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 50 

Summary 51 

With the increasing availability of biobank-scale datasets that incorporate both genomic data and 52 

electronic health records, many associations between genetic variants and phenotypes of interest 53 

have been discovered. Polygenic risk scores (PRS), which are being widely explored in precision 54 

medicine, use the results of association studies to predict the genetic component of disease risk 55 

by accumulating risk alleles weighted by their effect sizes. However, few studies have thoroughly 56 

investigated best practices for PRS in global populations across different diseases. In this study, 57 

we utilize data from the Global-Biobank Meta-analysis Initiative (GBMI), which consists of 58 

individuals from diverse ancestries and across continents, to explore methodological 59 

considerations and PRS prediction performance in 9 different biobanks for 14 disease endpoints. 60 

Specifically, we constructed PRS using heuristic (pruning and thresholding, P+T) and Bayesian 61 

(PRS-CS) methods. We found that the genetic architecture, such as SNP-based heritability and 62 

polygenicity, varied greatly among endpoints. For both PRS construction methods, using a 63 

European ancestry LD reference panel resulted in comparable or higher prediction accuracy 64 

compared to several other non-European based panels; this is largely attributable to European 65 

descent populations still comprising the majority of GBMI participants. PRS-CS overall 66 

outperformed the classic P+T method, especially for endpoints with higher SNP-based heritability. 67 

For example, substantial improvements are observed in East-Asian ancestry (EAS) using PRS-68 

CS compared to P+T for heart failure (HF) and chronic obstructive pulmonary disease (COPD). 69 

Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, 70 

especially for asthma which has known variation in disease prevalence across global populations. 71 

Overall, we provide lessons for PRS construction, evaluation, and interpretation using the GBMI 72 

and highlight the importance of best practices for PRS in the biobank-scale genomics era.   73 

 74 
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Introduction 78 

Population- and hospital-based biobanks are increasingly coupling genomic and electronic health 79 

record data at sufficient scale to evaluate the potential of personalized medicine1. The growth of 80 

these paired datasets enables genome-wide association studies (GWAS) to estimate increasingly 81 

precise genetic effect sizes contributing to disease risk. In turn, GWAS summary statistics can be 82 

used to aggregate the effects of many genetic markers (usually in the form of single-nucleotide 83 

polymorphisms, SNPs) to estimate individuals’ genetic predispositions for complex diseases via 84 

polygenic risk scores (PRS). As GWAS power has increased, PRS accuracy has also improved, 85 

with PRS for some traits having comparable accuracies to independent biomarkers already 86 

routinely used in clinical risk models2. Consequently, several areas of medicine have already 87 

begun investigating the potential for integrating PRS alongside other biomarkers and information 88 

currently used in clinical risk models3–5. However, evidence of clinical utility for PRS across 89 

disease areas is currently limited or inconsistent2,6–8. Furthermore, many methods have been 90 

developed to compute PRS, each with different strengths and weaknesses9–11. Thus, guidelines 91 

that delineate best practices while considering a range of real-world healthcare settings and 92 

disease areas are critically needed.  93 

Best practices for PRS are critical but lacking for a range of considerations that have been shown 94 

to contribute to variability in accuracy and interpretation. These include guidance for variable 95 

phenotype definitions and precision for both discovery GWAS and target populations, which 96 

varies with cohort ascertainment strategy, geography, environmental exposures and other 97 

common covariates12–14. Other considerations include varying genetic architectures, statistical 98 

power of the discovery GWAS, and PRS methods, which vary in which variants (generally in the 99 

form of SNPs) are included and how weights are calculated9,15. A particularly pernicious issue 100 

requiring best practices is regarding maximizing generalizability of PRS accuracy among ancestry 101 

groups16,17. Developing best practices for PRS therefore requires harmonized genetic data 102 

spanning diverse phenotypes, participants, and ascertainment strategies. 103 

To facilitate the development of best practices, we evaluate several considerations for PRS in the 104 

Global Biobank Meta-analysis Initiative (GBMI). GBMI brings together population- and hospital-105 

based biobanks developed in twelve countries spanning four different continents: North America 106 

(USA, Canada), East Asia (Japan and China), Europe (Iceland, UK, Estonian, Finland, Scotland, 107 

Norway and Netherlands) and Oceania (Australia). GBMI aggregates paired genetic and 108 

phenotypic data from >2.1 million individuals across diverse ancestries, including: ~1.4 million 109 
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Europeans (EUR), ~18,000 Admixed Americans (AMR), ~1,600 Middle Eastern (MID), ~31,000 110 

Central and South Asians (CSA), ~341,000 East Asians (EAS) and ~33,000 Africans (AFR). 111 

Biobanks have collated phenotype information through different sources including electronic 112 

health records, self-report data from epidemiological survey questionnaires, billing codes, doctors’ 113 

narrative notes, and death registries. Detailed description of each biobank is found in Zhou et 114 

al.18. 115 

Here we outline a framework for PRS analyses of multi-ancestry GWAS across multiple biobanks, 116 

as shown in Figure 1. The endpoints examined are: asthma, chronic obstructive pulmonary 117 

disease (COPD), heart failure (HF), stroke, acute appendicitis (AcApp), venous thromboembolism 118 

(VTE), gout, appendectomy, primary open-angle glaucoma (POAG), uterine cancer (UtC), 119 

abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis (IPF), thyroid cancer (ThC) and 120 

hypertrophic or obstructive cardiomyopathy (HCM), for which the phenotype definitions can be 121 

found in Zhou et al.18. Those 14 endpoints represent the pilot effort of GBMI, which greatly vary 122 

in disease prevalence. It ranges from <1% for AAA, IPF, ThC and HCM to ~6% for COPD and 123 

~9% for asthma. Some endpoints (for example, appendectomy which can be extracted from EHR 124 

procedure codes) have not been broadly studied in previous GWAS studies. By evaluating PRS 125 

across 14 endpoints (Table S1 and Table S2) and 9 biobanks, we review and explore practical 126 

considerations for three steps: genetic architecture estimation, PRS method optimization and 127 

selection, and evaluation of PRS accuracy. Our framework applies to biobank-scale resources 128 

with both homogenous and diverse ancestries. 129 

Results 130 

The diverse ancestries included in GBMI accounted for different proportions ranging from ~76.4% 131 

for EUR, 0.1% for MID, 1.0% for AMR, 1.7% for CSA, 18.9% for EAS and 1.8% for AFR. We 132 

explored the genetic architecture of 14 endpoints using GWAS summary statistics from all 133 

ancestries and EUR only in GBMI19. We used leave-one-biobank-out meta-analyzed GWAS in 134 

GBMI as our primary discovery datasets for the following PRS analyses. The ancestry 135 

compositions of discovery GWAS used in this study can be found in Table S2. 136 

Genetic architecture of 14 endpoints in GBMI 137 

We first estimated the genetic architecture of 14 endpoints based on HapMap3 SNPs (see STAR 138 

Methods). Different prediction methods vary in which SNPs are selected and which effect sizes 139 
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are assigned to them. Thus, understanding the genetic architecture of complex traits along with 140 

sample size and ancestry composition of the discovery GWAS is critical for choosing optimal 141 

prediction methods. For example, the SNP-based heritability (ℎ𝑆𝑁𝑃
2 ) bounds PRS accuracy. We 142 

used SBayesS20 to estimate ℎ𝑆𝑁𝑃
2 , polygenicity (the proportion of SNPs with nonzero effects), and 143 

the relationship between minor allele frequency (MAF) and SNP effects (i.e., a metric of negative 144 

selection, hereafter denoted as S) for the 14 endpoints in GBMI. Meta-analyses in GBMI were 145 

performed across up to 18 different biobanks on 14 endpoints using an inverse-variance weighted 146 

method as described in Zhou et al.18, including individuals from diverse ancestries. In addition to 147 

presenting results using EUR only GWAS summary statistics (EUR GWAS), we also reported 148 

estimates using meta-analysis from all ancestries (multi-ancestry GWAS). We explored whether 149 

we can reasonably use EUR-based LD reference to approximate the LD of multi-ancestry GWAS 150 

in GBMI using the attenuation ratio statistic estimated from LD score regression (LDSC) (see 151 

STAR Methods). The attenuation ratio can be used to quantify whether there was a strong LD 152 

mismatch, for which the values > 0.2, between GWAS summary statistics and the LD reference 153 

panel21. We found that the ratio of LDSC using the EUR LD reference panel for GBMI multi-154 

ancestry GWAS was not statistically larger than 0.2. Also, the values were not statistically different 155 

from those achieved using GBMI EUR GWAS. This is consistent with a previous study which has 156 

found that EUR-based LD can reasonably approximate the LD in their multi-ancestry GWAS 157 

consisting of ~75% EUR individuals22. 158 

 159 

Most diseases analyzed here had low but significant ℎ𝑆𝑁𝑃
2  and a range of polygenicity estimates 160 

(Figure 2). Note that here we reported the ℎ𝑆𝑁𝑃
2  on the liability scale (see STAR Methods). The 161 

SBayesS model failed to converge for HCM, likely because its estimated ℎ𝑆𝑁𝑃
2  was found to be 162 

not significantly different from 0 using LDSC. This could be ascribed to its known predisposing 163 

monogenic mutations, the low disease prevalence and heterogeneous subtypes19. Therefore, this 164 

endpoint was dropped from downstream analyses. We observed that the estimates were overall 165 

higher using multi-ancestry GWAS compared to EUR GWAS (Figure 2). Overall, the median 166 

estimates of SNPs with nonzero effects across 13 endpoints were 0.34% for multi-ancestry 167 

GWAS and 0.14% for EUR GWAS (p-value = 0.002, paired wilcoxon signed rank test), 168 

respectively. The corresponding median estimates for ℎ𝑆𝑁𝑃
2  were 0.051 for multi-ancestry GWAS 169 

and 0.043 for EUR GWAS (p-value = 0.002, paired wilcoxon signed rank test), respectively. The 170 

largest difference of 0.06 was found in gout. This could be due to higher ℎ𝑆𝑁𝑃
2  estimated in non-171 

EUR GWAS. For example, the estimates for ℎ𝑆𝑁𝑃
2  using EUR and EAS GWAS was 0.051 (s.e. = 172 

0.0027) and 0.088 (s.e. = 0.005), respectively. Moreover, we have also found that the estimated 173 
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effect sizes of two gout-associated loci (close to genes ALDH16A1 and SLC2A9) were different 174 

across ancestries19. Specifically, we observed that a few top gout-associated variants showed 175 

much higher allele frequencies in EAS as compared to EUR, thus resulting in larger variance 176 

explained (Figure S1). 177 

 178 

Polygenicity and ℎ𝑆𝑁𝑃
2  estimates varied greatly among different endpoints. Specifically, the ℎ𝑆𝑁𝑃

2  179 

estimates were highest for asthma and gout using multi-ancestry GWAS (ℎ𝑆𝑁𝑃
2 = 0.085, s.e. = 180 

0.0011 and ℎ𝑆𝑁𝑃
2 = 0.111, s.e. = 0.0024, respectively), while asthma was found to be much more 181 

polygenic than gout. We caution that the numeric interpretation of polygenicity depends on various 182 

factors and cannot be interpreted as the number of causal variants. For example, larger and more 183 

powerful GWAS tend to discover more trait-associated variants, thus appear to have higher 184 

polygenicity. Because we used the same set of SNPs in SBayesS analyses for all endpoints, we 185 

hence used the results as a relative measurement of the degree of polygenicity. We observed 186 

that the estimate of polygenicity for UtC using multi-ancestry GWAS was not statistically different 187 

from 0 (Wald test, p-value > 0.05/13) due to limited power observed as relatively low ℎ𝑆𝑁𝑃
2 . Overall, 188 

COPD and asthma were estimated to be the most polygenic traits, followed by HF and stroke, 189 

whereas AcApp, UtC and ThC were the least polygenic. Lastly, we observed signals of negative 190 

selection for traits including asthma (S = -0.56, s.e. = 0.05), COPD (S = -0.40, s.e. = 0.11) and 191 

POAG (S = -0.50, s.e. = 0.15) when considering using EUR GWAS, consistent with empirical 192 

findings of negative selection explaining extreme polygenicity of complex traits23.  193 

 194 

In summary, we observed largely varied key parameters of genetic architecture among 13 195 

endpoints using multi-ancestry and EUR only GWAS. We found that asthma and COPD had the 196 

highest ℎ𝑆𝑁𝑃
2  as well as polygenicity. We excluded HCM in our subsequent prediction analyses 197 

due to lower evidence of polygenicity and its non-significant ℎ𝑆𝑁𝑃
2 .  198 

Optimal prediction performance using heuristic methods depends on 199 

phenotype-specific genetic architecture 200 

We first evaluated the pruning and thresholding (P+T, p-value thresholds ranged from 5 × 10-8 to 201 

1) method using the EUR-based LD reference panel for all 13 endpoints in the UKBB and BBJ, 202 

respectively, given its widespread use and relative simplicity. Note in this study, we used leave-203 

one-biobank-out meta-analyzed GWAS as the discovery GWAS when evaluating PRS in that 204 

specific biobank (Table S2). We further explored how different factors impact the prediction 205 
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performance of P+T in diverse ancestry groups, including LD parameters (LD window sizes and 206 

LD r2 thresholds), LD reference panels (ancestry composition, sample size, and SNP density) and 207 

per-variant effective sample size (Neff) and MAF (see STAR Methods).  208 

 209 

First of all, we selected the optimal p-value threshold (the p-value threshold with highest prediction 210 

accuracy, as measured by R2 on the liability scale, 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2 , if not specified) in the tuning cohorts 211 

and evaluated the accuracies in the test cohorts (see STAR Methods). Specifically, we found that 212 

for UKBB with diverse ancestries, using ancestry-specific tuning cohorts provided better 213 

prediction performance as compared to that using EUR-based tuning cohorts (Figure S2). We 214 

found that the optimal p-value threshold differed considerably between various endpoints (Figure 215 

S3 and Table S3). This pattern is found to be related to polygenicity of studied endpoints; but it 216 

is also due to a combination of factors such as the GWAS discovery cohort sample size, disease 217 

prevalence, trait-specific genetic architecture, and genetic and environmental differences 218 

between discovery and target ancestries24. For example, when the optimal p-value was 219 

determined in the UKBB-EUR subset, the less polygenic traits of ThC (106 variants) and AcApp 220 

(17 variants) showed highest accuracy at p-value thresholds of 5 × 10-5 and 5 × 10-7, respectively, 221 

while for the more polygenic traits of stroke (115,609 variants), HF (115,741 variants), asthma 222 

(7,858 variants) and COPD (29,751 variants) achieved the highest accuracy when including SNPs 223 

with p-value less than 1, 1, 0.01 and 0.1, respectively. To investigate whether ancestries affect 224 

the optimal p-value threshold, we replicated our analysis in the BBJ (Figure S3). In the BBJ, p-225 

value thresholds of 5 × 10-5, 0.01 and 5 × 10-5 presented best performance for gout, stroke and 226 

HF, respectively. Consistent with previous studies, these results suggest that optimal prediction 227 

parameters (here p-value threshold specifically) for P+T appear to be dependent on the ancestry 228 

of the target data among other factors25,26. Further, we found that for more polygenic traits 229 

including asthma, COPD, stroke and HF, prediction was more accurate with more variants in the 230 

PRS (i.e., a less significant threshold) than using the genome-wide significance threshold (p-value 231 

< 5 × 10-8). On the contrary, less polygenic traits showed no or modest improvement with less 232 

stringent p-value thresholds, especially for traits such as gout which has trait-associated SNPs 233 

with large effects. However, these trends were less obvious in the BBJ which might be attributed 234 

to the small proportion of EAS included in the discovery GWAS. One caveat we noted was that 235 

fixed LD parameters of P+T were used, thus the results might be impacted by additional 236 

optimization of those parameters, which we will further explore below.  237 

 238 
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We found that further optimizing LD parameters, including LD window size and LD r2 thresholds, 239 

of P+T did not contribute to significant improvement of accuracy across endpoints. Specifically, 240 

we observed that the median accuracies with versus without LD parameter optimization were of 241 

0.018 and 0.015, respectively (Figure S4). However, there was slight but statistically significant 242 

accuracy improvement in EUR for asthma (~0.006). This might be due to more stratified signals 243 

being tagged, which results in noise reduction of the predictor. As compared to using fixed LD 244 

parameters, we found similar relationships between polygenicity and optimal p-value thresholds 245 

when optimizing LD parameters in the UKBB. Specifically, the optimal p-value thresholds were 246 

overall less stringent for more polygenic traits and more stringent for less polygenic traits. For 247 

example, the accuracy using LD parameter optimization in the UKBB-EUR was highest with the 248 

p-value thresholds of 0.5, 1, 0.1 and 0.2 for the highly polygenic traits of stroke, HF, asthma and 249 

COPD, respectively. In contrast, the optimal p-value thresholds of 5 × 10-5 and 5 × 10-7 were 250 

observed for less polygenic traits of ThC and AcApp, respectively. To balance the computational 251 

burden and signal-to-noise ratio, we used an LD window size of 250Kb and LD r2 of 0.1 as before. 252 

We repeated our analyses using genome-wide common SNPs and compared the prediction 253 

accuracy with that using HapMap3 SNPs only (Figure S4 and Table S3). There were no 254 

significant improvements in prediction accuracies using a denser SNP set, which suggests that 255 

HapMap3 SNP set represents genome-wide common SNPs well. Specifically, we found the 256 

accuracies in EUR for the most polygenic traits, asthma (~0.006), COPD (~0.005) and HF 257 

(~0.004), to be slightly improved using HapMap3 SNPs. Moreover, we found that the sample sizes 258 

of the LD reference panel had little impact on P+T performance (Figure S5); but the parameters 259 

described above including LD window sizes and LD r2 thresholds had a larger impact on accuracy. 260 

We also showed that using 1KG-EUR as the LD reference panel performed well compared to 261 

using other ancestral populations with similar sample sizes in the 1KG dataset, which could be 262 

explained by the overrepresentation of EUR participants (~76.4%) in GBMI (Figure S6 and Table 263 

S3). We further ran LDSC using the EUR-based LD reference panel on leave-specific-biobank-264 

out GWAS in GBMI to estimate the attenuation ratio statistic (see STAR Methods). Similar to 265 

previous findings, we found that even in leave-UKBB-out GWAS with the lowest EUR proportion 266 

(Table S2), its LD information can be well approximated using the EUR reference panel, which 267 

was reflected by the values of ratio not statistically larger than 0.2 and not statistically different 268 

from EUR GWAS in GBMI. We therefore used 1KG-EUR as the LD reference panel for all 269 

subsequent P+T analyses. But the choice of external LD reference panel for multi-ancestry GWAS 270 

needs further exploration especially when the discovery GWAS becomes more diverse.  271 

 272 
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Finally, we investigated the impact of per-variant effective sample size heterogeneity. Since GBMI 273 

consists of a number of biobanks with diverse ancestries, the number of samples used for meta-274 

analysis was notably heterogeneous among the variants; the majority of the variants in the GWAS 275 

meta-analysis had only a limited number of effective samples (Neff) (Figure 3-A). Therefore, although 276 

sample size heterogeneity is not usually considered for PRS, it may confound the PRS prediction 277 

accuracy in the case of global biobank collaborations. By filtering the variants according to Neff per-278 

variant (i.e., Neff larger than 50% or 80% thresholds of the maximum Neff of the trait of interest, see 279 

STAR Methods), we observed that the 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  increased substantially for less stringent thresholds 280 

(p-value > 5 × 10-5) in the UKBB (Figure S7-A). As a representative example, the largest 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  281 

(0.034) was obtained for asthma when the p-value threshold was 5 × 10-3, whereas the 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  was 282 

6.6 × 10-3 at the threshold without Neff filtering (Figure 3-B and Table S4). Next, we investigated 283 

whether Neff filtering could be substituted by other filtering criteria. Although excluding variants with 284 

MAF less than 0.1 partially compensated for PRS transferability, the improvement of Neff filtering in 285 

𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  was still observed (Figure S7-B). Heterogeneity in Neff might be confounding especially in 286 

multi-ancestry meta-analyses because it can be distorted by heterogeneous allele frequencies and 287 

imputation quality spectra among ancestries. Indeed, as rarer variants tend to be more ancestry-288 

specific, variants with low Neff
  tend to be unique to specific ancestries (Figure 3-C). Of note, the 289 

dependency of 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  on the Neff was, however, largely rectified for most of the traits by using only 290 

HapMap3 SNPs (Figure S7-C). Given that the 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  for HapMap3 SNPs was comparable to that 291 

for genome-wide SNPs (Figure S4), filtering to HapMap3 SNPs might be suitable for meta-analysis 292 

of diverse populations. On the other hand, HapMap3 SNPs generally have good imputation quality, 293 

although a recent study shows that relaxing imputation INFO score from 0.9 to 0.3 has negligible 294 

impacts on prediction accuracy9. We replicated the Neff filtering in BBJ and confirmed that improved 295 

𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  attributable to Neff filtering was also observed (Figure S7-D). Although the effect of the Neff 296 

filtering was diminished by the MAF filtering in relatively stringent thresholds (p-value < 5 × 10-4), the 297 

effect was still observed in the other thresholds (Figure S7-E). Using only HapMap3 SNPs almost 298 

completely reduced the dependency of 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  on the Neff (Figure S7-F). 299 

 300 

Overall, we found the prediction performance of P+T to be affected by a combination of factors, with 301 

p-value thresholds showing larger effects as compared to other parameters, such as LD window sizes, 302 

LD r2 thresholds, and variant filtering by Neff or MAF. Moreover, the optimal p-value threshold varied 303 

substantially between different endpoints in GBMI. We also demonstrated that restricted use of 304 

HapMap3 SNPs showed comparable or better prediction accuracy relative to using genome-wide 305 
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common SNPs for P+T, particularly for GWAS from diverse cohorts as in GBMI with genetic variants 306 

showing considerable heterogeneity in effective sample sizes.  307 

Bayesian approaches for calculating PRS improve accuracy  308 

We also evaluated fully genome-wide polygenic risk scores, by first fine-tuning the parameters in 309 

PRS-CS. We ran PRS-CS using both the grid model and automated optimization model (referred 310 

to as auto model), the former of which specifies a global shrinkage parameter (phi, in which 311 

smaller values indicate less polygenic architecture and vice versa for larger values), with 1KG-312 

EUR as the LD reference panel. We note that the optimized phi parameter with highest prediction 313 

accuracy in the grid model differed among traits (Figure S8). Specifically, we found that for more 314 

polygenic traits (as estimated using SBayesS) including asthma, COPD and stroke (Figure 2), 315 

the optimal phi parameter was 1 × 10-3 in EUR (Figure S8). There was no significant difference 316 

between prediction accuracy using the optimal grid model versus auto model (Figure S8), which 317 

suggests PRS-CS can learn the phi parameter from discovery GWAS well when its sample size 318 

is considerably large. Therefore, we hereafter used the auto model because of its computational 319 

efficiency. Across target ancestral populations in the UKBB, PRS from EUR-based LD reference 320 

panels showed significantly higher or comparable prediction accuracies compared to PRS using 321 

other ancestry-based LD reference panels (Figure S9-A). This result suggests that it is 322 

reasonable to use a EUR-based LD reference panel in GBMI largely because EUR ancestry 323 

constitutes the largest proportion of GWAS participants (~76.4%). Note that we also compared 324 

the prediction accuracy of LD reference panels derived from UKBB-EUR, which has a much larger 325 

sample size, against 1KG-EUR and found no significant difference (Figure S9-B). These results 326 

suggest that PRS-CS is not sensitive to the sample size of the LD reference panel, which is 327 

consistent with previous findings27.  328 

 329 

We then compared the optimal prediction accuracy of P+T versus the PRS-CS auto model in the 330 

UKBB and BBJ and found that PRS-CS showed overall better prediction performance for traits 331 

with higher ℎ𝑆𝑁𝑃
2  but no or slight improvements for traits with lower ℎ𝑆𝑁𝑃

2  (Figure 4). Specifically, 332 

the highest significant improvement of PRS-CS relative to that of P+T in EUR was observed for 333 

HF, of 60.9%, followed by COPD (53.2%) and asthma (48.8%). Substantial increments were 334 

observed for HF (105.2%), COPD (102.5%) and asthma (60.9%) in EAS. 45.8% and 48.1% 335 

improvements were shown for asthma in CSA and AFR, respectively. P+T saw better prediction 336 

performance over PRS-CS for a few trait-ancestry comparisons, however, such improvement was 337 

not statistically significant. Compared with P+T, which requires tuning p-value thresholds and is 338 
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affected by variant-level quality controls such as Neff, there is no need to tune prediction parameters 339 

using the PRS-CS auto model, thus reducing the computational burden.  340 

 341 

Overall, after examining 13 disease endpoints, these results favor the use of PRS-CS for 342 

developing PRS from multi-ancestry GWAS of primarily European samples, which is also 343 

consistent with previous findings that Bayesian methods generally show better prediction 344 

accuracy over P+T across a range of different traits9,27. The practical considerations about the 345 

two models, PRS-CS and P+T, used in this study, are shown in Table S5.  346 

PRS accuracy is heterogeneous across ancestries and biobanks 347 

For each of the participating biobanks, we used leave-one-out meta-analysis as the discovery 348 

GWAS to estimate the prediction performance of PRS in each biobank (see STAR Methods). The 349 

disease prevalence and effective sample size of each biobank is shown in Figure S10. Generally, 350 

the PRS prediction accuracy of different traits increased with larger ℎ𝑆𝑁𝑃
2  (Figure 5 and Table 351 

S6). For example, the average R2 on the liability scale across biobanks (hereafter denoted as 352 

𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, see STAR Methods) in EUR ranged from <1.0% for AcApp, appendectomy, stroke, UtC 353 

and IPF, 1.0% for HF, ~2.2% for COPD and ThC to 3.8% for gout and 4.6% for asthma. Notably, 354 

accuracy was sometimes heterogeneous across biobanks within the same ancestry for some 355 

traits. Specifically, the 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  for asthma in ESTBB and BioVU was significantly lower than 356 

𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, which might be attributable to between-biobank differences such as recruitment 357 

strategy, phenotyping, disease prevalence, and environmental factors. The prediction accuracy 358 

was generally lower in non-European ancestries compared to European ancestries, especially in 359 

African ancestry, which is mostly consistent with previous findings28–30 with a few exceptions. For 360 

example, we observed comparable prediction accuracy for gout in EAS relative to that in EUR, 361 

which could be reflected by large effective sample sizes and some gout-associated SNPs with 362 

large effects exhibiting higher allele frequencies in EAS (Figure S1). For example, the MAFs of 363 

gout top-associated SNP, rs4148157, were 0.073 in 1KG-EUR and 0.25 in 1KG-EAS, 364 

respectively, and the phenotypic variance explained by that SNP in EAS (8.3%) was more than 365 

twice as high as that in EUR (3.0%). The accuracy of PRS to predict asthma risks in AMR was 366 

found to be significantly higher than that in EUR, which could be due to the small sample size in 367 

AMR (Table S6). Thus, further validation is needed in larger AMR population cohorts.  368 

 369 
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The ability of PRS to stratify individuals with higher disease risks was also found to be 370 

heterogeneous across biobanks and ancestries as shown in Figure 6 and Table S7. We showed 371 

that the PRS distribution across different biobanks slightly varied. Specifically, we calculated the 372 

absolute difference of median PRS in each decile for each endpoint between biobanks for cases 373 

and controls, separately, and found that the largest absolute differences were 0.06 and 0.21 for 374 

stroke controls and stroke cases, respectively (Figure S11). This justifies the comparison of odds 375 

ratios (ORs) in terms of relative risks. The ORs between the top 10% and bottom 10% were more 376 

heterogeneous between biobanks and also higher relative to other comparisons (e.g., top 10% 377 

vs middle and other strata). This is consistent with previous studies where OR reported between 378 

tails of the PRS distribution is generally inflated relative to those between top ranked PRS and 379 

general populations11. We measured the variation of OR between biobanks using the coefficient 380 

of variation of OR (CoeffVarOR, see STAR Methods). The largest CoeffVarOR in EUR was observed 381 

for ThC of 0.46 between top 10% and bottom 10% as compared to 0.27 and 0.23 for top 10% vs 382 

middle and other, respectively. We recapitulated the findings using 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  that ORs were overall 383 

higher for traits with higher ℎ𝑆𝑁𝑃
2  and also higher in EUR than non-EUR ancestries, which is 384 

expected as the two accuracy metrics are interrelated. For example, the averaged ORs across 385 

biobanks weighted by the inverse variance in EUR (see STAR Methods) for gout were 4.6, 2.4 386 

and 2.2 for the top 10% vs bottom 10%, middle and other strata, separately. The corresponding 387 

estimates in EUR for stroke were 1.6, 1.3 and 1.3, respectively. Across ancestries, the average 388 

OR of asthma between the top 10% and bottom 10% ranged from 4.1 in EUR to 2.4 in AFR.   389 

 390 

Overall, the predictive performance of PRS measured by 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  and OR was found to be 391 

heterogeneous across ancestries. This heterogeneity was also presented across biobanks for 392 

traits such as asthma which is considered as a syndrome comprising heterogeneous diseases31. 393 

GBMI facilitates improved PRS accuracy compared to previous studies 394 

GBMI resources might be expected to improve prediction accuracy due to large sample sizes and 395 

the inclusion of diverse ancestries. To explore this, we compared the prediction accuracy 396 

achieved by GBMI versus previously published GWAS using the same pipeline to run PRS-CS. 397 

As shown in Figure 7 and Figure S12, the accuracy improvements were most obvious for traits 398 

with larger ℎ𝑆𝑁𝑃
2  but there was no or slight improvement for traits with lower ℎ𝑆𝑁𝑃

2 . Specifically, we 399 

calculated the absolute improvement of GBMI relative to that using previously published GWAS 400 

and found that on average across biobanks, the largest improvements of 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in EUR were 401 
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0.033 for asthma, 0.031 for gout, 0.019 for ThC and 0.017 for COPD, whilst the corresponding 402 

improvements of AUC on average (AUC̅̅ ̅̅ ̅̅ ) were 0.051, 0.078, 0.078 and 0.041, respectively. 403 

Substantial improvements were also observed for gout in EAS (𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: 0.037, AUC̅̅ ̅̅ ̅̅ : 0.090), for 404 

asthma in CSA (𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: 0.026, AUC̅̅ ̅̅ ̅̅ : 0.060), EAS (𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: 0.017, AUC̅̅ ̅̅ ̅̅ : 0.047) and AFR 405 

(𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅0.009, AUC̅̅ ̅̅ ̅̅ : 0.034), and for ThC in EAS (𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: 0.014, AUC̅̅ ̅̅ ̅̅ : 0.080) and AFR (𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: 406 

0.016, AUC̅̅ ̅̅ ̅̅ : 0.108). However, PRS accuracy was significantly higher for published GWAS relative 407 

to the current GBMI for POAG in EUR and AFR, and COPD in the specific case of Lifelines 408 

biobank. We referred to the datasets included in the public GWAS of POAG and found that 409 

individuals from diverse datasets of EUR and AFR populations were also part of the discovery 410 

dataset, thus we cannot rule out the possibility of sample overlapping or relatedness between the 411 

discovery and target datasets for these populations. This suggests that the PRS evaluation may 412 

be biased upwards from the prior GWAS for POAG. Also, the phenotypes of POAG across 413 

different biobanks are likely more heterogeneous in GBMI than targeted case-control studies18,32. 414 

The meta-analysis of GBMI with International Glaucoma Genetics Consortium (IGGC) did not 415 

lead to substantially improved prediction performance32. Another concern might be the 416 

disproportional case/control ratio of POAG in GBMI, of ~27,000 cases and ~1.4M controls, thus 417 

POAG-related phenotypes with shared genetics in the controls or possible uncontrolled ancestry 418 

differences between cases and controls might confound the GBMI GWAS. A very high 419 

heterogeneity for phenotype definitions is also found for COPD, however this does not explain 420 

why one biobank alone presents this pattern; a specific environmental or population effect not 421 

considered in the broad analysis might affect this particular observation.  422 

 423 

To boost statistical power, we can meta-analyze GBMI GWAS with other non-overlapping 424 

cohorts as shown in other GBMI working groups33–35. However, we should note that more 425 

heterogeneity might be introduced from different resources such as population structure and 426 

phenotype definitions, which we cannot control with summary statistics data and that could 427 

exacerbate the heterogeneous performance of PRS across target populations. On the other 428 

hand, GBMI is open to more cohorts and has been continuously working on integrating more 429 

datasets. 430 

  431 
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Discussion 432 

The GBMI resource is notable in its collection of phenotypes studied and range of participating 433 

cohorts from multiple ancestry groups; it has therefore offered a unique opportunity to 434 

comprehensively evaluate and develop guidelines regarding the effects of multi-ancestry and 435 

heterogeneous GWAS discovery data, polygenicity, and PRS methods on prediction performance 436 

in diverse target cohorts. In this study, we have used the unique GBMI resource consisting of 437 

multi-ancestry GWAS for multiple disease endpoints with varying genetic architectures and 438 

prevalences across diverse populations to develop and evaluate PRS.  Indeed, we found overall 439 

across a range of phenotypes and ancestries that using the large-scale meta-analysis from GBMI 440 

significantly improved PRS accuracy compared to previous studies with smaller sample sizes and 441 

less diverse cohorts. While some previous studies have benchmarked PRS methods and 442 

accuracies, most have been based on relatively homogeneous GWAS discovery cohorts or 443 

evaluated for specific phenotypes3,9,26,36. Even when assessing the portability of PRS across 444 

ancestries, most evaluations have included ancestrally diverse target cohorts but still relatively 445 

homogeneous discovery cohorts12,13,37. Thus, based on the results of our analyses using GBMI, 446 

we have provided additional lessons and guidelines for developing PRS with multi-ancestry 447 

discovery data for different endpoints (Figure S13). We have organized these best practices 448 

according to 1) characteristics of the discovery GWAS, 2) PRS model fitting, and 3) the target 449 

cohort.  450 

 451 

First, the GWAS discovery cohort provides the prerequisite input for polygenic score calculations 452 

and interpretation, namely how phenotypes are ascertained and in which populations, which 453 

SNPs to include, and which effect sizes will be used. We recommend that standard quality 454 

controls should be performed with more caution when considering multi-ancestry discovery 455 

GWAS. Specifically, we suggest filtering variants based on the per-variant effective sample size 456 

(Neff) and MAF as they show considerable heterogeneity across datasets and ancestries in our 457 

discovery GWAS. When we filtered out variants with extremely small Neff in our P+T analyses, 458 

and in particular when using HapMap3 SNPs, PRS prediction performance improved. As noted 459 

in Zhou et al.19, the allele frequencies of variants in GBMI meta-analyzed GWAS were compared 460 

with those in gnomAD using Mahalanobis distance and flagged if they were three standard 461 

deviations away from the mean. We recommend computing such statistics and filtering with this 462 

information, or if infeasible, restricting to using only HapMap3 variants.  463 

 464 
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Given the significant improvements in PRS accuracy with GBMI discovery GWAS over previous 465 

studies with smaller sample sizes and less diversity, we recommend using the largest and most 466 

diverse GWAS discovery cohort available when constructing PRS, even if it matches the ancestry 467 

composition of the target cohort slightly less well than a smaller GWAS. Overall, traits with higher 468 

SNP-based heritability showed greater improvement compared to those with lower SNP-based 469 

heritability. This indicates that PRS performance will continually benefit from larger sample sizes 470 

and more diverse populations. However, further research is needed to understand more 471 

concretely how the composition of underrepresented populations, including specific ancestries 472 

and varying sample sizes, can be modeled alongside current Eurocentric GWAS to best facilitate 473 

PRS accuracy and generalizability. 474 

 475 

Second, when fitting PRS models, important choices include which PRS construction methods to 476 

use, how to fine-tune hyperparameters, and which LD reference panels to use. So far, PRS 477 

models that use GWAS summary statistics have been favored over those that use individual-level 478 

data due to their computational efficiency and data access restrictions. These models have been 479 

comprehensively reviewed recently10,38. In this study, we therefore explored the prediction 480 

performance of two widely used PRS construction methods, P+T and PRS-CS. We paired the 481 

results of these methods with prior knowledge of trait-specific genetic architecture estimates from 482 

SBayesS. The best predictor for P+T is often obtained by fine-tuning the p-value thresholds in a 483 

validation dataset, while other LD related parameters, such as LD r2 and LD window size, are 484 

usually arbitrarily specified. Here, we found that the prediction accuracy of P+T was much less 485 

sensitive to different LD-related parameters compared to various p-value thresholds. Moreover, 486 

the optimal p-value threshold varied across phenotypes, likely because of trait-specific genetic 487 

architecture, especially the degree of polygenicity measured by SBayesS. However, differences 488 

in discovery GWAS and target dataset such as sample sizes, phenotype definition, disease 489 

population prevalence and population characteristics could also contribute to this variation. When 490 

analyzing PRS-CS results, we validated a previous finding that the auto model, that does not 491 

require post-hoc tuning of the proportion of SNPs with non-zero effects (phi), showed similar 492 

prediction performance relative to the more computationally intensive grid model, which requires 493 

determining the optimal phi parameter in an independent tuning cohort27.  494 

 495 

We also recommend using prior knowledge and empirical measurements of the genetic 496 

architecture of studied phenotypes to choose specific types of PRS models. In this study, we 497 

evaluated the effects of trait-specific genetic architecture on PRS performance using estimates 498 
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from SBayesS. Generally, traits with higher SNP-based heritability, such as asthma and gout, 499 

showed greater improvement with the GBMI discovery data compared to those with lower SNP-500 

based heritability, such as acute appendicitis (AcApp). Trait-specific architecture affected both the 501 

choice of method and optimal hyper-parameters. For example, extremely polygenic traits are 502 

more suitable for an infinitesimal model or Bayesian models that are adaptive to the trait genetic 503 

architecture. The specific model hyper-parameters are also affected by trait genetic architecture. 504 

For example, the optimal p-value threshold of P+T might be more stringent for less polygenic 505 

traits but less stringent for highly polygenic traits.  506 

 507 

Another decision point in fitting PRS models is regarding which LD reference panel to use when 508 

multi-ancestry GWAS discovery and target populations are available. An in-sample LD reference 509 

panel that spans the full discovery cohort is optimal but rarely available. Here, we have shown 510 

that EUR-based LD reference panels can reasonably approximate the LD of GBMI GWAS. 511 

However, choosing LD reference panels that mirrors the ancestry composition of the discovery 512 

GWAS when in-sample LD reference panels are not available is ideal. For convenience, if one 513 

ancestry is dominant in the multi-ancestry GWAS, we suggest using that ancestry-matched 514 

reference panel. The attenuation ratio statistic estimated from LDSC can further be used as a 515 

measure to quantify the degree of LD mismatch between discovery GWAS and LD reference 516 

panels22. When ancestry proportions are relatively evenly distributed, we and others have found 517 

that using LD reference panels with ancestry proportions that match the discovery GWAS could 518 

provide better prediction performance especially for less polygenic traits with large effect variants 519 

(unpublished work), such as lipid traits39. We also found that prediction performance can be 520 

improved when using ancestry-matched tuning cohorts for PRS construction to fine-tune hyper-521 

parameters and avoid overfitting, such as P+T and the PRS-CS grid models explored in this study. 522 

While other studies have also explored options such as pseudo-validation when no additional 523 

tuning cohort is available40,41 524 

 525 

Third, the practical considerations for target populations involved in PRS analyses are quite 526 

consistent between using homogenous GWAS and multi-ancestry GWAS. In this study, we used 527 

biobanks with various ancestry compositions and recruitment strategies as the target cohorts19. 528 

For example, BBJ, BioVU and MGI are hospital-based biobanks whereas others are population-529 

based or have mixed enrollment strategies, which can impact phenotype precision or 530 

ascertainment bias and therefore heritability. UKBB, MGI and BioVU have diverse ancestries 531 

while others primarily consist of one ancestry (either European or East-Asian participants). The 532 
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performance of PRS in different target populations can also be affected by the ancestry 533 

proportions in the discovery GWAS and precision of phenotype definition aside from biobank-534 

specific factors (e.g., environmental factors), which warrants further exploration. We therefore 535 

recommend considering those factors and reporting PRS distribution statistics (e.g., median PRS) 536 

and accuracy metrics when benchmarking the prediction performance between different PRS 537 

predictors. More reporting standards about PRS models have been well-documented in PGS 538 

Catalog36.  539 

 540 

Related to the target cohorts, we also found that the prediction performance showed great 541 

heterogeneity across biobanks and ancestries. Because PRS are only intended to capture genetic 542 

factors, other considerations such as environmental exposures and demographic history may 543 

impact the predictive power of PRS within and across ancestries, with recommendations for how 544 

to model these alongside PRS an open question for future research and methods development. 545 

For example, we found that the 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  in OHS was overall higher than in other biobanks, which 546 

may be attributed to the more complex relatedness structure in this founder population. Notably, 547 

the phenotype definitions, recruitment strategy and disease prevalence also vary to different 548 

extents across the biobanks studied here. 549 

 550 

We note a few limitations in our study. First, we chose 1KG-EUR as the LD reference panel 551 

because data security practices often preclude the use of individual-level GWAS data across 552 

analytical teams. Although we have shown that the EUR-based LD reference panels can 553 

reasonably approximate the LD of GBMI GWAS studied here, it still could affect SNP effect size 554 

estimates and thus prediction performance. Further efforts are required to provide more 555 

appropriate LD reference panels. For example, utilizing the large-scale UKBB with individual-level 556 

genotypes to construct a panel with matched ancestry proportions to the discovery GWAS has 557 

been used in a recent study39. However, early explorations have shown that using proportional 558 

LD reference panels generally achieves similar prediction performance as using EUR-based 559 

reference panels when EUR is primarily dominant in the multi-ancestry GWAS (unpublished 560 

work). Also, sharing LD matrices from participating biobanks without accessing individual-level 561 

data would be another alternative to construct an in-sample LD matrix. On the other hand, 562 

individual-level based PRS construction methods across large-scale biobanks without relying on 563 

LD reference panels are also promising. Such methods could potentially benefit from secure 564 

large-scale GWAS across multiple datasets. For example, Blatt et al.42 have used homomorphic 565 

encryption to establish a privacy-preserving framework to perform GWAS and decrypt the results 566 
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for sharing through a project coordinator. Second, we have focused on common SNPs, 567 

specifically HapMap3 SNPs for PRS-CS. As a result, information from rarer variants missing in 568 

the LD reference panel was not captured in other non-European ancestries, which may explain a 569 

small fraction of the loss of accuracy across populations. Third, although a harmonized analysis 570 

framework was developed for GBMI, such as phenotype definitions, ancestry assignments, and 571 

PRS construction, there remains a multitude of factors that may contribute to heterogeneous 572 

accuracy across both biobanks and ancestries. These include, but are not limited to, phenotype 573 

precision, cohort-level disease prevalence, and environmental factors. Last, we evaluated PRS 574 

predictive performance using multi-ancestry GWAS but comparisons with single-ancestry GWAS 575 

at sufficient scale would enable us to better understand the specific contributions of ancestry 576 

diversity and increasing sample size especially for under-represented ancestries, which also 577 

serves as a future direction. 578 

 579 

The GBMI resource constitutes remarkable progress in expanding the number of endpoints and 580 

ancestry groups studied, laying the groundwork for several future directions for exploration. For 581 

example, PRS construction methods that model GWAS summary statistics alongside LD 582 

information from multiple ancestries have shown promising accuracy improvements for some 583 

traits16,43, but statistical methods are insufficient for equitable accuracy without simultaneous 584 

progress in generating large-scale diverse data, as early investigation into one of these methods 585 

has yielded marginal improvement in both European and non-European ancestries for asthma in 586 

GBMI44. In addition to multi-ancestry GWAS, sex-stratified GWAS in GBMI also provides 587 

opportunities to explore the role of sex-specific effects as well as impacts from the sample size 588 

ratio of males/females on prediction performance of PRS across biobanks. Beyond genetic 589 

effects, biobank-specific risk factors and environmental exposures provide further opportunities 590 

to better understand the heterogeneity in PRS accuracy that we have identified across biobanks 591 

and ancestries45,46. This will be extremely important as previous work has shown that prediction 592 

performance differences between target cohorts are not likely to be reduced using various PRS 593 

construction methods9. Finally, extending these collaboration efforts to more biobanks in the 594 

future, particularly those including recently admixed populations, will bring more resolution into 595 

those effects that are biobank-specific and ancestry-specific. Studies in recently admixed 596 

populations show that GWAS power can be improved by utilizing local ancestry-specific SNP 597 

effect estimates and thus have the potential to benefit genetic prediction accuracy and 598 

generalizability, particularly for less polygenic traits47,48,49. Altogether, these initiatives hold great 599 
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promise for improving transferability of PRS across biobanks and ancestries by harnessing the 600 

phenotypic richness and diversity present in different biobanks. 601 
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Figure Legends 635 

Figure 1. Overview of the study framework. 636 

Figure 2. Genetic architecture of endpoints in GBMI. We reported the estimates from 637 

using meta-analyzed GWAS from all ancestries (labeled as All ancestries) and European 638 

only (labeled as EUR), respectively. The phenotypes on the y-axis are ranked based on 639 

the SNP-based heritability estimates using meta-analysis from all ancestries. Note the 640 

SNP-based heritability estimates were transformed on the liability scale. The vertical 641 

dashed lines in each panel indicate the corresponding median estimates across 13 642 

endpoints. The results for hypertrophic or obstructive cardiomyopathy (HCM) are not 643 

presented. Abbreviations: Europeans (EUR), chronic obstructive pulmonary disease 644 

(COPD), heart failure (HF), acute appendicitis (AcApp), venous thromboembolism (VTE), 645 

primary open-angle glaucoma (POAG), uterine cancer (UtC), abdominal aortic aneurysm 646 

(AAA), idiopathic pulmonary fibrosis (IPF), thyroid cancer (ThC). 647 

Figure 3. Sample size heterogeneity affects PRS prediction accuracy for P+T. A) 648 

the distribution of effective sample sizes (Neff) for asthma as a representative trait. B) 649 

predictive performance of P+T for European (EUR) samples in the UK Biobank (UKBB). 650 

The R2 for asthma is shown as a representative result. Full results are shown in Figure 651 

S7 and Table S3. C) the ratio of Neff of EUR compared with Neff of all samples for asthma. 652 

Figure 4. Prediction performance using P+T versus that using PRS-CS. The 653 

phenotypes are ranked based on the SNP-based heritability as shown in Figure 2 654 

(indicated by the dashed line) estimates using all ancestries. Only trait-ancestry pairs with 655 

significant accuracies in both P+T and PRS-CS are presented. The prediction accuracy 656 

in P+T estimated in the test cohort based on the optimal p-value thresholds fine-tuned in 657 

the validation cohort. The auto model was used for PRS-CS. Abbreviations: Europeans 658 

(EUR), Admixed Americans (AMR), Middle Eastern (MID), Central and South Asians 659 

(CSA), East Asians (EAS) and Africans (AFR), chronic obstructive pulmonary disease 660 

(COPD), heart failure (HF), acute appendicitis (AcApp), venous thromboembolism (VTE), 661 

primary open-angle glaucoma (POAG), uterine cancer (UtC), abdominal aortic aneurysm 662 

(AAA), idiopathic pulmonary fibrosis (IPF), thyroid cancer (ThC). 663 
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 664 

Figure 5. Prediction performance of PRS-CS across biobanks and ancestries. The 665 

phenotypes on the y-axis were ranked by the SNP-based heritability using all ancestries 666 

as shown in Figure 2. Only the significant results were shown. Data for all trait-ancestry 667 

pairs in each biobank are provided in Table S6. Note that we removed the estimates in 668 

AMR and MID due to limited information as a result of small sample sizes. Abbreviations: 669 

Europeans (EUR), Admixed Americans (AMR), Middle Eastern (MID), Central and South 670 

Asians (CSA), East Asians (EAS) and Africans (AFR), chronic obstructive pulmonary 671 

disease (COPD), heart failure (HF), acute appendicitis (AcApp), venous 672 

thromboembolism (VTE), primary open-angle glaucoma (POAG), uterine cancer (UtC), 673 

abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis (IPF), thyroid cancer 674 

(ThC). 675 

Figure 6. The odds ratio (OR) between different PRS strata for endpoints in GBMI. 676 

The dashed line indicates OR=1. Only significant trait-ancestry specific OR was reported, 677 

with p-value < 0.05. The full results are shown in Table S7. The averaged OR was 678 

calculated using the inverse-variance weighted method (see STAR Methods). PRS was 679 

stratified into deciles with the first decile (bottom 10%) used as the referenced group. The 680 

phenotypes were ranked based on SNP-based heritability estimates using all ancestries 681 

(see Figure 2). Abbreviations: Europeans (EUR), Admixed Americans (AMR), Middle 682 

Eastern (MID), Central and South Asians (CSA), East Asians (EAS) and Africans (AFR), 683 

chronic obstructive pulmonary disease (COPD), heart failure (HF), acute appendicitis 684 

(AcApp), venous thromboembolism (VTE), primary open-angle glaucoma (POAG), 685 

uterine cancer (UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis 686 

(IPF), thyroid cancer (ThC). 687 
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Figure 7. The prediction performance and ancestry compositions of GBMI versus 688 

previously published GWAS. A) The ancestry compositions of GBMI and referenced 689 

GWAS. The label for biobanks in the x-axis indicated the leave-one-out-biobank meta-690 

analyzed GWAS in GBMI. The previously published GWAS was labeled as Referenced. 691 

B) The comparison of AUC between GBMI and referenced GWAS. The AUC was 692 

calculated by fitting PRS only. The phenotypes in A) were ranked based on the effective 693 

sample sizes from all ancestries. The phenotypes in B) were ranked by the SNP-based 694 

heritability estimates from all ancestries. Note that we removed the estimates in AMR and 695 

MID due to limited information as a result of small sample sizes. The full results are shown 696 

in Table S4. Abbreviations: Europeans (EUR), Admixed Americans (AMR), Middle 697 

Eastern (MID), Central and South Asians (CSA), East Asians (EAS) and Africans (AFR), 698 

chronic obstructive pulmonary disease (COPD), heart failure (HF), acute appendicitis 699 

(AcApp), venous thromboembolism (VTE), primary open-angle glaucoma (POAG), 700 

uterine cancer (UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis 701 

(IPF), thyroid cancer (ThC).  702 

 703 

 704 

STAR Methods 705 

Datasets and quality control 706 

Discovery datasets: For each of 14 endpoints, we used GWAS summary statistics from both GBMI 707 

and public datasets with summary statistics available in GWAS Catalog if applicable (Table S1 708 

and Table S2) as the discovery dataset. We filtered out SNPs with ambiguous variants, tri- and 709 

multi-allelic variants and low imputation quality (imputation INFO score < 0.3). For the GBMI 710 

discovery datasets, leave-one-biobank-out meta-analysis using the inverse-variance weighted 711 

meta-analysis strategy was applied18. 712 

 713 

Target datasets: We used 9 biobanks, i.e., BioBank Japan (BBJ)50, BioVU51, Lifelines52, UK Biobank 714 

(UKBB)53, Ontario Health Study (OHS)54, Estonian Biobank (ESTBB)55, FinnGen, Michigan 715 

Genomics Initiative (MGI)56 and Trøndelag Health Study (HUNT)57, as the target datasets, which 716 

were independent from the datasets included in the discovery GWAS. Brief descriptions about 717 
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these biobanks can be found in Zhou et al.18. We removed individuals with genetic relatedness 718 

larger than 0.05 and applied the same filters as the discovery GWAS for SNPs. In addition, only 719 

common SNPs with MAF > 1% were retained. 720 

Genetic architecture of 14 endpoints in GBMI 721 

SBayesS is a summary-level based method utilizing a Bayesian mixed linear model, which can 722 

report key parameters describing the genetic architecture of complex traits20. It only requires 723 

GWAS summary statistics and LD correlation matrix estimated from a reference panel. We ran 724 

SBayesS using the GWAS summary statistics from all 14 endpoints in GBMI, including meta-725 

analyses on all ancestries and on EUR only in 19 biobanks18. We evaluated the SNP-based 726 

heritability (ℎ𝑆𝑁𝑃
2 ), polygenicity (proportion of SNPs with nonzero effects) and the relationship 727 

between allele frequency and SNP effects (S). We used the shrunk LD matrix (i.e., a LD matrix 728 

ignoring small LD correlations due to sampling variance) on HapMap3 SNPs provided by GCTB 729 

software. The LD matrix was constructed based on 50K European individuals from UKBB. Note 730 

that we observed inflated SNP-based heritability estimates using effective sample size for each 731 

SNP and hence used the total GWAS sample size instead. We used other default settings in the 732 

software. We calculated the p-value of each parameter using Wald test to evaluate whether it was 733 

significantly different from 0. The ℎ𝑆𝑁𝑃
2  was further transformed into liability-scale with disease 734 

prevalence approximated as the case proportions in the GWAS summary statistics58.  735 

PRS construction 736 

P+T: P+T is used to clump quasi-independent trait-associated loci within a LD window size using 737 

a specific LD r2 threshold. We first ran P+T in the UKBB and BBJ using a LD r2 threshold of 0.1 738 

and a LD window (LDwin) of 250Kb. We performed the analysis on both HapMap3 SNPs and 739 

genome-wide SNPs. We constructed PRS using --score implemented in Plink v1.959 using 13 740 

different p-value thresholds (5 × 10-8, 5 × 10-7, 1 × 10-6, 5 × 10-6, 5 × 10-5, 5 × 10-4, 5 × 10-3, 0.01, 741 

0.05, 0.1, 0.2, 0.5, 1). We further explored how per-variant filtering based on effective sample 742 

sizes (Neff) and MAF thresholds would affect the prediction performance. We used three 743 

thresholds to retain variants by their Neff: >0%, >50%, and >80% of Neff compared to the total ones 744 

and also three MAF filters: 0.01, 0.05 and 0.1. In the UKBB, we also explored the impact of 745 

optimizing LD parameters on prediction performance by using different combinations of LDwin 746 

(250, 500, 1000, and 2000Kb) and LD r2 thresholds (0.01, 0.02, 0.05, 0.1, 0.2, and 0.05) with the 747 

following flags: --clump-p1 1 --clump-p2 1 --clump-r2 LDwin --clump-kb r2 in Plink v1.9. For each 748 
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population in the specific biobank, we randomly split the individuals into two even parts. One part 749 

was used as a validation cohort to fine-tune the parameters and the other part was used as the 750 

test cohort to evaluate the performance of PRS. To explore the impact of tuning cohorts on target 751 

populations with diverse ancestries such as UKBB in this study, we also used 10,000 EUR 752 

samples, not included in the discovery GWAS and independent from the test cohort, as the tuning 753 

cohort.  754 

 755 

PRS-CS: PRS-CS27 is a Bayesian regression framework which enables continuous shrinkage 756 

priors on SNP effects to infer their posterior mean effects. We ran PRS-CS using both the grid 757 

and auto models in the UKBB. In the grid model, we used a series of global shrinkage parameters 758 

(phi = 1 × 10-6, 1 × 10-5, 1 × 10-4, 1 × 10-3, 0.01, 0.1, 1), with lower phi values suggesting less 759 

polygenic genetic architecture and vice versa for more polygenic genetic architecture. For the 760 

auto model, PRS-CS will learn the phi parameter from the discovery GWAS without requiring 761 

post-hoc tuning. We used both total GWAS sample size and effective sample size as input for 762 

PRS-CS and found little difference, suggesting that PRS-CS is insensitive to the input of GWAS 763 

sample size. We hence used the effective sample size for subsequent analyses in this study. We 764 

used the default settings for other parameters. We generalized the auto model for all endpoints 765 

in both UKBB and BBJ. When comparing the two models, we selected the optimal phi parameter 766 

from the grid model based on the highest prediction accuracy in the target population. 767 

LD reference panel 768 

Both P+T and PRS-CS are summary-level based PRS prediction methods, utilizing GWAS 769 

summary statistics and an LD reference panel. To explore the impact of LD reference panels on 770 

prediction performance, we used LD reference panels of different ancestral compositions, varying 771 

sample sizes and SNP density. Specifically, we used four global ancestry groups, i.e., European 772 

(EUR), South-Asian (SAS), East-Asian (EAS) and African (AFR), from 1000G Phase 3 (1KG) as 773 

LD reference panels for P+T. Further, we randomly sampled a subset of individuals with sample 774 

sizes of 500, 5000, 10,000 and 50,000 from UKBB-EUR to analyze how the sample sizes of LD 775 

reference panel would affect prediction accuracy for P+T. Moreover, we ran P+T on both the 776 

HapMap3 SNP set and a denser SNP set with genome-wide SNPs. We ran PRS-CS with the LD 777 

matrix provided by PRS-CS software27, which are based on both 1KG and UKBB populations from 778 

those four ancestry groups and Admixed American population (AMR). We performed those 779 

analyses using leave-UKBB-out GWAS in GBMI and evaluated the prediction performance in 780 

diverse ancestry groups in the UKBB.  781 
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 782 

To explore how well EUR-based LD reference approximated the LD of multi-ancestry GWAS in 783 

GBMI, we ran LD score regression (LDSC) to estimate the attenuation ratio statistic21. The values 784 

of attenuation ratio larger than 0.2 suggest a strong LD mismatch between GWAS summary 785 

statistics and LD reference panel. We performed LDSC analyses on different GWAS, including 786 

GBMI GWAS from meta-analyses on all ancestries, EUR only and leave-one-biobank-out.   787 

Evaluation of prediction performance 788 

After constructing PRS, we evaluated the prediction performance in the independent target 789 

datasets. We used a logistic regression to calculate the Nagelkerke’s R2 and variance on the 790 

liability-scale explained by PRS as described previously58. Area under the receiver operating 791 

characteristic curve (AUC) was also reported for full models with additional covariates and models 792 

including PRS only. We used bootstrap with 1000 replicates to estimate their corresponding 95% 793 

confidence intervals (CIs). Note that the proportion of cases in each ancestry in the target dataset 794 

was approximated as the disease population prevalence. The same covariates (usually age, sex 795 

and 20 genotypic principal components, PCs) used in the GWAS analyses were included in the 796 

full regression model as phenotype ~ PRS + covariates. We also calculated the average R2 on 797 

the liability scale and AUC across biobanks (denoted as 𝑅𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and AUC̅̅ ̅̅ ̅̅ , respectively) in each 798 

ancestry by weighting the effective sample size of each biobank for each endpoint. Further, we 799 

divided the target individuals into deciles based on the ranking of PRS distribution. We compared 800 

the odds ratio (OR) of the top decile relative to those ranked as the bottom, the middle and the 801 

remaining, when using the first decile as the referenced group. For endpoints presented in two or 802 

more biobanks, we calculated the averaged OR using the inverse variance weighted method and 803 

the coefficient of variation of OR (CoeffVarOR) as SD(OR)/mean(OR). 804 

Resource Availability 805 

Data and Code Availability 806 

The all-biobank and ancestry-specific GWAS summary statistics are publicly available for 807 

downloading at https://www.globalbiobankmeta.org/resources and browsed at the PheWeb 808 

Browser http://results.globalbiobankmeta.org/. The PRS weights re-estimated using PRC-CS-809 

auto for multi-ancestry GWAS including all biobanks and leave-UKBB-out multi-ancestry GWAS 810 

have been uploaded to PGS Catalog (https://www.pgscatalog.org/) under the study ID 811 

PGP000262. 1000 Genome Phase 3 data can be accessed at 812 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data. We used 813 
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UKB data via application 31063. The software used in this study can be found at: Plink 814 

(https://www.cog-genomics.org/plink/), PRS-CS (https://github.com/getian107/PRScs), 815 

SBayesS/GCTB (https://cnsgenomics.com/software/gctb/). The codes used in this study can be 816 

found in the github repository: https://github.com/globalbiobankmeta/PRS. 817 

 818 

 819 
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Figure 1. Overview of the study framework. 
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Figure 2. Genetic architecture of endpoints in GBMI.  

We reported the estimates from using meta-analyzed GWAS from all ancestries (labeled 

as All ancestries) and European only (labeled as EUR), respectively. The phenotypes on 

the y-axis are ranked based on the SNP-based heritability estimates using meta-analysis 

from all ancestries. Note the SNP-based heritability estimates were transformed on the 

liability scale. The vertical dashed lines in each panel indicate the corresponding median 

estimates across 13 endpoints. The results for hypertrophic or obstructive 

cardiomyopathy (HCM) are not presented. Abbreviations: Europeans (EUR), chronic 

obstructive pulmonary disease (COPD), heart failure (HF), acute appendicitis (AcApp), 

venous thromboembolism (VTE), primary open-angle glaucoma (POAG), uterine cancer 

(UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis (IPF), thyroid 

cancer (ThC). 
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Figure 3. Sample size heterogeneity affects PRS prediction accuracy for P+T.  

A) the distribution of effective sample sizes (Neff) for asthma as a representative trait. B) 

predictive performance of P+T for European (EUR) samples in the UK Biobank (UKBB). 

The R2 for asthma is shown as a representative result. Full results are shown in Figure 

S7 and Table S3. C) the ratio of Neff of EUR compared with Neff of all samples for asthma. 
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Figure 4. Prediction performance using P+T versus that using PRS-CS.  

The phenotypes are ranked based on the SNP-based heritability as shown in Figure 2 

(indicated by the dashed line) estimates using all ancestries. Only trait-ancestry pairs with 

significant accuracies in both P+T and PRS-CS are presented. The prediction accuracy 

in P+T was estimated in the test cohort based on the optimal p-value thresholds fine-

tuned in the validation cohort. The auto model was used for PRS-CS. Abbreviations: 

Europeans (EUR), Admixed Americans (AMR), Middle Eastern (MID), Central and South 

Asians (CSA), East Asians (EAS) and Africans (AFR), chronic obstructive pulmonary 

disease (COPD), heart failure (HF), acute appendicitis (AcApp), venous 

thromboembolism (VTE), primary open-angle glaucoma (POAG), uterine cancer (UtC), 

abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis (IPF), thyroid cancer 

(ThC). 
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Figure 5. Prediction performance of PRS-CS across biobanks and ancestries.  

The phenotypes on the y-axis were ranked by the SNP-based heritability using all 

ancestries as shown in Figure 2. Only the significant results were shown. Data for all trait-

ancestry pairs in each biobank are provided in Table S6. Note that we removed the 

estimates in AMR and MID due to limited information as a result of small sample sizes. 

Abbreviations: Europeans (EUR), Admixed Americans (AMR), Middle Eastern (MID), 

Central and South Asians (CSA), East Asians (EAS) and Africans (AFR), chronic 

obstructive pulmonary disease (COPD), heart failure (HF), acute appendicitis (AcApp), 

venous thromboembolism (VTE), primary open-angle glaucoma (POAG), uterine cancer 

(UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis (IPF), thyroid 

cancer (ThC). 
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Figure 6. The odds ratio (OR) between different PRS strata for endpoints in GBMI.  

The dashed line indicates OR=1. Only significant trait-ancestry specific OR was reported, 

with p-value < 0.05. The full results are shown in Table S7. The averaged OR was 

calculated using the inverse-variance weighted method (see STAR Methods). PRS was 

stratified into deciles with the first decile (bottom 10%) used as the referenced group. The 

phenotypes were ranked based on SNP-based heritability estimates using all ancestries 

(see Figure 2). Abbreviations: Europeans (EUR), Admixed Americans (AMR), Middle 

Eastern (MID), Central and South Asians (CSA), East Asians (EAS) and Africans (AFR), 

chronic obstructive pulmonary disease (COPD), heart failure (HF), acute appendicitis 

(AcApp), venous thromboembolism (VTE), primary open-angle glaucoma (POAG), 

uterine cancer (UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis 

(IPF), thyroid cancer (ThC). 
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Figure 7. The prediction performance and ancestry compositions of GBMI versus 

previously published GWAS.  

A) The ancestry compositions of GBMI and referenced GWAS. The label for biobanks in 

the x-axis indicated the leave-one-out-biobank meta-analyzed GWAS in GBMI. The 

previously published GWAS was labeled as Referenced. B) The comparison of AUC 

between GBMI and referenced GWAS. The AUC was calculated by fitting PRS only. The 

phenotypes in A) were ranked based on the effective sample sizes from all ancestries. 

The phenotypes in B) were ranked by the SNP-based heritability estimates from all 

ancestries. Note that we removed the estimates in AMR and MID due to limited 

information as a result of small sample sizes. The full results are shown in Table S4. 

Abbreviations: Europeans (EUR), Admixed Americans (AMR), Middle Eastern (MID), 

Central and South Asians (CSA), East Asians (EAS) and Africans (AFR), chronic 

obstructive pulmonary disease (COPD), heart failure (HF), acute appendicitis (AcApp), 

venous thromboembolism (VTE), primary open-angle glaucoma (POAG), uterine cancer 

(UtC), abdominal aortic aneurysm (AAA), idiopathic pulmonary fibrosis (IPF), thyroid 

cancer (ThC).  
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