF or HFrEF (Figure 2). For example, dyspnea and 210 

pharmacologic substance were the most prominent predictors in discrimination against non-HF 211 

whereas EF was most important for discrimination against HFrEF. However, many of the 212 

features (e.g. age, patient address) were common to the two groups. The text references to 213 

“patient address” and “pharmacologic substance” were surrogate predictors of the number of 214 

complete hospital admissions. (Figure 2).  215 

The combined signature model for discrimination of HFpEF from HFrEF showed an enhanced 216 

AUROC performance and F1-measure score as compared to the single-view models in the 5-fold 217 

cross-validation evaluation in our developmental dataset (Table 2). The performance 218 

enhancement of the combined model in discriminating HFpEF from non-HF was less significant. 219 

This was due to dominancy of the unstructured predictors in this combined signature (see Figure 220 

2 and Table 3). 221 

Selection of the final model and evaluation in test cohorts 222 

The final model that was used for test evaluations aggregates the HFpEF vs HFrEF and HFpEF 223 

vs non-HF signature likelihood predictions, through an averaging operation. We used this 224 

aggregate model to make predictions on the test sets. Figure S5 summarises the entire 225 

processing and model training pipeline.  226 
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To address the distributional variation between training and test cohorts which was caused by 227 

sample selection bias, we used 30% of the test samples (test1: 19, test2: 21, test3: 17, test4: 23) 228 

to retune the models, following the domain adaptation transfer learning technique[32]. Details of 229 

the 30% choice of adaptation set size is included in the Supplementary materials, Figure S6. 230 

The performance of both proposed base models and the final aggregated model remained robust 231 

in the test cohort as compared to expert clinical consensus, with an AUROC performance of 0.86 232 

(95% CI, ± 0.002) and 0.85 (95% CI, ± 0.001) in HFpEF vs non-HF and HFpEF vs HFrEF 233 

models, respectively and an enhanced aggregate performance of 0.90 (95% CI, ± 0.002) in our 234 

final aggregate model (Figure 3).  235 

Lastly, we compared the final aggregate model as well as the baseline combined signature 236 

models (discriminating against non-HF or HFrEF) with the recently described H2FPEF 237 

model[16]. The AUROC and average precision of both the aggregate model and the individual 238 

baseline models was higher than the H2FPEF model (Table 4). We additionally used the Cohen’s 239 

kappa score to report on the agreement between the predictions made by our proposed models to 240 

better highlight the efficiency of the aggregate model over the individual base models 241 

discriminating HFpEF from non-HF and HFrEF. The positive kappa score of 0.3 indicates a 242 

weak agreement between the two base models. This was expected as the test cohort had lower 243 

availability of clinical assessments compared to the derivation cohort. 244 

  245 
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DISCUSSION 246 

In this study, we have developed an automated pipeline for EHR-based data collection, 247 

processing and modeling to identify patients with a high likelihood of HFpEF. We incorporated 248 

multi-modality data, including both structured and unstructured predictors, to generate a disease 249 

diagnostic signature. The proposed signature was validated in a separate cohort of patients and 250 

performed favourably as compared either to expert clinical consensus or the recently proposed 251 

H2FPEF score[16]. 252 

Analysis of the signatures that distinguished HFpEF from non-cardiac causes of dyspnea (non-253 

HF) revealed anticipated predictors such as atrial fibrillation, hypertension, diabetes mellitus, 254 

kidney failure and obesity, in accordance with previous literature[16]. In addition, surrogate 255 

measures of multiple previous clinical encounters detected by the NLP algorithm as frequent text 256 

references to terms such as “pharmacologic substance” or “patient address” were very useful. 257 

This may reflect the fact that patients with HFpEF may require multiple clinical visits and 258 

investigations, often with different specialities, before a diagnosis is established[17]. Apart from 259 

LVEF itself, features that distinguished HFpEF from HFrEF included age, peripheral edema, and 260 

other echocardiographic measures. An advantage of the approach that we employed may be that 261 

it is unbiased and comprehensive and identifies variables for inclusion in the diagnostic signature 262 

based purely on the results of the objective feature selection process. This may be one reason 263 

why our algorithm outperforms the H2FPEF score, which is based on the evaluation of selected 264 

variables rather than a comprehensive unbiased analysis. In this regard, it is of interest that 265 

echocardiographic predictors that contributed to the differentiation of HFpEF from HFrEF 266 

included maximum flow velocity across the aortic valve, aortic insufficiency and LA volume 267 

whereas E/e’ (which is part of the H2FPEF score) did not feature in the top 30 predictors.  268 
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A major underlying problem in efforts to develop or test new treatments for HFpEF is the 269 

difficulty in consistently diagnosing the syndrome[17]. Many different approaches are used in 270 

the literature based on varying criteria published by national and international societies, and 271 

diverse inclusion criteria have been used in clinical trials[33-35]. The problem is compounded by 272 

the likelihood that HFpEF is a heterogenous syndrome in which sub-populations may have 273 

differing underlying pathophysiology and outcomes[14, 15, 33]. The approach we present 274 

enables rapid identification of likely HFpEF cases among which further specific phenotyping 275 

could be performed to refine the diagnosis and potentially test or target defined interventions, or 276 

to identify potential subjects for research studies. Importantly, this approach aims to identify 277 

both compensated and decompensated HFpEF cases, using an automated and data-driven 278 

approach that is effective even where structured data (e.g. NT-proBNP measurements) are 279 

scarce. The approach may be considered complementary to scores such as H2FPEF. Our 280 

signature is ideally suited to rapidly identify a large number of possible HFpEF cases from EHR 281 

whereas H2PEF is better suited for use by the clinician evaluating an individual patient who is 282 

suspected to have HFpEF.   283 

This study is the first to use SHAP analysis for feature selection in this context. We 284 

comprehensively validated all variations of the derived models in multiple datasets with 285 

underlying variational distributions. We demonstrated a significant improvement in HFpEF 286 

diagnostic performance when discriminating the patients with HFpEF from those with HFrEF or 287 

no HF history. A key strength of our approach is that modeling numerical assessment data 288 

(structured results signature) and EHR concept references separately makes the models 289 

applicable in scenarios where one of these sources of data may be scarce. Moreover, the dual 290 
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modeling of HFpEF separation from non-HF and HFrEF subjects increases the utility of the 291 

proposed pipeline in distinguishing among a wider group of clinical conditions. 292 

 293 

Limitations 294 

The UMLS clinical concept encoding that was used to extract unstructured observations does not 295 

support distinct encoding of different disease stages and could therefore cause some inaccuracy. 296 

In a more general aspect, the a priori assumptions that we made to identify definite HFpEF cases 297 

in the derivation dataset influenced the characterisation of the cohort. For example, we utilised 298 

ICD-10 diagnostic codes in the identification of patients with heart failure.  Previous studies 299 

have demonstrated inaccuracy in identifying incident heart failure using ICD-10 coding as the 300 

sole source[36].  It is possible that such inaccuracy is present in our coding system; however the 301 

use of additional features (symptoms, LVEF, BNP/NTproBNP) in case classification mitigates 302 

this risk in our study.  The inclusion of a raised BNP criterion restricts the cohort to a subgroup 303 

of HFpEF subjects, which was evident in test cohorts where many of the subjects did not have 304 

BNP measurements. This issue could be successfully handled through transfer learning 305 

techniques but would require some labelled data from a new domain to facilitate such a feedback 306 

training loop. The choice of data imputation technique could be another source of minor but 307 

systematic error. The discriminant power of the model to detect HFpEF is lower in test subsets 308 

where the missing data rate is higher and HFpEF cases are a small proportion of the overall 309 

number. Finally, the applicability of our model in patients with HFpEF who have never required 310 

hospital evaluation or admission is unknown.  However, a strength of our approach is that a 311 

dedicated specialist assessment for HF is not required to assess the probability of HFpEF among 312 

patients undergoing general hospital evaluation (e.g. non-cardiological), even in the absence of 313 
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commonly used diagnostic data such as NTproBNP levels. The lack of independent validation is 314 

a limitation of this study. Evaluation of the derived model’s performance in independent datasets 315 

from other centres and in community-based datasets will be informative in future studies. 316 

Although we compared performance of the model with the H2FPEF score,[16] due to its stated 317 

aim of estimating the likelihood that HFpEF among patients with unexplained dyspnoea to guide 318 

further testing, we did not compare performance to the HFA-PEFF algorithm[37] which is a 319 

multi-step diagnostic algorithm.   Furthermore, the comparison of our alogrithm’s performance 320 

with the H2FPEF should be confirmed in a separate validation cohort. 321 

 322 

Conclusion 323 

In this study, we have developed a rapid and automated data-driven approach that is effective at 324 

identifying patients from EHR who are likely to have HFpEF. This algorithm affords significant 325 

potential to rapidly identify patients for more detailed analyses and/or potential inclusion in 326 

clinical trials. The approach that we report could in principle be readily applied to other diseases 327 

and conditions that are similarly difficult to diagnose. 328 

 329 

Supplemental Materials. The supplementary digital content is provided to support the findings 330 

of this study.   331 
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TABLES 483 

Table 1.  Baseline characteristics of patients. The mean and SD (standard deviation) were 484 

obtained where the predictor distribution follows a normal distribution, whereas for predictors 485 

with a skewed distribution, the median and interquartile range (25th-75th) were used to report the 486 

statistics. To evaluate the distributional differences between cases and controls, the Mann-487 

Whitney U test or the t test was acquired, where appropriate. Values in parentheses next to each 488 

predictor name indicate the data availability percentage. 489 

* Constraint-free assumption on our test sets resulted in predictors with either a singular value or 490 

a high proportion of missing values. In such cases, the computation of common statistics was not 491 

pragmatic and hence the NAN (Not A Number) value was reported, instead. 492 

** This predictor is only computed in the test cohort to enable the comparison with the H2FPEF 493 

score. 494 

# 92.45% of HFpEF cases and controls had a BNP or pro-BNP level available. 495 

Set I: patients with normal EF, no/normal BNP record, a HF ICD10 code and at least one HF and 496 

dyspnea reference in their EHR.  497 

Set II: patients with normal EF, no/normal BNP record, no HF diagnostic code and at least one 498 

HF and dyspnea reference in their EHR.  499 

Set III: patients with normal EF, no BNP record, no HF diagnostic code nor HF reference in the 500 

EHR, at least one report of their dyspnea in their EHR.  501 

Set IV: patients with normal EF, raised BNP result with HF and dyspnea reference in their EHR 502 

but no HF diagnosis documented  503 
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(HF: heart failure, EF: ejection fraction, rEF: reduced EF, BNP: brain-natriuretic peptide test, 504 

EHR: electronic health record) . 505 

The following ICD10 codes were used to define the comorbidities:  506 

Hypertension: I10-I15, I60-I69; Diabetes mellitus: E10-E14; Atrial fibrillation: I48; Pulmonary 507 

hypertension: I27; Kidney Disease: N18, N28, I12-I15                                          508 

 509 

Table 2.  Multivariable model performance using the 5-fold cross-validation in derivation 510 

dataset. 511 

 512 

Table 3.  Additive SHAP feature importance for each category of predictors in the 513 

combined signatures. 514 

 515 

Table 4.  Multivariable model performance in independent test cohort. The 95% CI is 516 

reported using bootstrapping in a thousand of iterations.   517 

*: HFpEF annotation agreement between the two scoring systems using Cohen’s kappa statistics 518 

(python 3, Sklearn v.0.22).  519 

AUROC: area under receiver operative curve, AP: average precision, CI: confidence interval in 520 

bootstrapped samples 521 

  522 
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FIGURES 523 

Figure 1.  Feature selection analysis. Features were incrementally utilized for training the 524 

models to ensure a performance within ±2 units of the AUROC and f1-macro metrics in 5-fold 525 

cross-validation setup. Blue: f1-macro, Red: AUROC 526 

Figure 2.  Feature importance using SHAP analysis in combined signatures. Denser 527 

distribution of red points at the positive quadrant of the plot is representative of higher values of 528 

a given predictor’s contribution in characterizing the positive class distribution i.e. in 529 

characterizing HFpEF. 530 

Figure 3.  Performance of base and aggregate models.  Panel A: Receiver Operating 531 

Characteristic curves for base models, aggregate model, and H2FPEF score.  Panel B:  Precision 532 

Recall curves for base models, aggregate model, and H2FPEF score.  Panel C: Calibration curve 533 

for aggregate model.  Panel D: Efficiency curve for aggregate model.  Panel E:  Aggregate model 534 

performance in the 4 test subsets 535 

 536 

 537 
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 Non-HF 

controls 

(n =194) 

HFrEF 

controls 

(n=1258) 

HFpEF  

cases 

(n =133) 

P value 

cases vs  

controls 

Test cohorts 

(n=269, HFpEF cases = 68) 

 Set I 

(n=61) 

Set II 

(n=68) 

Set III  

(n=71) 

Set IV  

(n=69) 

Female, % (100%) 48.5% 36.8% 54.9% - 61.8% 67.1% 68.9% 61.2% 

Age, y (100%) 54 ± 18 69 (22) 73 ± 12 <0.0001 

 

66±13 56±15 55±15 61±13 

Body mass index, 

kg/m
2
 (76%)

 

28.35 ± 

8.07 

28.75 ± 

7.34 

34.06 ± 

10.07 

<0.0001 30.95 ± 

8.15 

32.18 

± 8.32 

30.66 ± 

7.58 

31.67 ± 

7.87 

 

Hypertension, % 43.2% 81.6% 91.7% - 83.8% 89.5% 67.6% 79.6% 

Diabetes mellitus, % 20.1% 42% 54.1% - 52.9% 31.6% 24.3% 34.7% 

Atrial fibrillation, % 4.6% 47.6% 52.6% - 50% 19.7% 6.7% 37.8% 

Pulmonary 

hypertension, % 

<1% 12.2% 25.6% - 26.5% 7.9% 2.7% 11.2% 

Kidney  

disease, % 

6.7% 35.5% 46.6% - 66.1% 21.1% 24.3% 25.5% 

 

Antihypertensive 

drugs, n** 

- - - - 2(10) 0 (4) 0(4) 0(0) 

 

NT-proBNP, pg/ml 

(#) 

46 (53) 138 

(1676) 

4181 

(3620) 

- 873 

(1359) 

282 

(181) 

NAN* 781 

(1258) 

BNP, pg/ml 

(#) 

54 (73) 76 (353) 1510 

(4488) 

- NAN* NAN* NAN* 796 

(656) 

Creatinine, umol/l 

(99%) 

82.8 ± 

39.7 

88.0 

(34.0) 

84.0 

(28.0) 

 

0.165 89.0 

(40.0) 

78.0 

(25.5) 

78.5 

(24.0) 

86.6 ± 

19.6 

Hemoglobin, g/dl 

(96%) 

12.6 ± 2.1 13.3 (2.6) 13.1 ± 1.8 0.836 12.7 ± 

2.0 

12.8 ± 

1.7 

12.6 ± 

2.0 

12.9 ± 

2.1 

White cell count, 

10
9
/l (100%) 

7.1 (4.33) 7.54 

(3.99) 

7.43 

(3.76) 

0.141 6.94 

(3.57) 

6.64 

(3.4) 

7.28 

(4.43) 

6.74 

(3.16) 
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C-reactive protein, 

mg/l (96%) 

6.5 ± 3.21 6.87 ± 

3.12 

7.4 (5.0) 0.254 6.93 ± 

3.17 

6.34 ± 

3.01 

6.62 ± 

3.03 

6.12 ± 

3.11 

Urea, mmol/l (99%) 5.73 ± 

3.73 

7.12 ± 

4.43 

6.4 (3.7) 0.687 6.85 

(3.98) 

5.3 

(1.85) 

4.65 

(2.47) 

5.95 

(2.43) 

Albumin, g/l (99%) 40.17 ± 

6.98 

41.13 ± 

6.52 

42.0 (3.0) 0.711 41.0 

(6.0) 

42.5 

(4.25) 

43.0 

(6.0) 

43.0 

(3.0) 

Sodium, mmol/l 

(99%) 

138.34 ± 

3.88 

139.0 

(4.0) 

139.0 

(3.0) 

0.183 139.0 

(3.25) 

139.63 

± 2.52 

139.34 

± 2.91 

140.0 

(3.0) 

Potassium, mmol/l 

(99%) 

4.57 ± 

0.26 

4.3 (0.6) 4.35 ± 

0.58 

0.720 4.2 

(0.73) 

4.28 ± 

0.53 

4.36 ± 

0.52 

4.31 ± 

0.54 

Calcium, mmol/l 

(98%) 

2.28 

(0.15) 

2.29 

(0.13) 

2.31 ± 

0.12 

0.147 2.29 

(0.17) 

2.33 

(0.14) 

2.35 ± 

0.13 

2.34 ± 

0.13 

 

Systolic blood 

pressure, mmHg 

(63%) 

132.93 ± 

17.08 

129.14 ± 

21.9 

139.54 ± 

21.46 

<0.0001 140.89 

± 25.87 

136.78 

± 

17.84 

138.63 

± 23.21 

138.12 

± 18.65 

Diastolic blood 

pressure, mmHg 

(67%) 

79.15 ± 

11.76 

73.79 ± 

13.36 

74.96 ± 

13.45 

<0.0001 

 

73.16 ± 

11.98 

78.16 

± 

13.09 

80.68 ± 

15.18 

74.08 ± 

13.73 

Heart rate, beat/min 

(65%) 

81.38 ± 

14.28 

73.69 ± 

14.74 

76.47 ± 

16.72 

0.0008 

 

67.35 ± 

9.63 

75.31 

± 14.1 

75.0 ± 

8.8 

74.64 ± 

18.15 

Oxygen saturation, % 

(52%) 

98.1 ± 

1.75 

96.49 ± 

5.05 

96.22 ± 

3.0 

<0.0001 

 

96.36 ± 

2.87 

96.69 

± 2.87 

97.89 ± 

1.62 

96.13 ± 

4.66 

 

LV end diastolic 

volume, ml (23%) 

155.0 ± 

61.89 

152.46 ± 

53.52 

106.7 ± 

26.52 

< 0.0001 149.0 ± 

16.97 

124 ± 

NAN* 

155.0 ± 

NAN * 

110.83 

± 27.98 

LV mass systolic, g (1 

%) 

176.7 ± 

 53.0 

265.2 ± 

155.2 

225.2 ±  

74.5 

<0.0001 

 

118.9 ± 

nan* 

NAN * 210.3 ± 

158.0 

111.7 ± 

89.9 

LV ejection fraction, 

% (100%) 

60.4 ± 3.9 44.2 ± 

11.5 

58.0 ± 4.9 <0.0001 55.5 ± 

2.1 

60.5 ± 

0.7 

61.5 ± 

2.1 

55.3 ± 

4.1 

LV internal diameter 

at end diastole, 

cm/m
2
 (59%) 

2.46 ± 

0.24 

2.71 ± 0.5 2.46 ± 

0.36 

0.0002 2.36 ± 

0.26 

2.46 ± 

0.28 

2.32 ± 

0.24 

2.45 ± 

0.35 

LV stroke volume, ml 

(4%) 

92.5 ± 

34.78 

65.52 ± 

19.78 

55.0 ± 

4.36 

<0.0001 

 

82.0 ± 

5.66 

75.0 ± 

NAN * 

93.0 ± 

NAN * 

64.2 ± 

19.7 

LV outflow tract 

velocity time integral 

diameter, cm (20%) 

2.13 ± 

0.28 

2.16 ± 

0.24 

2.17 ± 

0.34 

0.1126 2.03 ± 

0.2 

2.14 ± 

0.24 

2.13 ± 

0.12 

2.07 ± 

0.23 
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LV end systolic 

volume, ml (22%) 

62.5 ± 

27.2 

87.32 ± 

42.81 

42.67 ± 

3.21 

0.1708 66.5 ± 

12.02 

49.0 ± 

NAN * 

62.0 ± 

NAN * 

49.4 ± 

10.45 

LA systolic volume, ml 

(31%) 

60.0 ± 

19.52 

86.47 ± 

38.77 

143.67 ± 

70.44 

< 0.0001 120.5 ± 

28.99 

112.0 

± NAN 

* 

69.0 ± 

NAN * 

70.33 ± 

21.4 

TR max PG, mmHg 

(80%) 

 

26.7 ± 

10.2 

29.4 ± 

11.2 

34.16 ± 

12.9 

< 0.0001 37.2 ± 

13.8 

24.9 ± 

10.18 

26.3 ± 

8.3 

32.3 ± 

11.4 

E/e’ lateral ratio 

(50%) 

7.26 ± 

3.11 

10.70 ±  

6.07 

11.59 ±  

5.96 

< 0.0001 13.54 ± 

4.59 

11.70 

± 5.16 

9.35 ± 

3.48 

12.87 ± 

7.27 

E/e’ septal ratio 

(50%) 

9.75 ± 

4.99 

14.51 ±  

7.71 

14.37 ± 

5.6 

< 0.0001 16.83 ± 

5.44 

14.77 

± 6.2 

11.5 ± 

4.52 

16.04 ± 

7.53 

RV V1 max, cm/sec 

(6%) 

82.28 ± 

17.7 

71.98 ± 

22.65 

80.41 ± 

19.01 

0.0001 95.37 ± 

12.52 

80.87 

± 

17.42 

71.34 ± 

9.96 

77.79 ± 

18.88 

RV V1 mean, cm/sec 

(4%) 

47.04 ± 

5.91 

47.38 ± 

14.19 

52.03 ± 

11.62 

0.0048 53.5 ± 

10.47 

59.05 

± 5.18 

48.65 ± 

6.76 

50.6 ± 

9.53 

Mitral valve E/A ratio, 

(84%) 

1.08 ± 

0.42 

1.37 ± 

0.07 

1.13 ± 

0.61 

< 0.0001 1.23 ± 

0.76 

0.9 ± 

0.34 

0.98 ± 

0.36 

1.04 ± 

0.4 

Mitral regurgitation 

max velocity, cm/sec 

(10%) 

483.46 ± 

68.77 

495.48 ± 

88.56 

502.84 ± 

93.06 

0.021 592.08 

± 98.05 

553.39 

± 31.3 

NAN 505.68 

± 

119.98 

Tricuspid 

regurgitation max 

velocity, cm/sec 

(80%) 

233.23 ± 

31.74 

264.47 ± 

56.62 

274.1 ± 

56.34 

< 0.0001 310.38 

± 61.48 

254.82 

± 

53.76 

239.73 

± 41.81 

277.2 ± 

50.81 

 

Table 1.  Baseline characteristics of patients. The mean and SD (standard deviation) were obtained 
where the predictor distribution follows a normal distribution, whereas for predictors with a skewed 
distribution, the median and interquartile range (25th-75th) were used to report the statistics. To 
evaluate the distributional differences between cases and controls, the Mann-Whitney U test or the t 
test was acquired, where appropriate. Values in parentheses next to each predictor name indicate the 
data availability percentage. 

* Constraint-free assumption on our test sets resulted in predictors with either a singular value or a 
high proportion of missing values. In such cases, the computation of common statistics was not 
pragmatic and hence the NAN value (Not a Number) was reported, instead. 

** This predictor is only computed in the test cohort to enable the comparison with the H2FPEF 
score. 

# 92.45% of HFpEF cases and controls had a BNP or pro-BNP level available. 

Set I: patients with normal EF, no/normal BNP record, a HF ICD10 code and at least one HF and 
dyspnea reference in their EHR.  
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Set II: patients with normal EF, no/normal BNP record, no HF diagnostic code and at least one HF 
and dyspnea reference in their EHR.  

Set III: patients with normal EF, no BNP record, no HF diagnostic code nor HF reference in the 
EHR, at least one report of dyspnea in their EHR.  

Set IV: patients with normal EF, raised BNP result with HF and dyspnea reference in their EHR but 
no HF diagnosis documented  

(HF: heart failure, EF: ejection fraction, rEF: reduced EF, BNP: brain-natriuretic peptide test, EHR: 
electronic health record) . 

The following ICD10 codes were used to define the comorbidities:  

Hypertension: I10-I15, I60-I69; Diabetes mellitus: E10-E14; Atrial fibrillation: I48; Pulmonary 
hypertension: I27; Kidney Disease: N18, N28, I12-I15                                          
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Model Control set f1_macro ± 95% CI  f1_weighted ± 95% CI   AUROC ± 95% CI 

Structured 

Signature 

Non-HF 84.05 ± 2.7 84.18 ± 2.7 92.04 ±1.4 

HFrEF 75.75 ± 2.1 87.22 ± 1.42 90.31 ± 3.5 

Unstructured 

Signature 

Non-HF 98.81 ± 1.3 98.82 ± 1.3 99.7 ± 0.5 

HFrEF 78.59 ± 4.9 88.99 ± 2.1 94.38 ± 1.4 

combined  

signature 

Non-HF 98.57 ± 1.4 98.59 ± 1.4 99.8 ± 0.3 

HFrEF 83.03 ± 2.8 90.91 ± 1.6 95.67 ± 2.0 

 

Table 1.  Multivariable model performance using the 5-fold cross-validation in derivation 
dataset. 
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  Unstructured 

data 

Structured data 

 Model Symptoms Echocardiography 

parameters 

Vitals Age & 

Sex 

Lab results 

Summed 

importance 

of grouped 

features 

HFpEF vs 

non-HF 

0.953 0.036 0.011 0.033 <0.001 

HFpEF vs  

HFrEF 

0.551 0.334 0.115 0.058 <0.001 

  

Table 1.  Additive SHAP feature importance for each category of predictors in the combined 
signatures. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.18.21266560doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.18.21266560
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 Performance 

metric 

H2FPEF16, 

% 

Combined  

non-HF 

signature, % 

 

Combined  

HFrEF 

signature, % 

 

Aggregate 

model score, 

% 

 

Scoring 

Agreement

*   

(HFrEF 

and 

non_HF) 

 

Test 

set 

AUROC  

(95% CI) 

0.77 0.86 (± 0.002) 0.85 (± 0.001) 0.90 (± 0.002)  

0.3 

AP 0.53 0.70 0.66 0.74 

 

Table 1.  Multivariable model performance in independent test cohort. The 95% CI is reported using 
bootstrapping in a thousand of iterations.   

*: HFpEF annotation agreement between the two scoring systems using Cohen’s kappa statistics (python 
3, Sklearn v.0.22).  

AUROC: area under receiver operative curve, AP: average precision, CI: confidence interval in 
bootstrapped samples 
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