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Abstract 

Background 

Mendelian randomization (MR) is a powerful tool through which the causal effects of modifiable 

exposures on outcomes can be estimated from observational data. Most exposures vary throughout 

the life course, but MR is commonly applied to one measurement of an exposure (e.g., weight 

measured once between ages 40 and 60). It has been argued that MR provides biased causal effect 

estimates when applied to one measure of an exposure that varies over time.  

Methods 

We propose an approach that emphasises the liability that causes the entire exposure trajectory. We 

demonstrate this approach using simulations and an applied example.  

Results 

We show that rather than estimating the direct or total causal effect of changing the exposure value 

at a given time, MR estimates the causal effect of changing the liability as induced by a specific 

genotype that gives rise to the exposure at that time. As such, results from MR conducted at 

different time points are expected to differ (unless the liability of exposure is constant over time), as 

we demonstrate by estimating the effect of BMI measured at different ages on systolic blood 

pressure. 

Conclusions 

Practitioners should not interpret MR results as timepoint-specific direct or total causal effects, but 

as the effect of changing the liability that causes the entire exposure trajectory. Estimates of how 

the effects of a genetic variant on an exposure vary over time are needed to interpret timepoint-

specific causal effects. 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.11.18.21266515doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.18.21266515
http://creativecommons.org/licenses/by/4.0/


 

3 
 

Introduction 

Mendelian randomization  

Mendelian randomization (MR) is a powerful tool through which the causal effects of modifiable 

exposures (risk factors) can be estimated from observational data under assumptions that in some 

circumstances may be more plausible than the unmeasured confounding and no measurement error 

assumptions required by conventional methods.1 MR is generally implemented within an 

instrumental variables (IV) framework that exploits the randomisation inherent in the allocation of 

genotypes at conception and gamete cell formation, using this random variation in alleles to 

instrument differences in observed exposures between individuals. Reverse and residual 

confounding are reduced because formation of genotype occurs prior to phenotypic development 

and is generally not related to environmental factors.2,3  

Three assumptions are required for MR analyses to test the null hypothesis that an exposure 𝑋 does 

not cause an outcome 𝑌 for any individuals. These are 1) relevance: that genotype is associated with 

the exposure of interest; 2) independence: that there is no common cause of genotype and 

outcome; 3) exclusion: that genotype does not affect the outcome through any path other than the 

exposure.4 In order to estimate an average treatment effect (ATE), we additionally assume 

throughout that the structural model relating IV, exposure(s) and outcome is linear and additive with 

homogeneous effect of exposure (at every time) on outcome. 5,6  

MR studies have largely leveraged information from a single measurement of the exposure and 

outcome, often due to limited availability of repeatedly measured data. Many exposures of interest 

vary over time,7,8 being subject to both between- and within-individual variation. Within-individual 

variation may be largely a function of measurement error (e.g. height in adulthood9), longitudinal 

within-individual phenotypic variability (BMI10), monotonic change (myopia11), or likely, a mixture of 

these. Time-varying genetic associations have been reported for a range of phenotypes12–18 and it is 

therefore unlikely that individuals will follow parallel exposure trajectories across the lifecourse by 

genotype.15,19 Consistent effect sizes may therefore not be estimated when applying MR to 

exposures that are measured at different time points across the lifecourse, regardless of sampling 

variation and measurement error.  
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Mendelian randomization applied to one measure of an exposure that varies over 

time 

It has long been recognised that MR estimates relate to exposures that generally act over a 

considerable period of time1,20 and there is evidence that some SNP-exposure associations are 

consistent throughout life.21 More recently, it has been questioned how appropriate MR is when 

applied to exposures that vary over time.22–24 Labreque & Swanson propose one possible definition 

of a lifetime effect that might be of interest: the effect of increasing the exposure by one unit at 

each timepoint throughout the lifecourse.22 In order to estimate this effect using MR, this implies 

time-invariant exposures and genotype-exposure associations, consistent with parallel exposure 

trajectories (a one unit change in trajectory at time 𝑡 will be the same as a one unit change in 

trajectory at time 𝑡 + 1). They demonstrated that estimates of this causal effect from MR differ over 

time in the presence of time-varying genotype-exposure associations, concluding that MR provides a 

biased estimate of the causal effect of increasing the exposure by 1 unit at each timepoint. Concerns 

have also been raised that MR with time-varying exposures may be biased if a feedback mechanism 

exists where genetic factors influence predisposition to an outcome, which in turn influences the 

exposure at a subsequent time point.23 For example, where instruments for coronary heart disease 

(CHD) relate to C-reactive protein (CRP) because the instruments for CHD relate to developing 

atheroma, which in turn increases CRP.  

We propose an approach that uses MR to assess the effect on the outcome of the change in the 

entire exposure trajectory that would be induced by a change in genotype. That is, we are not 

estimating the causal effect of an exposure as it manifests at a given timepoint, but the effect of the 

underlying exposure liability. To emphasise that a change in genotype affects all manifestations of 

the exposure, we introduce a liability 𝐿, which is caused by the genotype 𝐺, and in turn underlies all 

the exposure measurements at every instance across the lifecourse. While the effect of liability on 

outcome is the estimand of interest, the liability is unobserved, so we must estimate its 

effect via the measured exposures. Here, we consider the case with one genetic instrument (𝐺), 

two measurements of the time-varying continuous exposure at different occasions (𝑋0 and 𝑋1), an 

outcome measured at one timepoint (𝑌), and an unmeasured confounder 𝑈 (Figure 1). Thus, a 

change in genotype changes 𝐿, which changes both 𝑋0 and 𝑋1. The case where 𝑋 is measured in 

continuous time is described in the Supplementary Text.  

Our approach overcomes two problems with interpretation of MR with time-varying exposures. 

First, if 𝐺 changes, both 𝑋0 and 𝑋1 must be changed together; a one-unit change in 𝐺 (e.g., an 

increase of one risk allele) cannot change one of the exposure measurements in isolation. Where 
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time-varying genetic effects exist, the change in genotype 𝐺 required to raise a given exposure 

trajectory by one unit at time 𝑡 (e.g., raising weight by 1kg at birth) may be quite different to the 

change in genotype required to change the exposure by one unit at time 𝑡 + 𝑘 (e.g., raising weight 

by 1kg at age 50). Second, a one-unit change in 𝐺 cannot have an arbitrary effect on the exposure 

trajectory (e.g., increase exposure by one unit at all times). Thus, univariable MR with one genetic 

instrument that acts on exposure over a period of time cannot be used to recover the effect of a 

change in exposure at a single time, nor of any arbitrary change to the trajectory of exposure. 

Instead, we argue that MR with a time-varying continuous exposure can be used to examine the 

effect of a specific change in the trajectory of that exposure, depending on how genotype impacts 

the trajectory. Here, the effect refers to the liability 𝐿, i.e., we are estimating the effect on the 

outcome of changing 𝐿.  

For simplicity, our example has just one SNP causing L. However, 𝐿 may be proxied by multiple SNPs. 

The emphasis here is that the effects of 𝑋0 and 𝑋1 cannot be separated in the case where our 

instrument(s) act through one liability (𝐿). The effects of 𝑋0 and 𝑋1 could potentially be separately 

estimated within a multivariable MR framework if two or more different liabilities have been 

identified that have different effects on 𝑋0 and 𝑋1.  

 

Figure 1: DAG showing two exposures and one outcome. 𝑮, genetic instrument; 𝑳, liability; 𝑿𝟎, 

exposure measured at time 0; 𝑿𝟏, exposure measured at time 1; 𝒀, outcome; 𝑼, confounder. There 

is a problem of under-identification here in that the direct effects of 𝑋0 or 𝑋1 on 𝑌 cannot be 

estimated with a single liability (𝐿).  

 

 

In this paper, we clarify the causal quantities that are estimated by MR when applied to time-varying 

exposures with time-varying genetic effects, and how they should be interpreted.  

𝑋0 

𝑋1 

𝐿 

𝑌 𝑈 
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Methods  

Effects of interest 

We define two estimands of interest: the total effect of a one-unit change in an exposure 𝑋𝑘 (i.e. 

exposure 𝑋 measured at a specific timepoint 𝑡𝑘) on an outcome 𝑌 (𝛽𝑇𝑘); and the causal effect on 𝑌 

of a change in the liability 𝐿 that is induced by a genetic instrument 𝐺, such that 𝑋𝑘 increases by one 

unit as (𝛽𝑀𝑅𝑘). We derive algebraic expressions for these estimands in the case of two time-varying 

exposures and one outcome, with more general derivations given in Appendix 1.  

Total effect 

We define 𝛽𝑇𝑘 to be the total effect of 𝑋𝑘 on an outcome 𝑌, i.e.the change in 𝑌 from increasing 𝑋𝑘 

by one unit. This includes the direct effect of 𝑋𝑘 on 𝑌, and the indirect effect via the effect of 𝑋𝑘 on 

subsequent measures of the exposure 𝑋𝑚 where 𝑚 > 𝑘. Note that with one liability, MR cannot be 

used to identify the total effect of 𝑋𝑘 on 𝑌. 

Lifetime liability effect of a specific genotype 

We define the liability effect (𝛽𝑀𝑅𝑘) induced by a specific genotype as the causal effect of changing 

the liability 𝐿 such that the exposure measured at time 𝑡𝑘 is increased by one unit. This can be 

thought of as the effect of moving an individual from the liability 𝐿  giving rise to 𝑋 = 𝑥 at time 𝑡𝑘, to 

a liability 𝐿1 that would give rise to 𝑋 = 𝑥 + 1 at time 𝑡𝑘. This is a uniquely defined estimand for the 

liability associated with a specific genotype; it is the effect on 𝑌 of changing 𝐿 such that 𝑋𝑘 increases 

by one unit. The liability effect of 𝑋 on 𝑌 will be the same for all SNPs associated with the same 

liability 𝐿, but may be different for SNPs that cause a different liability and thus a different trajectory 

of 𝑋.  

We now derive expressions for the total and liability causal effect in the situation with an outcome 𝑌 

that is caused by a genetically influenced exposure 𝑋 measured at two timepoints (𝑋0 and 𝑋1) 

(Figure 2). The genetic instrument 𝐺 can have a non-linear relationship with the underlying liability 

𝐿, but we assume linearity and additivity from 𝐿 to the exposure measurements 𝑋𝑘. The effect of 𝐿 

on exposure measures is allowed to change with age, thus the shape of the trajectory of 𝑋 with age 

can be non-linear. 
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Figure 2: DAG showing the exposure liability in the context of two exposures and one outcome. 𝑮, 

genetic instrument; 𝑳, liability; 𝑿𝟎, exposure measured at time 0; 𝑿𝟏, exposure measured at time 1; 

𝒀, outcome; 𝑼, confounder.  

 

 

 

The total effect of a one unit change in 𝑋0 on 𝑌 (𝛽𝑇0
) is given by:  

𝛽𝑇0
= 𝛾4 + 𝛾5𝛾6 

The total effect of a one unit change in  𝑋1 on Y is given by: 

𝛽𝑇1
= 𝛾6 

Turning to the liability effect of changes in 𝑋0 and 𝑋1 (𝛽𝐺0
), a one unit increase in 𝑋0 occurs because 

there is an increase in 𝐺 from 𝑔10 to 𝐺 = 𝑔10 +
1

𝛾1(𝛾2)
 

If 𝐺 = 𝑔10 then 

𝑌 = 𝑌10 = 𝑔10𝛾1(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6) 

If 𝐺 = 𝑔10 +
1

𝛾1(𝛾2)
  then 

𝑌 = 𝑌20 = (𝑔10 +
1

𝛾1𝛾2
) 𝛾1(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6) 

The effect on 𝑌 of changing the liability 𝐿 such that it raises 𝑋0 by one unit is therefore given by: 

 𝛽𝐺𝐼0
= 𝑌20 − 𝑌10 =

(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6)

𝛾2
 (1) 

 

𝑿𝟎 

𝑿𝟏 

𝑳 𝒀 𝑮 
𝛶1 

𝛶2 

𝛶3 

𝛶5 

𝛶4 

𝛶6 
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 A one unit increase in 𝑋1 would occur because there is an increase in 𝐺 from 𝑔11 to 𝑔11 +

1

𝛾1(𝛾2𝛾5+𝛾3)
 

If 𝐺 = 𝑔11 then 

𝑌 = 𝑌11 = 𝑔11𝛾1(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6) 

If 𝐺 = 𝑔11 +
1

𝛾1(𝛾2𝛾5+𝛾3)
  then 

𝑌 = 𝑌21 = (𝑔11 +
1

𝛾1(𝛾2𝛾5 + 𝛾3)
) 𝛾1(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6) 

The effect on 𝑌 of changing L such that  𝑋1 is increased by 1 unit is given by: 

 
𝛽𝐺𝐼1

= 𝑌21 − 𝑌11 =
(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6)

𝛾2𝛾5 + 𝛾3
 

(2) 

 

Mendelian Randomisation 

We have defined for a given SNP the liability effect (𝛽𝑀𝑅𝑘) as the change in 𝑌 induced by raising the 

liability 𝐿 such that the value of 𝑋 measured at time 𝑡𝑘 increases by one unit. To reiterate, this 

represents the causal effect of changing the liability 𝐿 as induced by the SNP across all individuals 

such that the exposure at time 𝑡𝑘 is increased by one unit. Throughout we use the Wald IV estimator 

to estimate the effect of liability for an exposure that is induced by a specific genotype.  

To estimate the liability effect for a given SNP of 𝑋𝑘 on 𝑌 with MR using the Wald Ratio (𝛽𝑀𝑅𝑘), we 

need to calculate the effect of 𝐺 on 𝑌, and the effect of 𝐺 on 𝑋𝑘 . In our example, we only have two 

measures of the exposure, so k=0 or 1. For examples with the exposure in continuous time, see the 

appendix. We now derive the expressions for the liability effect of 𝑋0 and 𝑋1 on 𝑌.  

The effect of 𝐺 on 𝑌 is: 

 
𝛽𝐺𝑌 = 𝛾1(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6) 

 
(3) 

The effect of 𝐺 on 𝑋0 is: 

 𝛽𝐺𝑋0
= 𝛾1𝛾2 (4) 

 

 The effect of 𝐺 on 𝑋1 is: 

 𝛽𝐺𝑋1
= 𝛾1(𝛾2𝛾4 + 𝛾2𝛾5 + 𝛾1𝛾3) (5) 
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Using the Wald ratio MR estimate, the change in 𝑌 from changing 𝐿 such that  𝑋0 increases by one 

unit (the liability effect of a specific genotype) is given by (3)/(4): 

 
𝛽𝑀𝑅0

=
𝛾1(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6)

𝛾1(𝛾2)
=

(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6)

(𝛾2)
 

(6) 

 

Therefore, the Wald Ratio MR estimate 𝛽𝑀𝑅0
 in (6) is equal to the true effect on 𝑌 of liability for a 

one unit change in 𝑋0 in (1), and hence estimates the liability effect of 𝑋0 on 𝑌. 

 

The change in 𝑌 from changing L such that  𝑋1 increases by one unit is given by (3)/(5): 

  
𝛽𝑀𝑅1

=
𝛾1(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6)

𝛾1(𝛾2𝛾5 + 𝛾3)
=

(𝛾2𝛾4 + 𝛾2𝛾5𝛾6 + 𝛾3𝛾6)

(𝛾2𝛾5 + 𝛾3)
 

 

 

(7) 

   

Therefore, the Wald Ratio MR estimate in (7) is equal to the true effect on 𝑌 of liability for a one unit 

change in 𝑋1 in (2), and hence estimates the liability effect of 𝑋1 on 𝑌.  

MR with a single liability 𝐿 can therefore only examine whether there is evidence for a causal effect 

of some measure of the exposure (at some timepoint in the period in which the liability 𝐿 operates) 

on the outcome, not which part of the exposure trajectory is causal. It does not matter whether 

genotype-exposure associations are time-varying or time-invariant; the null hypothesis tested by MR 

is that the liability 𝐿 does not cause the outcome, i.e., there is no part of the trajectory which causes 

the outcome. If the liability does not cause the outcome, a null effect will be correctly estimated by 

MR.23 The Wald Ratio MR estimate of the effect of 𝑋𝑘 on 𝑌, the liability effect, is the effect of 

increasing 𝐿 such that 𝑋𝑘 increases by 1 unit. We extend this to an outcome measured at multiple 

timepoints in Appendix 2.  

 

Simulation approach 

We describe our simulation approach within the ADEMP framework.25  

(A)ims 

The aim of the simulation was to evaluate whether the Wald Ratio is an unbiased estimator of the 

liability effect of X on Y for SNP G  
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(D)ata-generating mechanisms 

We simulated data for 10,000 hypothetical individuals (𝑛𝑜𝑏𝑠 = 10,000), representing a cohort 

sample with genotypic and phenotypic data collected at two time points (𝑡0, 𝑡1). Let 𝐺 represent the 

genotype of individuals simulated as a single variant (effect alleles = 0,1,2) with minor allele 

frequency (MAF) set to 0.2 and genotype drawn from this with a binomial distribution. We simulate 

a time-varying exposure (𝑋𝑘) for measurement occasions 𝑘 (k=0,1), an outcome measured once (𝑌), 

and a time-invariant confounder (𝑈) of exposure and outcome variables. Random measurement 

error was simulated for all variables except the genetic instrument. Base parameters were set as 

follows: 𝛾2: 0.5; 𝛾3: 0.5; 𝛾4: 0.4; 𝛾5: 0.3; and 𝛾6: 0.4; (Figures 2 & 3). All associations with the 

unobserved confounder were set at 0.3. One-by-one these base parameters were set to zero to 

investigate the change in coefficient estimated. This allowed us to interrogate differential (i) 

strength of the genetic instrument; (ii) time-varying genetic associations; (iii) exposure effects on the 

outcome(s); and (iv) confounding effects. Note that the value of the unbiased estimate will not 

remain constant but will change depending on the base parameters. Results are presented for 1,000 

replications of each simulation. All data were generated within Stata. The programme code used to 

run the simulations is available at https://github.com/timtmorris/time-varying-MR and can be used 

to vary all parameters.  

(E)stimands 

We estimate the causal effect of 𝑋𝑘 (k=0,1) on 𝑌 by MR using the Wald ratio, and the standard error 

(SE) of this parameter in our simulations.  

(M)odel 

We assess the accuracy of the Wald Ratio MR estimator.  

(P)erformance measures 

We used three performance measures to assess the estimates in our simulations: the mean of the 

parameter β, the mean of the parameter SE across 1,000 replications, and the deviation of β from its 

expectation given the model parameters.  
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Figure 3: Simulated parameters. 𝑮, genotype; 𝑳, liability; 𝑿𝟎, exposure measured at time 0; 𝑿𝟏, 

exposure measured at time 1; 𝒀, outcome; 𝑼, confounder.  

 

Results 

Simulations 

Simulations demonstrated that the Wald Ratio MR estimator correctly recovers the liability causal 

effect in all scenarios with a time-varying exposure, even where time-varying genetic associations 

existed (𝛾2 and 𝛾3 differ) (Table 1). The estimate of the effect of 𝑋0 on 𝑌 is different to that of 𝑋1 on 

𝑌. This is because MR is estimating the effect of 𝐿 on 𝑌 rather than the effect of 𝑋𝑘 itself i.e., the 

change in 𝐿 required to raise 𝑋0 by one unit is 2 (=1/0.5), whereas the change in 𝐿 required to raise 

𝑋1 by one unit is 1.54 (=1/0.65). Non-zero estimates are recovered for 𝑋0 on 𝑌 even when there is 

no direct path from 𝑋0 to 𝑌. This non-zero coefficient arises because MR provides the causal effect 

of changing the liability such that the exposure measured at time 𝑡0 is one unit higher, not the effect 

of a one unit change in 𝑋0 in isolation. It does not matter when the exposures are measured with 

respect to the outcome (provided that earlier exposures influence the outcome); non-zero effects of 

𝑋1 on 𝑌 will be correctly estimated even if the exposure is measured after the outcome. This is 

because one cannot conclude anything about temporality using MR with a single liability. MR 

recovers unbiased causal effects even where simulations are extended to include outcome-exposure 

feedback effects or reverse confounding (Appendix 2). Where the liability does not cause exposure 

during a specific time period (e.g. a genotype may only cause weight gain after puberty), weak 

instrument bias may affect estimates of the effect of the change in liability required to increase 

exposure during that period by 1 unit  (Table 1, where 𝛾2 = 0).26 This bias is smaller for later 

measures of exposure (Table 1, where 𝑏1 = 0) because genetic effects here can operate via earlier 

measures.  

𝑋0 

𝑋1 

𝐿 𝐺 

0.5 

0.5 

0.3 

0.4 
𝑌 

0.4 
𝑈 

0.3 

0.3 

0.3 
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Cross sectional total effects estimated using linear regression are biased even where unobserved 

confounding from 𝑈 is absent due to confounding by the liability L that underlies the repeat 

measures of exposure (Appendix 3).  

 

Table 1: Estimates, standard errors and bias of the liability effect of a time-varying exposure on an 

outcome using MR. Bias presented as “0.000” where -0.001<mean bias <0.001. Note that the rows 

present the estimate and bias of the target estimate when each parameter is changed, not the 

estimate of the parameter itself. 

   Liability effect of: 

   𝑋0 on 𝑌 𝑋1 on 𝑌 

Estimated liability effect given base parameters in DAG b (se) 0.92 (0.042) 0.71 (0.031) 

Estimated liability effect when setting the following 

parameter to zero: 
   

 𝛾2 b (se) -83.03 (600000) 0.4 (0.041) 

  bias -83.547 -0.001 

 𝛾3 b (se) 0.52 (0.041) 1.76 (0.206) 

  bias 0.002 0.025 

 𝛾4 b (se) 0.52 (0.042) 0.4 (0.028) 

  bias 0.002 0.000 

 𝛾5 b (se) 0.8 (0.042) 0.8 (0.042) 

  bias 0.003 0.003 

 𝛾6 b (se) 0.4 (0.037) 0.31 (0.031) 

  bias -0.003 -0.001 

 U b (se) 0.92 (0.041) 0.71 (0.03) 

  bias 0.001 0.000 

 

MR of Body Mass Index measured at different ages on systolic blood pressure using 

FTO as the instrument 

We used two-sample MR to estimate the causal effect of Body Mass Index (BMI) on systolic blood 

pressure (SBP) using the SNP rs9939609 located in the fat mass and obesity-associated gene (FTO). 

Note that this single SNP approach prohibited standard 2-sample MR sensitivity analyses but 

provided a suitable proof of concept. We estimated FTO-BMI associations from a study using data 

from the 1958 National Survey of Health and Development British cohort at 11 occasions between 

ages 2 and 53 (n=2,479) by Hardy et al.18 We estimated FTO-hypertension associations from a study 

of Danish individuals in the Copenhagen General Population Study with mean age 57.6 (SD: 13.49) by 
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Timpson et al (n=37,027), thus ensuring no sample overlap.27 All associations were consistent with 

the study of individuals in the Rotterdam Study (n=5,123) by Labrecque & Swanson.22  

MR results from these SNP-exposure and SNP-outcome associations varied greatly depending on 

when the exposure was measured (Table 2). This variation in results does not invalidate MR,22 but is 

expected because the effect of genotype on exposure varied over age (Figure 4). The interpretation 

of the MR estimate is with respect to the underlying liability. So, from Table 2, the effect of changing 

the liability caused by FTO such that BMI increases by 1 unit at age 11 would be to increase mid-life 

blood pressure by 6.08 mmHg (SE: 2.32 mmHg). The effect of changing the liability caused by FTO 

such that BMI increases by 1 unit at age 53 would be to increase mid-life blood pressure by 12.78 

mmHg (SE: 7.77 mmHg). Although these look different, their consistency can be verified by 

examining Figure 4, and the effect of genotype on BMI at different ages shown in Table 2 – the effect 

of a 1-unit change in genotype (which would equate to a change in liability) on measured BMI is 

twice as large at age 11 as at age 53.  

MR estimates at different exposure measurement occasions can be converted to the same liability 

scale provided that SNP-exposure associations at these occasions can be estimated. This conversion 

can be made by multiplying the Wald Ratio estimate by the SNP-exposure association at its age 

divided by the SNP- association at another (target) age. Taking FTO-BMI and FTO-hypertension 

associations from the Hardy et al and the Timpson et al studies (Table 2), multiplying the age 53 

causal effect (12.78 mmHg per SD of BMI) by the SNP-exposure association at age 20 (0.1412) 

divided by the SNP-exposure association at age 53 (0.0493) gives us the causal effect at age 20 of 

4.46 (4.46 = 12.78 ×
0.0493

0.1412
). The third column of Table 2 shows the change in 𝐺 that would be 

required to raise BMI by one unit at each age. This varies due to variation in SNP-exposure 

associations at different ages; a one-unit change in BMI corresponds to different genetic effects over 

time. Given the small size of SNP-exposure associations, particularly at early ages, these values are 

implausible given the given the range of 𝐺. The last column shows the exposure difference induced 

by the FTO gene at specific ages that would correspond to an FTO-induced BMI difference of one 

unit at age 20. This information helps to interpret the differing MR estimates and could be used to 

conduct a GWAS meta-analysis where the exposure was measured at different ages in different 

studies. 
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Table 2: Results from MR with time-varying exposures for the causal effect of BMI z-score on SBP 

using FTO SNP rs9939609. SNP-exposure associations taken from Hardy et al, 2010;18 SNP-outcome 

association taken from Timpson et al, 2009.27 Standard errors for ratio estimates were computed 

using the formula in Burgess et al (2017)28 ignoring covariance between SNP-exposure effects at 

different ages. BMI, Body Mass Index; SBP, systolic blood pressure; SNP, single nucleotide 

polymorphism; MR, Mendelian randomization. The SNP-outcome association from Timpson et al 

(2009) was 0.63 (0.153).  

Age 

SNP-exposure 

association 

(SE) 

MR estimate (SE) 

Change in 𝐺 required 

to raise BMI by one 

unit (SE) 

Liability exposure difference 

equivalent to a one-unit 

difference in exposure at age 

20 (SE) 

2 0.013 (0.033) 49.56 (127.47) 78.7 (201.4) 0.09 (0.23) 

4 0.019 (0.030) 32.69 (51.68) 51.9 (81.1) 0.14 (0.22) 

6 0.0035 (0.031) 178.63 (1546.5) 283.5 (2453.9) 0.025 (0.22) 

7 0.043 (0.030) 14.79 (11.18) 23.5 (16.8) 0.30 (0.23) 

11 0.104 (0.031) 6.08 (2.32) 9.7 (2.85) 0.73 (0.27) 

15 0.107 (0.031) 5.88 (2.23) 9.3 (2.71) 0.76 (0.28) 

20 0.141 (0.031) 4.46 (1.46) 7.1 (1.56) Reference 

26 0.097 (0.030) 6.46 (2.52) 10.3 (3.13) 0.69 (0.26) 

36 0.070 (0.029) 9.0 (4.30) 14.3 (5.87) 0.50 (0.23) 

43 0.043 (0.028) 14.73 (10.30) 23.4 (15.33) 0.30 (0.21) 

53 0.049 (0.027) 12.78 (7.77) 20.3 (11.31) 0.35 (0.21) 
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Figure 4: Effect of an increased risk allele on BMI at  different ages from Hardy et al.18  

 

  

Discussion 

Here we have clarified that MR (using the Wald Ratio estimator) using only one measure of an 

exposure that varies over time gives a consistent estimate of the causal effect of the liability that 

underlies the exposure. That is, MR applied to exposures that vary over time estimates the causal 

effect of the underlying liability rather than the causal effect of the exposure as it manifests at a 

given measurement occasion. While the effect of liability on outcome is the estimand of interest, the 

liability is unobserved, so we must estimate its effect via the measured exposures. The MR estimate 

of the liability effect does not require time-invariant genotype-exposure associations under the 

assumptions that the structural model is linear and additive, providing that the instruments are valid 

instruments for the underlying liability.8,22 There is also no assumption that the liability 𝐿 should 

have the same direction of effect on exposure at all timepoints.29 

We have demonstrated that MR estimates the causal effect of having a liability 𝐿 that gives an 

exposure value 𝑥 at time 𝑡 vs having a liability 𝐿1 that gives value 𝑥 + 1 at time 𝑡. MR with a single 

genetic proxy of liability cannot therefore be used to infer the direct or total effect of an exposure at 
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a specific point in time, or to draw inferences about exposure trajectories different to the one 𝐿 

causes (e.g. the effect of increasing exposure by one unit at all timepoints).22 Results from MR 

conducted at different exposure time points will necessarily differ where time-varying gene-

exposure associations exist. However, this does not invalidate MR as previously argued,22 but 

highlights that it is testing the effect of the liability 𝐿 on outcome .30 Estimation of time-specific 

causal effects (i.e. what is the direct or total effect of the exposure at a given timepoint on the 

outcome) will usually not be possible, in the absence of other information.  

We proposed a new definition of the “lifetime” causal effect estimated by MR using one measure of 

a time-varying exposure and one liability as the causal effect of changing the liability such that the 

exposure would be one unit higher at a given time. The estimated “lifetime” causal effect will differ 

in size if the exposure is measured at a different timepoint, but the estimates will be consistent with 

the underlying trajectory of exposure induced by the SNP as shown in Table 2. While the FTO 

trajectories from the study by Hardy et al18 study may differ from those in larger studies,31 these 

have been used for illustrative purposes as they cover a broad range of ages. Our interpretation 

differs from that previously suggested by Labrecque & Swanson22 in that it rests upon a liability 

caused by a specific genotype. Labrecque & Swanson argued that MR is sensitive to age-related 

variation in SNP-exposure associations, whereas we have demonstrated that these differences are a 

necessary component of time-varying exposures. Our assumption that genotype may act, through 

liability 𝐿,  upon the whole lifecourse exposure trajectory32 rather than a single exposure 

measurement is supported by studies demonstrating time-varying genetic associations.12–17 A 

It may seem counter-intuitive to use the instrument to describe the causal effect to be estimated – 

e.g., we are estimating the effect of the liability that is induced by a given SNP. The underlying point 

is that we can only examine the effect of a liability that has an instrument associated with it. For 

example, should an analyst wish to estimate the effect of increasing 𝑋 by 1 unit at all timepoints, an 

instrument that has a constant effect on exposure over the lifecourse would be required. If the 

interest is in a liability that causes 𝑋 to double every 10 years, then an instrument that has this (or a 

proportional) effect is required. There are thus two consequences of our results. First, that if the aim 

is to estimate the effect of a specific liability, then the researcher needs to find an instrument for 

that liability. This is no different to any other situation where some desired exposures cannot be 

instrumented genetically (e.g., it is hard to imagine a valid genetic instrument for cycling to work). 

Second, that interpretation of an MR of an exposure that varies over time is with respect to the 

liability for that exposure that is induced by the given genotype. Thus, interpretation of an MR 

estimate of a time-varying exposure requires knowledge of the liability induced by the genotype. 
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Our simulations also demonstrate that MR is not biased by longitudinal exposure mediation, where 

earlier exposure measures cause later exposure measures. Again, it is not possible to draw 

inferences on the timing of causal effects because it is the effect of the liability that is being 

estimated, not just the moment that the exposure was measured. If an outcome affects a later 

measurement of exposure, an investigator will not incorrectly conclude that the outcome causes the 

exposure, but they may incorrectly conclude that exposure at a given age causes an outcome. With 

one liability for an exposure, a cumulative effect of exposure will be indistinguishable from an effect 

of exposure only during specific time periods; one can only say that some part of the exposure 

trajectory is causal, not which part. The lack of ability to determine causal effects at specific 

timepoints complicates comparisons between MR and RCT’s. In an RCT, the timing of exposure 

(treatment) can be modified, while in MR, randomisation of the liability underlying the exposure 

trajectory occurs at conception.  

While we investigated a single SNP, this interpretation of time-varying MR can in principle be 

extended to multiple SNPs if they all act on the same underlying liability to exposure (𝐿, in Figure 1). 

It is however highly unlikely that any two SNPs will induce the same liability and thus the same 

exposure trajectory (non-causal SNPs which tag the same causal variant would not be seen to 

produce the trajectory). If different SNPs have differing time-varying associations with the exposure, 

then their estimated liability effects of exposure on outcome will differ. Future studies should assess 

heterogeneity between groups of SNPs  with repeat measures of exposure to assess the consistency 

of trajectories of exposure.8 Assuming multiple liabilities through multivariable Mendelian 

randomization may allow investigators to more reliably test hypotheses about exposures during 

different time periods.33,34 For example, a recent MR study using multiple instruments with different 

effects on early (age 10) and later life (age 57) BMI could draw inferences about the different 

contributions of liability for BMI at ages 10 and 57.12 An MR study with a single instrument (or 

multiple instruments acting on the same liability) could only draw inferences on the whole time 

period acted on by that liability.  

Our liability effect assumes a linear, additive structural model, but does not make any assumptions 

about the timing of how exposure affects the outcome. For example, the exposure may act 

cumulatively on the outcome, may have sensitive or critical periods,35 or may have different effects 

depending on its proximity to the outcome window. If the mechanism of exposure is known, then 

the appropriate summary of exposure could be derived and used in MR. For example, using 

cumulative exposure or functional principal component analysis to summarise trajectories of 
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exposure.36 Further longitudinal genetic studies which investigate time-varying genetic associations 

with exposures are therefore required to better triangulate causal evidence37.  

The key aspect when interpreting MR results from time-varying exposures is to consider the 

underlying liability for a specific exposure trajectory. We have demonstrated this using two 

exposures for simplicity, but the result holds when the liability is extended across measures of 𝑋 in 

continuous time (Appendix 1). MR with a genetic instrument using an exposure measured at a single 

timepoint provides an unbiased estimate of the causal effect of moving the liability 𝐿 (as induced by 

the instrument) such that the exposure at the single timepoint would be predicted to increase by 1 

unit. Care must be taken in interpretation of the results of MR analyses using a single measure of a 

time-varying exposure, as temporal effects cannot be inferred in the presence of a genetic 

instrument obtained from a single timepoint. It is important for future research to examine the  

exposure trajectories for every genetic instrument used.22  
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Appendices 

Appendix 1: Time-varying MR extended to continuous exposure measurements 

Lifetime effect 

We wish to define a lifetime effect of 𝑋𝑘 on 𝑌 as the change in 𝑌 from changing the entire trajectory 

of 𝑋 such that 𝑋𝑘 is raised by one unit. However, this is not a uniquely defined estimand – it does 

not specify how the trajectory of 𝑋 must be changed, only that the change must be compatible with 

a one unit rise in 𝑋𝑘. For example, the definition provided by Labreque and Swanson, of a constant 

one unit increase in 𝑋 at all times, would be a lifetime effect. Other possible estimands would 

include the effect of changing just 𝑋𝑘 by one unit, whilst keeping all other parts of the trajectory of 𝑋 

constant, or the effect of increasing 𝑋𝑘 and all subsequent values of 𝑋 by one unit. In most practical 

examples, none of the above estimands could be induced or observed; it is hard to imagine an RCT 

that could be designed to have such a specific effect on the trajectory of 𝑋. Thus, we must define an 

estimand that does have a natural and uniquely defined estimator. 

We define an alternative measure of a lifetime effect as estimated by MR within the context of time-

varying exposures; the effect of moving the entire exposure trajectory such that exposure at time 𝑡 

increases by one unit. This differs from the lifetime effect provided by LS, but our definition will be 

equivalent to theirs under the condition that individual’s exposure trajectories differ by the same 

quantity at every timepoint. We have an outcome 𝑌 which is measured only at time 𝑇, and an 

exposure 𝑋 which is measured continuously, where 𝑋𝑡 is the value of 𝑋 measured at time 𝑡. 

We define the liability causal effect of shifting the liability 𝐿 (and thus the entire exposure trajectory) 

such that 𝑋𝑘 becomes 𝑋𝑘 + 1 at some time 𝑘 as 𝐸[𝑌𝑋𝑘 − 𝑌𝑋𝑘+1̅̅ ̅̅ ̅̅ ̅̅ ]. As in Figure 1, we have a genetic 

instrument 𝐺 that acts on the liability 𝐿, which then causes 𝑋𝑡 . We define the instantaneous effect of 

𝑋𝑡 on 𝑌 by 𝛾𝑡; the effect of 𝐿 on 𝑋𝑡 by 𝛽𝐿𝑡; and the effect of time on 𝑋𝑡 by 𝛽0𝑡:  

𝐿 = 𝛼0 + 𝛼𝑔𝐺 

𝑋𝑡 = 𝛽0𝑡 + 𝛽𝐿𝑡𝐿 = 𝛽0𝑡 + 𝛽𝐿𝑡(𝛼0 + 𝛼𝑔𝐺) 

The effect of the entire trajectory on 𝑌 is: 

𝐸[𝑌�̅�] = ∫ 𝛾𝑡𝑥𝑡 𝑑𝑡
𝑇

0

= ∫ 𝛾𝑡(𝛽0𝑡 + 𝛽𝐿𝑡𝐿) 𝑑𝑡
𝑇

0

 

The change of the whole trajectory such that 𝑋𝑘 increases by 1, means adding to 𝐿 by 
1

𝛽𝐿𝑘
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𝐸[𝑌𝑋𝑘+1̅̅ ̅̅ ̅̅ ̅] = ∫ 𝛾𝑡 (𝛽0𝑘 + 𝛽𝐿𝑡 (𝐿 +
1

𝛽𝐿𝑘
))

𝑇

0

𝑑𝑡 

Therefore: 

 
𝐸[𝑌𝑋𝑘+1̅̅ ̅̅ ̅̅ ̅ − 𝑌�̅�] = ∫

1

𝛽𝐿𝑘
 𝛾𝑡𝛽𝐿𝑡 𝑑𝑡

𝑇

0

=
1

𝛽𝐿𝑘
∫  𝛾𝑡𝛽𝐿𝑡 𝑑𝑡

𝑇

0

 
(A1) 

We now consider the effect on both 𝑋 and 𝑌 of changes in 𝐺. The structural model for 𝑋𝑡 when 𝐺 =

𝑔 is: 

𝐸[𝑋𝑡
𝑔

] = 𝛽0 + 𝛽𝐿𝑡(𝛼0 + 𝛼𝑔𝑔) 

Using this in the structural model for 𝑌�̅�: 

𝐸[𝑌𝑔=1 − 𝑌𝑔=0] = ∫  𝛾𝑡(𝛽0𝑡 + 𝛽𝐿𝑡(𝛼0 + 𝛼𝑔𝑔)) 𝑑𝑡
𝑇

0

− ∫  𝛾𝑡(𝛽0𝑡 + 𝛽𝐿𝑡(𝑎0))𝑑𝑡
𝑇

0

 

Which reduces to: 

 
𝐸[𝑌𝑔=1 − 𝑌𝑔=0] = ∫  𝛾𝑡(𝛽𝐿𝑡(𝛼𝑔)) 𝑑𝑡

𝑇

0

 
(A2) 

The structural model for 𝑋 at time 𝑘 is: 

 𝐸[𝑋𝑘
𝑔=1

] − 𝐸[𝑋𝑘
𝑔=0

] = 𝛽𝑘0 + 𝛽𝐿𝑘(𝛼0 + 𝛼𝑔) − (𝛽𝑘0 + 𝛽𝐿𝑘(𝑎0)) = 𝛽𝐿𝑘(𝛼𝑔) (A3) 

 

The Wald Ratio estimator is given as the change in the outcome for a given change in the 

instrument, divided by the change in the exposure for the same change in the instrument. Dividing 

the reduced form (A2) by the genetic effect measured at time 𝑘 (A3) we obtain: 

E[𝑌𝑔=1 − 𝑌𝑔=0]

𝐸[𝑋𝑘
𝑔=1

] − 𝐸[𝑋𝑘
𝑔=0

]
=

∫  𝛾𝑡(𝛽𝐿𝑡(𝛼𝑔)) 𝑑𝑡
𝑇

0

𝛽𝐿𝑘(𝛼𝑔) 
=

1

𝛽𝐿𝑘
∫  𝛾𝑡𝛽𝐿𝑡 𝑑𝑡

𝑇

0

 

 

This is the same as the causal effect in equation (A1), showing that MR can be interpreted as the 

lifetime effect of genetically inducing an increase in exposure by one unit at time 𝑘. 
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Appendix 2: MR in the presence of reverse causation 

Lifetime effect 

Here we consider the case where we have a time-varying outcome (with measures 𝑌0 and 𝑌1) and an 

earlier measure of the outcome causes a later measure of the exposure (Figure A1). We show that 

the MR estimate is an unbiased estimate of the causal effect of a change in liability 𝐿 such that there 

is a one unit change in 𝑋 at the given time.  

 

Figure A1: DAG showing the liability in the context of two exposures and two outcomes. 𝑮, 

genotype; 𝑳, liability; 𝑿, exposure; 𝒀, outcome; 𝑼, confounder. Subscripts denote timepoint.  

 

 

For a given 𝐺, then the two outcomes are given by: 

𝑌0 = 𝐺𝛾1(𝛾2𝛾4) 

And  

𝑌1 = 𝐺𝛾1(𝛾2𝛾4𝛾9 + 𝛾2𝛾4𝛾8𝛾6 + 𝛾2𝛾5𝛾6 + 𝛾2𝛾7 + 𝛾3𝛾6) 

A one unit increase in 𝑋0 occurs because there is an increase from 𝐺  to 𝐺 +
1

𝛾1(𝛾2)
 

The effect on 𝑌0 of a change in liability 𝐿 such that there is a one unit change in 𝑋0 is therefore given 

by: 

 𝛽𝐺𝐼𝑌0𝑋0
=

1

𝛾2

(𝛾2𝛾4) (B1) 

 

𝑋0 

𝑋1 

𝐿 

𝑌0 

𝐺 
𝛶1 

 

𝛶2 

 

𝛶3 

 

𝛶5 

 

𝛶4 

 

𝛶6 
𝑌1 

𝛶9 

𝛶7 

 

𝛶8 
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The effect on 𝑌1 of a change in liability 𝐿 such that there is a one unit change in 𝑋0 is therefore given 

by: 

 𝛽𝐺𝐼𝑌1𝑋0
=

1

𝛾2

(𝛾2𝛾4𝛾9 + 𝛾2𝛾4𝛾8𝛾6 + 𝛾2𝛾5𝛾6 + 𝛾2𝛾7 + 𝛾3𝛾6) (B2) 

 

 A one unit increase in 𝑋1 occurs because there is an increase from 𝑔 to 𝑔 +
1

𝛾1(𝛾2𝛾5+𝛾3+𝛾2𝛾4𝛾8)
 

The effect on 𝑌0 of a change in liability 𝐿 such that there is a one unit change in 𝑋1 is therefore given 

by: 

 𝛽𝐺𝐼𝑌0𝑋0
=

1

𝛾2𝛾5 + 𝛾3 + 𝛾2𝛾4𝛾8

(𝛾2𝛾4) (B3) 

 

The effect on 𝑌1 of a change in liability 𝐿 such that there is a one unit change in 𝑋0 is therefore given 

by: 

 𝛽𝐺𝐼𝑌1𝑋0
=

1

𝛾2𝛾5 + 𝛾3 + 𝛾2𝛾4𝛾8

(𝛾2𝛾4𝛾9 + 𝛾2𝛾4𝛾8𝛾6 + 𝛾2𝛾5𝛾6 + 𝛾2𝛾7 + 𝛾3𝛾6) (B4) 

 

Mendelian Randomisation 

To calculate the MR estimate of the effect of 𝑋𝑘 on 𝑌 using the Wald Ratio, we need to calculate the 

effect of 𝐺 on 𝑌, and the effect of 𝐺 on 𝑋𝑘 .   

The effect of 𝐺 on 𝑌0 is: 

 𝛽𝐺𝑌0
= 𝛾1(𝛾2𝛾4) (B5) 

The effect of 𝐺 on 𝑌1 is: 

 
𝛽𝐺𝑌0

= 𝛾1(𝛾2𝛾4𝛾9 + 𝛾2𝛾4𝛾8𝛾6 + 𝛾2𝛾5𝛾6 + 𝛾2𝛾7 + 𝛾3𝛾6) 

 
(B6) 

The effect of 𝐺 on 𝑋0 is: 

 𝛽𝐺𝑋0
= 𝛾1𝛾2 (B7) 

   

 The effect of 𝐺 on 𝑋1 is: 

 𝛽𝐺𝑋1
= 𝛾1(𝛾2𝛾5 + 𝛾3 + 𝛾2𝛾4𝛾8) (B8) 
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Using the Wald ratio, the MR estimate of an effect on 𝑌1 from change in liability 𝐿 such that 𝑋0 

increases by one unit is given by (B6)/(B7):  

 𝛽𝑀𝑅𝑌1𝑋0
=

𝛾1(𝛾2𝛾4𝛾9+𝛾2𝛾4𝛾8𝛾6+𝛾2𝛾5𝛾6+𝛾2𝛾7+𝛾3𝛾6)

𝛾1(𝛾2)
T (B9) 

 

Thus, the MR estimate in (B9) is equal to the true effect on 𝑌1 of liability for a change in liability 𝐿 

such that there is a one unit change in 𝑋0 in (B4).  

Similar results follow for the MR estimates of the effect on 𝑌1 of liability for a change in liability 𝐿 

such that there is a one unit change in 𝑋1, and on 𝑌0 of liability for a change in liability 𝐿 such that 

there is a one unit change in 𝑋0 or 𝑋1. Thus, where there is reverse causation, the MR estimates are 

unbiased estimates of the effect of a change in liability 𝐿 such that 𝑋 is one point higher at time 𝑘.  

Simulations were repeated for two outcome measurements as shown in Figure A2. This additionally 

allowed us to interrogate differential effects of earlier exposures on later exposures, and reverse 

causation from earlier outcome measures on later exposure measures.23  

 

Simulation approach 

(A)ims 

The aims of the simulations were to evaluate the accuracy with which MR recovers causal estimates 

of a time-varying exposure on a time-varying outcome.  

(D)ata-generating mechanisms 

We simulated data for 10,000 hypothetical individuals (𝑛𝑜𝑏𝑠 = 10,000), representing a cohort 

sample with genotypic and phenotypic data collected at two time points (𝑡0, 𝑡1). Let 𝐺 represent the 

genotype of individuals simulated as a single variant (effect alleles = 0,1,2) with minor allele 

frequency (MAF) set to 0.2 and genotype drawn from this with a binomial distribution. We simulate 

a time-varying exposure (𝑋𝑘) for measurement occasions 𝑘, an outcome measured twice (𝑌𝑘), and a 

time-invariant confounder (𝑈) of exposure and outcome variables. Random measurement error was 

simulated for all variables except the genetic instrument. Base parameters were set as follows: 𝛾2: 

0.5; 𝛾3: 0.5; 𝛾4: 0.4; 𝛾5: 0.3; 𝛾6: 0.4; 𝛾7: 0.4; 𝛾8: 0.2; and 𝛾9: 0.2 (Figure A2) All confounder 

associations were set to 0.3. One-by-one these base parameters were set to zero to investigate the 

change in coefficient estimated by MR. This allowed us to interrogate differential (i) strength of the 

genetic instrument; (ii) time-varying genetic associations; (iii) exposure effects on the outcome(s); 

and (iv) confounding effects. Note that the value of the unbiased estimate will not remain constant 
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but will change depending on the base parameters. Results are presented for 1,000 replications of 

each simulation. All data were generated within Stata. The programme code used to run the 

simulations is available at https://github.com/timtmorris/time-varying-MR and can be used to vary 

all parameters.  

(E)stimands 

We assessed the causal effect of 𝑋𝑘 on 𝑌𝑘 and the standard error (SE) of this parameter in our 

simulations.  

(M)odel 

We assess the accuracy of Instrumental Variables (IV) analyses.  

(P)erformance measures 

We used three performance measures to assess the estimands in our simulations: the mean of the 

parameter β, the mean of the parameter SE across 1,000 replications, and the deviation of β from its 

expectation given the model parameters.  

 

Figure A2: Simulated parameters. 𝑮, genotype; 𝑳, liability; 𝑿𝟎, exposure measured at time 0; 𝑿𝟏, 

exposure measured at time 1;𝒀𝟎, exposure measured at time 0; 𝒀𝟏, exposure measured at time 1; 

𝑼, confounder.  
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MR estimates of time-varying exposures in the presence of reverse causation 

Simulations demonstrated that MR recovered the correct causal estimate in the presence of time-

varying outcomes with outcome-exposure effects (Table A1). Where the parameter 𝑋0𝑋1 was set to 

zero, a non-zero effect of 0.91 (SE: 0.04) is correctly estimated for 𝑋0𝑌1. Here, the effect of 𝑋0 on 𝑌1 

operates solely through 𝑌0; both its effect on 𝑋1 and its effect 𝑌1.  
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Table A1: Betas, standard errors, and bias of the liability effect of a time-varying exposure on a 

time-varying outcome in the presence of reverse causation using MR. Bias presented as “0.000” 

where -0.001<mean bias <0.001.  Note that the rows present the estimate and bias of the target 

estimate when each parameter is changed, not the estimate of the parameter itself. 

   Liability effect of: 

   𝑋0 on 𝑌0 𝑋0 on 𝑌1 𝑋1 on 𝑌1 

Estimated causal effect given base parameters in 

DAG 
b (se) 0.4 (0.037) 1.03 (0.044) 0.75 (0.03) 

Estimated causal effect when setting the following 

parameter to zero: 
    

 𝛾2 b (se) 0.8 (7031.413) 19.02 (13083.178) 0.4 (0.044) 

  bias 0.395 18.383 -0.001 

 𝛾3 b (se) 0.4 (0.037) 0.63 (0.043) 1.68 (0.155) 

  bias -0.001 < +/- 0.001 0.02 

 𝛾4 b (se) 0 (0.037) 0.92 (0.044) 0.71 (0.031) 

  bias -0.001 < +/- 0.001 0.001 

 𝛾5 b (se) 0.4 (0.037) 0.91 (0.044) 0.84 (0.04) 

  bias < +/- 0.001 -0.001 -0.001 

 𝛾6 b (se) 0.4 (0.037) 0.48 (0.038) 0.35 (0.03) 

  bias < +/- 0.001 -0.001 < +/- 0.001 

 𝛾7 b (se) 0.4 (0.037) 0.63 (0.044) 0.46 (0.028) 

  bias < +/- 0.001 0.001 -0.001 

 𝛾8 b (se) 0.4 (0.037) 1 (0.043) 0.77 (0.033) 

  bias < +/- 0.001 < +/- 0.001 < +/- 0.001 

 𝛾9 b (se) 0.4 (0.037) 0.95 (0.042) 0.69 (0.029) 

  bias 0.001 0.001 0.001 

 U b (se) 0.4 (0.035) 1.03 (0.042) 0.75 (0.029) 

  bias -0.002 0.002 0.001 
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Appendix 3: Cross-sectional total effects are confounded by genotype 

Consider an outcome 𝑌 that is caused by two genetically influenced exposures 𝑋0 and 𝑋1 (Figure 

A3). Here, a linear regression model of 𝑌 on 𝑋0 will estimate a biased parameter for the total effect 

of 𝑋0 even where there is no unobserved confounding from 𝑈. This is because the liability underlies 

the repeat measures of exposure, itself acting as a source of unmeasured confounding between 

exposure and the outcome. This creates a condition of confounding by common intercept. A linear 

regression with 𝑌 as the dependent variable (outcome) and 𝑋0 as the independent variable 

(exposure) therefore estimates the total effect of 𝑋0 on 𝑌, which also includes confounding by 𝐺. 

Controlling for the genetic instrument breaks this back door path of confounding in linear regression.  

Linear regression estimates applied to time-varying exposures with time-varying genetic effects 

cannot therefore be interpreted causally, even where unobserved confounding due to traditional 

sources is not present. There are two circumstances in which this longitudinal confounding by 

liability may be avoided. First, where every other exposure measure at every other timepoint is 

conditioned upon, or second, where a causal effect of 𝑋𝑘 exists only at timepoint 𝑘, and 𝑋 was 

measured at this time. It is therefore questionable whether linear regression estimates an 

informative parameter in the presence of time-varying exposures. 

 

Figure A3: DAG showing the liability in the context of two exposures and one outcome. 𝑮, genetic 

instrument; 𝑳, liability; 𝑿𝟎, exposure measured at time 0; 𝑿𝟏, exposure measured at time 1; 𝒀, 

outcome; 𝑼, confounder.  
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The aims of the simulations were to evaluate the accuracy with which MR recovers causal estimates 

of a time-varying exposure on a time-varying outcome.  
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(D)ata-generating mechanisms 

We simulated data for 10,000 hypothetical individuals (𝑛𝑜𝑏𝑠 = 10,000), representing a cohort 

sample with genotypic and phenotypic data collected at two time points (𝑡0, 𝑡1). Let 𝐺 represent the 

genotype of individuals simulated as a single variant (effect alleles = 0,1,2) with minor allele 

frequency (MAF) set to 0.2 and genotype drawn from this with a binomial distribution. We simulate 

a time-varying exposure (𝑋𝑘) for measurement occasions 𝑘, an outcome measured once (𝑌), and a 

time-invariant confounder (𝑈) of exposure and outcome variables. Random measurement error was 

simulated for all variables except the genetic instrument. Base parameters were set as follows: 𝛾2: 

0.5; 𝛾3: 0.5; 𝛾4: 0.4; 𝛾5: 0.3; and 𝛾6: 0.4 (Figure A4). All confounder associations were set to 0.3. One-

by-one we changed the base parameters for 𝑏1, 𝑐 and 𝑢 to zero to investigate the change in 

coefficient estimated by linear regression. This allowed us to interrogate (i) time-varying and time-

invariant genetic associations; and (ii) confounding effects. Results are presented for 1,000 

replications of each simulation. All data were generated within Stata. The program code used to run 

the simulations is available at https://github.com/timtmorris/time-varying-MR and can be used to 

vary all parameters.  

(E)stimands 

We assessed the total effect of 𝑋0 on 𝑌 and the standard error (SE) of this parameter in our 

simulations.  

(M)odel 

We assess the accuracy of linear regression analyses under two approaches: (i) where the genetic 

instrument is omitted from the model; and (ii) where the genetic instrument is included in the 

model.  

(P)erformance measures 

We used three performance measures to assess the estimands in our simulations: the mean of the 

parameter β, the mean of the parameter SE across 1,000 replications, and the deviation of β from its 

expectation given the model parameters.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.11.18.21266515doi: medRxiv preprint 

https://github.com/timtmorris/time-varying-MR
https://doi.org/10.1101/2021.11.18.21266515
http://creativecommons.org/licenses/by/4.0/


 

33 
 

Figure A4: Simulated parameters. 𝑮, genotype; 𝑳, liability;𝑿𝟎, exposure measured at time 0; 𝑿𝟏, 

exposure measured at time 1; 𝒀, outcome; 𝑼, confounder. Parameters in red font are those that 

were varied.  

 

 

Cross-sectional total effects are confounded by genotype 

Table A2 displays the results of the simulations. Linear regression failed to recover the correct total 

estimate of 𝑋0𝑌 in the presence of unobserved confounding by 𝑈. Where unobserved confounding 

by 𝑈 was absent, linear regression only recovered the correct total estimate of 𝑋0𝑌 if the genetic 

instrument was included in the regression model or there was no confounding by genotype 

(parameter 𝛾3 set to zero). This suggests that in the presence of time-varying genetic effects, linear 

regression will remain biased even where there is no unobserved confounding by traditional 

sources. Given the complexity of real-world exposure trajectories, this highlights the difficulty of 

interpreting cross-sectional estimates of a repeat measure exposure.  
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Table A2: Linear regression estimates, standard errors and bias when estimating the total effect of 

an exposure on an outcome (𝑿𝟎𝒀) using linear regression. Bias presented as “0.000” where -

0.001<mean bias <0.001.  

Confounding 

by U 

G included in 

analysis model 

Parameter 

set to zero 

Expected 

value 
Estimate (SE) Bias 

Absent No 𝛾3 0.52 0.520 (0.010) 0.000 

Present No 𝛾3 0.52 0.628 (0.011) 0.108 

Absent Yes 𝛾3 0.52 0.519 (0.011) -0.001 

Present Yes 𝛾3 0.52 0.636 (0.011) 0.116 

Absent No 𝛾5 0.4 0.429 (0.010) 0.029 

Present No 𝛾5 0.4 0.535 (0.011) 0.135 

Absent Yes 𝛾5 0.4 0.400 (0.011) 0.000 

Present Yes 𝛾5 0.4 0.516 (0.011) 0.116 

Absent No None 0.52 0.549 (0.010) 0.029 

Present No None 0.52 0.655 (0.011) 0.135 

Absent Yes None 0.52 0.520 (0.011) 0.000 

Present Yes None 0.52 0.636 (0.011) 0.116 
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