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Abstract

Quantifying the temporal dynamics of infectiousness of individuals infected with SARS-CoV-2 is crucial

for understanding the spread of the COVID-19 pandemic and for analyzing the effectiveness of

different mitigation strategies. Many studies have tried to use data from the onset of symptoms of

infector-infectee pairs to estimate the infectiousness profile of SARS-CoV-2. However, both statistical

and epidemiological biases in the data could lead to an underestimation of the duration of

infectiousness. We correct for these biases by curating data from the initial outbreak of the pandemic

in China (when mitigation steps were still minimal), and find that the infectiousness profile is wider

than previously thought. For example, our estimate for the proportion of transmissions occurring 14

days or more after infection is an order of magnitude higher - namely 19% (95% CI 10%-25%). The

inferred generation interval distribution is sensitive to the definition of the period of unmitigated

transmission, but estimates that rely on later periods are less reliable due to intervention effects.

Nonetheless, the results are robust to other factors such as the model, the assumed growth rate and

possible bias of the  dataset. Knowing the unmitigated infectiousness profile of infected individuals

affects estimates of the effectiveness of self-isolation and quarantine of contacts. The framework

presented here can help design better quarantine policies in early stages of future epidemics using

data from the initial stages of transmission.

Introduction

In an emerging epidemic, such as the current COVID-19 pandemic, information about key

epidemiological parameters of the causative infectious agent (SARS-CoV-2 in the case of COVID-19) is

crucial for monitoring and mitigating the spread of the disease. A central epidemiological parameter

which determines the time scale of transmission is the generation interval - the time between the

infection of the infector (first case) and of the infectee (secondary case). Measuring the generation

interval directly is hard in practice, as determining the exact time of infection is challenging. Thus, to
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infer the generation interval for an emerging infectious disease, researchers usually rely on two widely

reported epidemiological parameters: the incubation period - the time between infection with the virus

and the onset of symptoms (either for the infector or the infectee) - and the serial interval - the time

between onset of symptoms of the infector and infectee 1,2 (Figure 1). Key epidemiological delays, such

as incubation periods, serial intervals, and generation intervals, vary across hosts and transmission

events, and are thus described as distributions rather than fixed values.

Figure 1: Definitions of epidemiological time intervals. The incubation period is defined as the time between

infection and symptom onset (= for the infector, for the infectee). The serial interval (= ) is defined as− α
1

τ − α
2

τ

the interval between the onset of symptoms of two subsequent transmission events (infector and infectee) and the

generation interval is the time lapse between the infections of those individuals (= . TOST stands for Timeα
2

− α
1
)

from Onset of Symptoms to Transmission 3, and is defined accordingly as the time lapse between symptom onset in

the infector and the infection of the infectee (i.e., transmission time). The timeline at the bottom corresponds to the

notation used in the Methods section.

The generation-interval distribution plays a key role in determining the spread and control of emerging

epidemics such as the ongoing COVID-19 pandemic. At the population-level, the generation-interval

distribution links incidence of infection, particularly the epidemic growth rate r, with the reproduction

number R 4,5. At the individual level, it characterizes the infectiousness profile (i.e., the temporal
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evolution of infectiousness from the time of infection). In the case of COVID-19, short generation

intervals, driven by presymptomatic transmission, have limited the effectiveness of different mitigation

strategies, including contact tracing 6, case isolation, quarantine 7, and testing 8,9.

The generation- and serial-interval distributions can change over the course of an epidemic. For example,

they are affected by the behavior of the population and can be shortened by the introduction of

mitigation steps such as social distancing and case isolation, which limit the spread of the disease and

reduce the probabilities of transmission after symptom onset 10. Our study aims to estimate the

temporal dynamics of transmissibility of infected cases in the absence of intervention measures, noted

hereafter as the “unmitigated generation interval”. Unbiased estimates of the time profile of

transmissibility are important for inferring the effectiveness of self-isolation or quarantine policies in the

absence of other interventions.

In practice, estimating the unmitigated infectious profile is expected to be challenging, since even in the

absence of any mitigation policies, symptomatic individuals may self-isolate, reducing their own chances

of late transmission. To address this issue, we apply a strict data curation procedure to account for which

transmission events occurred both before major mitigation steps took place and before awareness of the

epidemic became widespread. Most available estimates of the generation-interval distribution

addressed the effects of mitigation only in a limited manner, not fully accounting for steps such as

contact tracing and case isolation 3,11,12

Even after minimizing mitigation and behavioral effects, estimating the generation-interval distribution

directly from contact tracing data remains difficult because the time-point of infection of both the

infector and the infectee are usually unknown. Instead, researchers estimate generation-interval and

incubation-period distributions by calculating the likelihood of observing all serial intervals in the

transmission pair dataset 3,6,11 (or else, they simply use the serial-interval distribution as a proxy for the

generation-interval distribution 13).

While the serial-interval-based framework has been widely applied to infer the generation-interval

distribution of COVID-19 3,6,7,11,12, there are several key methodological issues that could lead to

considerable biases. First, the distribution of realized serial intervals depends on the rate of the spread of

the disease as well as the direction from which they are measured: either forward from a cohort of

infectors who developed symptoms at the same time, or backward from a cohort of infectees 14. For

example, when the incidence of infection is increasing exponentially, individuals are more likely to have

been infected recently. Therefore, a cohort of infectors that developed symptoms at the same time will

have shorter incubation periods than their infectees on average, which will in turn affect the shape of

the forward serial-interval distribution. Instead, most analyses of serial-interval distributions assume that

the incubation periods of the infector and infectee follow the same distribution 7,11,12, and only a few

studies partially account for this dynamical bias 3,6. Second, incubation periods and temporal profile of

infectiousness are likely to be correlated across infectors - i.e, individuals that show symptoms later or

earlier are also more likely to infect others later or earlier, respectively. Most available studies make strict

assumptions on the relationship between the incubation period and the generation interval - either

assuming that they are independent 6,7,12 or that the time from onset of symptoms to transmission
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(TOST) is independent of the incubation period 11. Only a few studies have compared various correlation

models 3 or explicitly modeled the infectiousness profile relative to the incubation period 15. Finally,

biases can arise from the data collection process. For example, determining who infected whom based

on their symptom-onset dates can miss presymptomatic transmission. Likewise, long serial intervals may

represent multiple chains of transmissions where intermediate hosts were not correctly identified. These

biases can cause overestimation of the mean serial interval as well as the mean generation interval.

Currently, no available estimate for the generation interval deals with all the biases described above,

impairing our ability to accurately describe the infectiousness of SARS-CoV-2-infected individuals in the

absence of interventions. Here, we aggregate all available transmission data for Wuhan, China, in the

initial stages of the pandemic, when the effects of mitigation steps were minimal, and employ a

statistical framework that addresses the major sources of bias in estimating the generation interval

distribution. We estimate a median generation interval of 7.9 days (95% CI 6.8-9) and an average of 9.7

days (95% CI 8.3-11.2), suggesting that the infectious period is much longer than previously thought. We

demonstrate the effects of our updated estimate on the inference of effectiveness of case isolation and

contact tracing.

Methods

Data on serial intervals of transmission events were gathered from published and preprint literature,

using a literature survey as described in the supplementary information . In order to control for biases

introduced by later interventions, we focused on data from the early stages of the epidemic, when there

were almost no cases identified outside China. Twelve relevant datasets were identified: 10–12,16–24. In

total, the combined dataset contained 2,000 pairs, including duplicates. We cross-checked for duplicates

in the combined dataset in three steps (see figure S1): First, we removed pairs containing the same

“infector/infectee ID” (leaving 1685 pairs). Second, we looked at datasets containing sex and age

information of the contacts and identified as duplicates those with matching sex, age, and

symptom-onset date for both cases (identifying 931 unique transmission pairs in these sets). Lastly, we

looked at the datasets not containing information regarding the sex and age of the cases (additional 406

pairs) and added to the dataset only pairs with symptom-onset dates that did not occur already in the in

the first group (71 of the 406 cases were added, resulting in 1,002 transmission pairs in total). See figures

S2 and S3 for a visualization of the datasets as a function of the symptom-onset date.

We estimated the unmitigated generation interval by focusing on the first period of transmission in

China, thus minimizing the potential impacts of early interventions. To choose our analysis period, we

relied on previous analyses of the early-outbreak and the timeline of interventions in Wuhan and

mainland China. We quantified the forward serial-interval distributions based on the symptom-onset

dates of the infector. We found that the mean forward serial interval stayed constant until around the

17th of January, 2020 and decreases gradually (Figure 2). The clear negative trend in the mean serial

interval from January 17-18 onward matches the timing of the decrease in the effective reproduction

number R(t) for domestic cases in Wuhan, China estimated by Lipsitch et al. 25. Large uncertainties in

early serial interval data (before January 17) limited our ability to detect changes in the mean forward
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serial interval. Nonetheless, previous studies 14,25,26 found no clear signs of change in the growth of the

epidemic prior to the period between the 16th and the 19th of January. Hence we assumed that the

measures taken before January 20 such as changes in the China CDC emergency response levels 18 had a

minimal effect on transmission. Notably, strict restrictions on mobility (lockdown) were imposed in

Wuhan city on January 23, slowing down the spread of COVID-19 both inside and outside Wuhan 26.

Hence, we would expect to see substantial reduction of the epidemic growth rate as well as shortened

serial intervals starting with infectors infected a few days prior to this date. Based on this analysis, we

used the transmission pairs for which the infector developed symptoms between December 12, 2019 -

January 17, 2020 as our main dataset for estimating the unmitigated generation interval distribution.

This dataset includes a total of 77 transmission pairs with a mean serial interval of 9.1 days (7.9-10.2 95%

CIs), and a standard deviation of 5.2 days. This is substantially longer than the mean of 7.8 days

suggested by Ali et al. 10 for the early period of the epidemic, at least in part because their estimates

included infectors who developed symptoms up to January 22nd and were likely already subject to

effects on mitigation strategies. Other studies that did not differentiate different stages of the epidemic

estimated a much lower mean serial interval (4-6 days)7,11,16,24.
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Figure 2: The serial interval dataset and the estimates of its mean during the early-outbreak period. a, The

empirical distributions of forward serial intervals in the combined dataset, grouped based on the symptom-onset

dates of the infectors and visualized using a violinplot. For pairs with uncertainty regarding the exact dates of

symptom onset, we used a date in the middle of the uncertainty range. The violin shapes represent a kernel density

estimation of the underlying distribution. The median and interquartile range (percentiles 25-75) are presented

using dotted horizontal lines within the shape. The diamonds represent the data points for each of the dates of

infector symptom onset. The  dataset contains transmission pairs with infectors who developed symptoms from

December 12 onward. Dates prior to January 10 are not shown as the data are too sparse b, The estimates of the

mean serial interval, based on a parametric Bayesian inference (see Supplementary Information for details). The

error bars represent the 95% confidence interval (CI) of the estimates. The dashed horizontal line represents the
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observed mean serial-interval for the period up to January 17. Dates up to January 17, 2020, are highlighted in both

panels as they represent the period of unmitigated transmission.

Following Park et al. 14,27, our model incorporates the possible interaction of the generation-interval ( )τ
𝑔

with the incubation period of the infector( ) using a joint density function, denoted The use ofτ
𝑖

ℎ(τ
𝑖
, τ

𝑔
).

a joint distribution allows us to consider a correlation between the two periods. For example, it is likely

that infected individuals who develop symptoms later than average would also transmit later than

average, given that viral load peaks around the time of symptom onset.

When the epidemic is in equilibrium (i.e., the incidence of infection remains constant over time) we can

write down the probability density function of observing an infector-infectee pair whose 𝑠(τ|α
1
, α

2
)

symptom-onset dates differ by a specific period (serial interval) . This probability density function isτ
conditional on the infection time of the infector and the infectee relative to the symptom onsetα

1
α

2
 

time of the infector. As described in Figure 1, if we define the symptom onset time of the infector as

zero, this means that , and because the infector has to be infected before the infectee, thisα
1

< 0

requires that . Assuming equilibrium conditions, is equal to the joint distributionα
1

< α
2

𝑠(τ|α
1
, α

2
)

describing the generation interval and the incubation period of the infector , multiplied by theℎ(τ
𝑖
, τ

𝑔
)

probability density function of the distribution of the infectee's incubation period (denoted .𝑙(τ − α
2
)

This is a marginal distribution derived from by integration over , ):ℎ τ
𝑔

 𝑙(τ
𝑖
) =

0

∞

∫ ℎ (τ
𝑖
, τ

𝑔
)𝑑τ

𝑔

(1),𝑠(τ|α
1
, α

2
) = ℎ(− α

1
, α

2
− α

1
) × 𝑙(τ − α

2
)

where is the serial interval, and , are the infection times. The notations are further presentedτ α
1

α
2

together with the definitions in Figure 1. As is shown in equation (1), the two distributions

depend on the relative infection times of both the infector and the infectee (α1 and(ℎ(τ
𝑖
, τ

𝑔
),  𝑙(τ

𝑖2
))

α2). Although the exact time of infection is typically unknown, a possible exposure time window is

provided in many cases. To compensate for the lack of information, the model integrates over all possible

combinations of infector and infectee exposure times when estimating the parameters of the

distribution from the observed serial intervals of the transmission pairs:

(2)𝑆(τ) =
−∞

0

∫
α

1

τ

∫ ℎ(− α
1
, α

2
− α

1
) × 𝑙(τ − α

2
)𝑑α

2
𝑑α

1
.

Most previous analyses of the serial-interval distributions of COVID-19 have relied on this model, which

assumes a constant force of infection (i.e., the per capita rate at which susceptible individuals become

infected). However, in the beginning of an epidemic, the number of infections (and therefore the force of

infection) increases exponentially, creating a specific “backward” bias. When the force of infection is

increasing exponentially, a cohort of infectors that developed symptoms at the same time is more likely

to have been infected recently and thus to have shorter incubation periods, on average, than their

infectees. Infectors with short incubation periods will also have short generation intervals due to their
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correlations, meaning that individuals who transmit early after infection are over-represented. It is

important to correct for this bias by adding a factor 14:𝑒
𝑟α

1

(3)𝑆(τ) =
−∞

0

∫
α

1

τ

∫ 𝑒
𝑟α

1ℎ(− α
1
, α

2
− α

1
) × 𝑙(τ − α

2
)𝑑α

2
𝑑α

1
.

We used the incubation period distribution provided by a meta-analysis 28 29. The daily growth rates in

the early outbreak period in Wuhan in particular and in the rest of China were estimated by another

study 30 to be and , respectively. In our main analysis, we used the growth𝑟 = 0. 08 𝑑−1 𝑟 = 0. 10 𝑑−1

rate measured for mainland China ( ), taken as a mean growth rate representing the𝑟 = 0. 10 𝑑−1

dynamic of the early outbreak relevant for most of the transmission pairs. We further present a

sensitivity analysis for this parameter (see Results section). We note that daily growth rate estimates of

0.08-0.10 d-1 are lower than previous estimates in the range of 0.17-0.3 d-1 31,32 due to case ascertainment

corrections 31. For the functional form of , we used a bivariate log-normal distribution. Parameters forℎ
the incubation period were taken from the meta-analysis by Xin et al.28 leaving three free parameters:

the shape and the scale of the log-normal distribution defining the generation-interval univariate

distribution, and a correlation parameter (defined as the correlation between the logged incubation

period and the logged generation interval). In order to test the sensitivity of our results to the choice of a

log-normal distribution, we also considered the alternative form used in Ferretti et al. (2020)3 in

supplementary Figure S9.

We then chose the parameters that maximize the likelihood of the observed serial intervals (theθ τ
𝑗
𝑜𝑏𝑠

maximum likelihood estimate):

(4)θ =  𝑎𝑟𝑔𝑚𝑎𝑥
θ

ℎ

 𝐿(τ
𝑗
𝑜𝑏𝑠|θ

ℎ
) = 𝑎𝑟𝑔𝑚𝑎𝑥

θ
ℎ 𝑗

∑ 𝑙𝑜𝑔 (𝑆(τ
𝑗
𝑜𝑏𝑠)).

Sequential Least Squares Programming method, implemented in Python, was used to maximize the

log-likelihood33. We calculated the uncertainties of the estimates using bootstrapping: the dataset was

resampled with replacement (100 times for the main analysis and 100 times for sensitivity analyses) and

processed via the maximum likelihood framework. In addition, the growth rate (r) was sampled from the

uncertainty distribution found in a previous study of the early outbreak in China 30. We calculated the

confidence interval based on the 95% quantiles of the bootstrapping results.

We conducted three primary sensitivity analyses to investigate potential biases in our approach. First, we

tested how our estimate of the unmitigated generation-interval distribution is sensitive to our cutoff

date assumption by varying it between January 11 and January 25. We note that using serial interval

data from later dates are generally less reliable as they are affected by mitigation measures, which

prevent late transmissions. Second, we considered the possibility that long serial intervals may be caused

by omission of intermediate infections in multiple chains of transmission, which in turn would lead to

overestimation of the mean serial and generation intervals. Thus, we tried to refit our model after

removing long serial intervals from the data (by varying the maximum serial interval between 14 and 24
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days). Finally, we considered the possibility that the lack of negative serial intervals in early serial interval

data might have been caused by the incorrect determination of the direction of transmission, especially

given limited information about presymptomatic transmission in the beginning of the pandemic. To test

for potential biases, we refitted our model after switching the direction of transmission among randomly

selected infector-infectee pairs by varying the number of pairs switched (2, 4, 6, or 8 pairs out of 77) and

the maximal serial interval for which order switching is allowed (3, 5, or 7 days). For each combination,

the analysis was run 30 times with randomly sampled infector-infectee pairs.

Furthermore, we tested other possible sensitivities of the data to biases based on location of infection,

or the literature source of the data. To test the sensitivity to infection location, we stratified the  dataset

by where the infectors were infected (Wuhan vs outside of Wuhan) as detailed in the supplementary

information. To test for sensitivity to any specific literature source, we repeated the analysis while

removing one  dataset at a time, including all the transmission events that were duplicated also in other

datasets (defined by the infector and infectee ID).

Additional sensitivity analyses were performed for other aspects of the analysis. The effect of the

assumed growth rate was assessed by varying it between 0.04-0.16 d-1. Furthermore, the sensitivity of

the results to the choice of the lognormal bivariate distribution model was tested by comparison with

another model distribution given in Ferretti et al. 3 (see supplementary material for full details).

Results

We inferred the unmitigated generation-interval distribution of SARS-CoV-2 transmission based on an

integrative curated dataset, which focuses on the early-outbreak period in China.

We used the maximum likelihood framework to estimate the parameters of the joint bivariate

distribution of the generation interval and the incubation period, assuming a known incubation-period

distribution 28 with a mean of 6.3 days and a standard deviation of 3.6 days. We estimate that the

unmitigated generation-interval distribution has a median of 7.9 days (95% confidence interval (CI):

6.8-9), a mean of 9.7 (95% CI: 8.3-11.2) days and standard deviation of 6.9 (95% CI: 4.3-10.1) days.

Furthermore, we estimate a correlation parameter (see Methods) of 0.75 (95% CI: 0.5-0.9). Our

estimates are robust to the choice of data sources used in the analysis included (Figure S5).

We note that the estimated mean generation-interval is longer than the observed mean serial-interval

(9.1 days) of the period in question--in contrast to the common assumption that the mean generation

and serial intervals are identical, the mean forward serial interval, which we observe, can systematically

differ from the mean generation interval, which we aim to estimate here, due to dynamical effects.

During the exponential growth phase, the mean incubation period of the infectors is expected to be

shorter than the mean incubation period of the infectee - this effect causes the mean forward serial

interval to become longer than the mean forward generation interval of the cohorts that developed

symptoms during the study period. However, these cohorts of individuals with short incubation periods

will also have short forward generation (and therefore serial) intervals due to their correlations. The

intrinsic generation intervals we estimate are longer because they are not conditioned on short

incubation periods 14.
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The joint bivariate distribution and its marginal distributions are shown in Figure 3a. We find that our

framework is able to properly reproduce the realized serial interval distribution given the growth rate in

the early stages of the outbreak in Wuhan, China (Figure 3b). Using the inferred bivariate distribution, we

derived the distribution of time from onset of symptoms to transmission (TOST), shown in Figure S4. The

negative side of this distribution gives the pre-symptomatic transmission, which constitutes ≈20% (95%

CI: 6%-32%) of total transmission.
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Figure 3: The joint distribution of generation interval and incubation period. Representations of the inferred joint

distribution results are based on maximum likelihood analysis. a, The joint bivariate distribution (bottom left graph),

shown as contours over the plane of generation intervals (x-axis) and incubation period distribution (y-axis). The

correlation parameter (in log space, see Methods) was found to be 0.75(0.5-0.9 95% CI). The panel also shows the

univariate components of the joint distribution: the generation interval distribution (top graph, sharing the same

x-axis) and the incubation period distribution (bottom right graph, sharing the same y-axis). The incubation period

distribution was assumed to follow a log-normal distribution with a shape parameter of 0.53 and a scale parameter

of 5.5 days, following Xin et al. 28 . The dashed grey diagonal line describes equal incubation period and generation

interval (TOST equal to zero). Left of this line could be found the pre-symptomatic fraction of transmission. b,

Cumulative histogram of the empirical serial intervals and the parametric distribution derived from the maximum

likelihood joint distribution. The estimated serial interval distribution was derived using the likelihood calculation

given the reported growth rate of r=0.1/d 30 . For comparison the dash line represents the intrinsic serial interval

distribution, estimated by equation (2) with the parameters derived from the maximum likelihood analysis.

A comparison with the current available estimates of the generation interval distribution 3,7,11 reveals that

the inferred distribution has a heavier (right) tail (Figure 4) and a higher median (7.9 days compared to

5.4-5.8 days) and standard deviation (6.9 days compared to 3.3-3.9 days). For example, the gamma

distribution assumed by Johansson et al. (2021) to give an infectious period of about 10 days (and a peak

at 5 days) for the analysis of quarantine and isolation policies has a far smaller tail. One way to quantify

the difference in the tails of the different estimates is by comparing the proportion of transmission after

a certain time-point. When comparing the proportion of transmission after day 14, there are clear

differences from previously reported distributions. The distributions of Ferretti et al., He et al. and Sun et

al. indicate a residual fraction of transmission after 14 days of 2%-4%, while the distribution assumed by

Johansson et al. indicates only 0.2%. In contrast, our inferred generation-interval distribution predicts

that about 18.5% (95% CI of 10%-25%) of the transmission occurs after 14 days in the unmitigated

scenario.
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Figure 4: Comparison of the mean generation interval distribution with those of previous studies. The

generation-interval distribution inferred by maximum likelihood presented alongside available estimates from the

literature 3,7,9,11,34. a, The probability density functions of the distributions. The legend reports the median and

standard deviation of each of the distributions. b, The survival function of the generation interval distribution,

defined as the complement of the cumulative distribution, representing the residual fraction of transmission after a

designated time since infection. The inset shows a zoom-in on the period of 10-24 days after exposure, a period in

which there is a substantial difference between the current estimate and those from previous studies. The

highlighted area represents the 95% confidence interval of the maximum likelihood estimate.

In addition to the possible dynamical and statistical biases considered in our analysis, the resulting wide

generation interval distribution might be affected by biases in the data collection process as detailed in

the Introduction and Method sections. The estimated generation-interval distributions were sensitive to

the cut-off date with an estimated median of 6.5-8 days and estimated means of 7-10 days for periods

ending on January 16 to January 19, 2020 (Figure 5a-c and Figure S6).

Switching the order of some of the transmission pairs caused a decrease in both the median and mean

of the generation interval, as well as a decrease in the correlation parameter (Figure 5g-i, Figure S13).
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The sensitivity analysis to high serial-interval values caused a slight decrease in the mean generation

interval, but still resulted in a wide distribution. Removing the transmission pairs with the highest serial

intervals from the  dataset caused a small decrease in the generation interval distribution. For a removal

of the top 10% values, the inferred distribution has a median of 7.2 days and a mean of 8.3 days (Figure

5d-f, Figure S14). As switching the direction of transmission among randomly selected infector-infectee

pairs gives negative serial intervals (and thus lower mean serial interval) a decrease in the mean

generation interval distribution was expected. However, even when reordering 10% of the pairs the

distribution is wide: for example, the median of bootstrap estimates for the median generation interval

is 7.2 days (Figure 5h). These bootstrap estimates also yield substantial residual transmission at 14 days

(Figure 5i).
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Figure 5: Sensitivity analyses of the inferred generation interval. A comparison of the results of sensitivity analysis

to three factors: the period chosen to represent the unmitigated transmission (a-c), the inclusion of the longest

serial intervals in the  dataset (d-f), and the ordering of the transmission pairs(g-i). a, d, g, Cumulative histogram of

the empirical serial intervals and the parametric distribution derived from the maximum likelihood joint distribution.

The estimated serial interval distribution was derived using the likelihood calculation given the reported growth

rate of r=0.1/d 30, e, h, Best estimates and distributions of the resulting median of the inferred generation interval

distribution. Best estimates are marked by a black star. Ranges are given as boxplots. The box represents the

interquartile range (percentiles 25-75) and the whiskers represent the maximal range of the distribution apart from

outliers (defined as data points exceeding the interquartile range by a factor of 1.5). Each dot represents a single

bootstrapping iteration. The blue shaded region represents the values from previous studies 3,7,11 30, f, i, Best

estimates and distributions of the resulting residual transmission at 14 days since infection derived from the

inferred generation interval distribution. The best estimates and ranges are shown in the same manner as the

distribution parameters in panels30, e, h.

Another factor of uncertainty in the estimate is the growth rate we assume for the inference of the

distribution. Changing the assumed growth rate during this period had very little effect on the results,

with estimated mean increasing from 9.5-9.7 days, as assumed growth rates decreased from 0.16-0.04

d-1. These sensitivity analyses demonstrate the robustness of our conclusion: the unmitigated

generation-interval distribution is likely wider than previously thought.

Finally, to quantify the effect of our estimated generation interval distribution on the estimates of the

basic reproduction number R0, we use the growth rate estimated in a recent study of the early outbreak

dynamics in China 30. Combining our estimated generation interval distribution with the early growth

rate 5 we find R0 to be 2.2 with a confidence interval of 1.9-2.7 (Figure S7).

Discussion

In this work, we assembled transmission-pair data from 12 datasets representing the early-outbreak

period in China, and modeled the relationship between disease transmission and symptom onset using a

bivariate log-normal distribution. By applying a maximum-likelihood framework, we found that the

unmitigated generation-interval distribution has a heavier right tail than previously estimated 3,7,11,

corresponding to a larger mean and standard deviation. The bias in the previous estimates likely reflects

the effects of mitigation steps, such as quarantine of exposed individuals, as well as changes in

awareness-driven behavior, such as faster self-isolation after symptom onset, that prevent transmission

during late stages of infection. These sources of biases were not fully accounted for in previous

estimates, leading to substantial underestimation of the generation-interval distribution.

Furthermore, accounting for potential correlations between the incubation period and the generation

interval provided a better estimate of the proportion of pre-symptomatic transmission. Our results

suggest that, on average, only ≈20% (6%-32%) of the unmitigated transmission happens before

symptoms appear, lower than commonly stated values that already include mitigation effects (40-60%
3,7). When mitigation strategies are introduced, we would expect the amount of post-symptomatic

transmission to decrease, leading to an increase in the fraction of pre-symptomatic transmission. Thus, it
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is not surprising that our estimate of the proportion of pre-symptomatic transmission is lower than

previous estimates that looked at a later period 3,7. Furthemore, our results match the trend shown by

Sun et al. 7, in which the faster isolation of cases increases the pre-symptomatic fraction of transmission

and shortens the mean generation interval.

To check whether these results are sensitive to our choice of using a bivariate lognormal distribution to

characterize the joint distribution of the generation interval and the incubation period, we repeated our

analysis using a different functional form using an adjusted logistic TOST model following 3 (see

supplementary for details). Both models estimate large means and standard deviations of the generation

intervals, and a low proportion of pre-symptomatic transmission for the current dataset. Applying both

models to the data from Ferretti et al. 3 produced similar distributions with lower estimates for the mean

generation interval and higher per-symptomatic proportion (Figure S9). This indicates that the results

presented in this study are a product of the focus on the data prior to mitigation steps, in combination

with the correction for the growth of the epidemic.

Our analysis relies on datasets of transmission pairs gathered from previously published studies and thus

has several limitations that are difficult to correct for. Transmission pairs data can be prone to incorrect

identification of transmission pairs, including the direction of transmission. In particular, presymptomatic

transmission can cause infectors to develop symptoms after their infectees, making it difficult to identify

who infected whom. Data from the early outbreak might also be sensitive to ascertainment and

reporting biases. For example, people who transmit asymptomatically might not be identified. Moreover,

when multiple potential infectors are present, an individual who developed symptoms close to when the

infectee became infected is more likely to be identified as the infector. These biases might increase the

estimated correlation of the incubation period and the period of infectiousness. We have tried to deal

with these biases by using a bootstrapping approach, in which some data points are omitted in each

bootstrap sample. The relatively narrow ranges of uncertainty suggest that the results are not very

sensitive to specific transmission pairs data points being included in the analysis. We also performed a

thorough sensitivity analysis to address several of the potential biases such as the determination of

period corresponding to unmitigated transmission, the inclusion of long serial intervals in the  dataset,

and the incorrect orderings of transmission pairs (see Method). The sensitivity analysis shows that

although these potential biases can decrease the inferred generation interval distribution, our main

conclusions about the long unmitigated generation intervals remained robust with a high median and

residual transmission after 14 days compared to previous estimate (Figure 5) .

Our estimates of the unmitigated generation-interval distribution can inform quarantine policy. The tail

of the survival function (Figure 4b) indicates that individuals released from quarantine at day 14 still

have, on average, ≈18% of their transmission potential. We also found a strong correlation of the

incubation period with the generation interval, accentuating the importance of quickly isolating

individuals as soon as they show symptoms.

Determining the optimal period of quarantine for individuals exposed to COVID-19 is hard, as it needs to

balance the prevention of further transmission with personal and economic costs of longer quarantine. It
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is important to consider the basic risk of transmission underlying those considerations, by looking at the

distribution of infectiousness in the absence of mitigation measures. Johansson et al.’s (2021) estimates

for the residual transmission across different quarantine policies (e.g., with and without testing before

release) have served as the basis for recent recommendations by the U.S. Centers for Disease Control

and Prevention35 for a 10-day quarantine period (without PCR testing) for exposed individuals. As can be

seen in Figure 4b, our results suggest that this analysis underestimates the residual transmission after 10

days by an order of magnitude for the average individual (35% of the transmission versus 4%). One of the

first and ongoing policies from mitigating transmission is mandatory self-isolation for individuals

developing COVID-19 related symptoms 9,36. We estimate a strong correlation of incubation period and

infectiousness, enhancing the contribution of self-isolation to transmission prevention. However, even

when considering self-isolation of 70% of individuals immediately upon symptoms, as Johansson et al. 9

assumed in their analysis, we still find a residual transmission of 11.8% compared to 1.3% in Johansson

et al.’s estimates (Figure S8). It should be noted that using PCR or rapid tests during quarantine has a

dramatic potential to reduce the residual transmission after quarantine, and hence is required in many

countries. The current study does not analyse the possible benefits of such policies, but only of

self-isolation by individuals who developed COVID-19 symptoms.

The basic reproduction number R0 estimates derived here are close to reported values from early in the

epidemic value18,37–39.

The current analysis provides an updated benchmark for the unmitigated profile of SARS-CoV-2

infectiousness. Furthermore, with the emergence of new variants of concern, which may exhibit altered

transmission dynamics than previously dominant wild type strains 40, future studies could use our

framework to update estimates of the generation interval for these emerging strains even under

mitigation conditions and with inference of the correlation to the incubation period.

Taken together, our results demonstrate the importance of considering possible biases in the

serial-interval data used for estimating the generation-interval distribution, as well as the underlying

assumptions made when estimating the distribution from the source data. Our analysis provides a view

of the infectiousness profile of an infected individual in absence of mitigation steps, which is a key

ingredient of many models used for guiding policy.
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Data and code availability
All study data are included in the article, SI appendix, and Dataset S1.

All code is available in Jupyter notebooks found in

https://gitlab.com/milo-lab-public/the-unmitigated-profile-of-covid-19-infectiousness
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Supplemental Figures

Figure S1: The obtained dataset of transmission pairs. The merged datasets were filtered to remove

duplicates in three stages: first removal of transmission pairs with the same infector and infectee id.

Second, identification of duplicates sharring the same symptom-onset dates as well as sex and age

information. Lastly, transmission pairs without sex and age information were added only if their

symptom-onset dates didn’t already occur in the dataset.
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Figure S2: The dataset of transmission pairs - infectee symptoms onset date vs. infector symptoms

onset date. The observed bivariate distribution of time of symptoms development is shown via a hexbin

graph. The plane is divided into hexagons that are colored according to the number of data points in the

dataset they represent. The marginal empirical distributions are shown using a histogram on the sides.

The dotted line represents data points for which the symptoms’ onset date of the infector is the same as

that of the infectee.

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.21266051doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.17.21266051
http://creativecommons.org/licenses/by-nc/4.0/


 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.21266051doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.17.21266051
http://creativecommons.org/licenses/by-nc/4.0/


Figure S3: The dataset of transmission pairs as a function of the infector symptoms onset date. a,

Scatter plot of serial intervals plotted against the symptoms onset date of the infector. The three levels of

filtering are color-coded, while the shape of the marker represents the reference from which the data was

taken. b, The cumulative number of cases as a function of the infector symptoms onset date, where the

data is divided between the three levels of filtration. The inset focuses on the period that at its end

interventions were made. c, The cumulative number of cases as a function of the infector symptoms

onset date, where the data is divided between the data sources. The dataset is shown after filtrating by

ID, sex & age and the addition of unique pairs (no duplicates). The inset focuses on the period that at its

end interventions were made.
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Figure S4: The distribution of time from onset of symptoms to transmission (TOST). Derived from the joint

bivariate lognormal distribution.

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.21266051doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.17.21266051
http://creativecommons.org/licenses/by-nc/4.0/


Figure S5: Sensitivity analysis regarding the inclusion of a dataset from a specific source. Beginning

with the complete dataset of transmission pairs with infector onset until 17 January, 2020 (after filtering

by ID, sex & age and adding unique pairs, see S2), partial datasets were created by omitting all

transmission pairs from each source of data and all its duplicates in the other datasets. a, The number of

transmission pairs for each of the partial datasets, excluding pairs from a specific source dataset and

their duplicates in other datasets. b, Maximum likelihood estimates of the bivariate incubation period

and generation interval distribution. The uncertainty range of the maximum likelihood estimate of the

complete dataset is also shown for comparison.
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Figure S6: Sensitivity analysis regarding the choice of period for analysis. Maximum likelihood

estimates of the bivariate incubation period and generation interval distribution were made for datasets

containing the transmission pairs with infector onset date up to a specific date. Best estimates were

derived for each of the datasets. Uncertainty estimates were derived by bootstrapping, through sampling

with replacement from the dataset and sampling from the distribution of growth rates 30. a, Best
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estimate for the generation interval distribution probability density function for periods ending at dates

in the range of 11-25 January, 2020. b-d, Best estimates and distributions of the resulting parameters of

the bivariate distribution of incubation period and generation interval. Best estimates are marked by a

black star. Ranges are given as boxplots. The box represents the interquartile range (percentiles 25-75)

and the whiskers represent the maximal range of the distribution apart from outliers (defined as data

points exceeding the interquartile range by a factor of 1.5). e-f,. The mean generation interval and the

fraction of pre-symptomatic transmission, derived from the results. The best estimates and ranges are

shown in the same manners as the distribution parameters in panels b-d.
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Figure S7: Estimates of R0 based on the inferred generation interval distribution. a-b, Bootstrapping

results of the parameters of the generation interval distribution and the resulting estimates for R0. In the

process of bootstrapping, the dataset of 77 transmission pairs was resampled with returns. In addition,

the growth rate (r) was sampled from the distribution found in a recent study 30 a, Estimates of the mean

and standard deviation of the generation interval. Each point represents the maximum likelihood

estimate for a single run in a bootstrap process. The point was colored according to the sampled growth

rate. b, The distribution of estimates of R0 derived from the generation interval distribution and growth

rate. The box represents the interquartile range (percentiles 25-75) and the whiskers represent the

maximal range of the distribution apart from outliers (defined as data points exceeding the interquartile
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range by a factor of 1.5). The mean (with its 95% confidence interval) and the standard deviation is given

in the legend. The points are colored according to the sample growth rate, as in panel a. c, The

dependence of R0 estimates on the period taken in the analysis. The boxes represent the interquartile

range (percentiles 25-75) and the whiskers represent the maximal range of the distribution apart from

outliers (defined as data points exceeding the interquartile range by a factor of 1.5). The points are

colored according to the sample growth rate, as described in the legend.
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Figure S8: The residual transmission accounting for self-isolation. The residual transmission under the

conjecture that 70% of individuals self-isolate upon the development of symptoms was calculated as a

weighted average of the regular survival function (shown in Figure 4b) and the residual transmission

conditioned on the self-isolation function. This analysis was performed for the distribution of generation

intervals inferred by maximum likelihood as well as for best available estimates from the literature
3,7,9,11,34 . The residual transmission conditioned on self-isolation function is calculated through the

integration of the bivariate distribution of incubation period and generation interval, on the relevant

quadrant (the probability summed on incubation and generation interval greater than a specific value).

The inset shows a zoom-in on the period of 10-20 days after exposure, a period in which there is a

substantial difference between the current estimate and those from previous studies. The highlighted

area represents the 95% confidence of the maximum likelihood estimate.
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Figure S9: Comparison of the current dataset and model with that of Ferretti et al. The maximum

likelihood framework was used to fit both the current dataset and the one provided in the Supplementary

Figure S1 of Ferretti et al. The datasets were fit using either the lognormal bivariate model described in

the Method section, or a reconstructed model following 3 adjusted by adding a parameter for shifting the

TOST function over the x-axis. a, The empirical cumulative distribution of serial intervals, comparison

between the dataset of Ferretti et al. 3 and the current dataset curated in this study. b, Maximum

likelihood fits for the dataset provided in the Supplementary Figure S1 of Ferretti et al. c,. Maximum

likelihood fits for the current dataset. d,. The marginal generation interval distributions of the maximum

likelihood fits. The mean and standard deviation are provided in the legend.
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Figure S10: Sensitivity analysis to the growth rate. The mean of the generation interval distributions

were estimated using the maximum likelihood fits for the dataset with growth rates in the range of

0.04-0.16 d-1. Estimates of the uncertainty were obtained using bootstrapping.
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Figure S11: Stratification of the serial interval data by the location of infection. A comparison of the

mean of the observed distribution of serial intervals divided to four time periods of the infector symptom

onset, and stratified by the infection location of the infector and infectee.
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Figure S12: Sensitivity analysis to the definition of the period of interest for infectors that were

infected in or outside Wuhan. A comparison of the resulting maximum likelihood estimates where the

period of interest was defined separately for infectors who were infected in or outside of Wuhan. a, The

shapes of the resulting generation interval distribution. For comparison, the main analysis’ maximum

likelihood is presented together with its 95% interval (the highlighted area). b, Estimates of the median

generation intervals and the 90% interquartile-range as function of the period of interest, defined

separately for infectors who were infected in or outside of Wuhan. c, Number of transmission pairs

analysed as function of the period of interest, defined separately for infectors who were infected in or

outside of Wuhan. d, Estimates for the correlation between incubation period and generation interval

parameter as function of the period of interest, defined separately for infectors who were infected in or

outside of Wuhan.

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.21266051doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.17.21266051
http://creativecommons.org/licenses/by-nc/4.0/


 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.21266051doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.17.21266051
http://creativecommons.org/licenses/by-nc/4.0/


Figure S13: Sensitivity analysis to the pairs’ order of infections. Estimates for the bivariate incubation

period and generation interval distribution were obtained for adjusted datasets in which the order of

transmission was switched between the infector and infectee (giving a negative serial interval). The

analysis was performed by varying the fraction of pairs switched (0-0.1) and the maximal serial interval

for which order switching is allowed (3-7 days). For each combination, the analysis was run 30 times

while switching the pairs at random. a, The serial interval cumulative distribution averaged over all (90)

runs with 5% of the pairs switched (chosen as an example). The estimate for the distribution’s parameter

was taken as the median across 90 runs. For comparison the original observed serial intervals cumulative

distribution and the fit of the models are given. b, The resulting estimates of the bivariate incubation

period and generation interval distributions are presented via the correlation parameters and median

generation intervals. Each point represents a single run, given a percent of pairs switched and a threshold

value. The large circles represent the median of the estimates when aggregating runs with a given

percent of switched pairs, with error bars corresponding to their interquartile range (25%-75% of the

results). For comparison the blue diamond represents the original estimate of the current study, with its

uncertainty estimate.
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Figure S14: Sensitivity analysis to the top values of serial intervals. The generation-interval distribution

is inferred by maximum likelihood when the transmission pairs with the highest serial intervals are

removed. a, The probability density functions of the distributions. The legend reports the median and

standard deviation of each of the distributions, as well as the number of transmission pairs remaining in

the  dataset after the removal of serial intervals exceeding the specified value. b, The survival function of

the generation interval distribution, defined as the complement of the cumulative distribution,

representing the residual fraction of transmission after a designated time since infection. The inset shows

a zoom-in on the period of 10-24 days after exposure, a period in which there is a substantial difference

between the current estimate and those from previous studies.
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Supplementary information

Extended methods

Literature survey for serial-interval data

A literature survey was conducted in order to gather data on serial intervals of transmission events from

published and preprint literature. The survey was composed using a “google scholar” inquiry containing

the phrases: “serial interval” + “COVID” + “china”. Twelve relevant datasets were identified: 10–12,16–24

Calculation of the mean serial interval for cohorts of transmission pairs that occurred

on the same day
In order to compensate for the scarce data with early dates of infector’s onset, we used a simple

probabilistic model with Baysian inference to derive crude estimates of the mean serial interval as a

function of the infector symptoms onset date. For each date, the serial intervals of infectors that

developed symptoms on that day, were assumed to have a Student t distribution such that the mean,

standard deviation and degrees of freedoms were random variables sampled from normal, uniform and

exponential distributions accordingly. A markov chain monte carlo method was then used to estimate

the mean serial interval and its uncertainty (See Results and Figure 2b).

Sensitivity analysis to the period of interest

For each of the dates between January 11-25, 2020, we extracted the dataset consisting of the

transmission pairs with infector onset symptoms up to that date. We rerun the maximum likelihood

framework on the extracted datasets. Furthermore, in order to obtain uncertainty estimates we used a

bootstrapping method. In the bootstrapping process we resampled with replacements 100 times and

processed via the maximum likelihood framework. In addition, the growth rate (r) was sampled from the

distribution found by a study of the early outbreak in China 30

Sensitivity analysis to the infection location of the infector

The transmission pairs dataset contains data from various cities and provinces in China. The mitigation

steps were enacted at different time points across China, first in Wuhan and later in other cities and

provinces. Previous analysis showed substantial growth rate differences across provinces 41, but it seems

that when corrected for case ascertainment, the observed difference in growth rate between Wuhan and

the rest of China is small (0.08/d vs. 0.1/d) 30.

In our main analysis, we do not differentiate transmission pairs by location. Thus, spatial effects could

affect our results in two ways: via the estimated growth rate or via the period chosen for analysis as an

approximation for unmitigated transmission. Figure S10 shows the sensitivity of the results to a change
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in the growth rate in the range of 0.04-0.16 d-1; Estimates for the mean generation interval change in the

range of 8.1-9.1 days. Specifically, assuming a growth rate of 0.08/d instead of 0.1/d has a minimal effect

on the main results of the analysis.

We further test how the duration of unmitigated period affects the results of the analysis when the

dataset is stratified by the infection location of the infectors and infectee. Figure S11 compares the mean

observed serial intervals when the infector and infectee were infected in or outside of Wuhan. We

expect that Wuhan to Wuhan transmissions will be shorter than transmissions from Wuhan to the rest of

China, but we do not find significant differences, as the data for transmission pairs from Wuhan is scarce.

We also check the sensitivity of the generation-interval-distribution estimates to our choices of the

unmitigated period, when it is defined separately for those pairs whose infector have been infected

inside or outside Wuhan (shown in figure S12). Our analysis suggests that reasonable changes in the

unmitigated period have minor effects on our main estimates (e.g. the median generation interval and

the 90% of the distribution). For example, taking only pairs with an infector that was infected in Wuhan

and developed symptoms until January 15 or pairs with an infector that was infected outside of Wuhan

and developed symptoms until January 21 leads to a median generation interval of 6.9 days, in

comparison to 7.9 days in our main analysis. Both are substantially larger than previous reports 3,7,11.

Comparison with another model of infectiousness

To check whether these results are sensitive to our choice of using a bivariate lognormal distribution to

characterize the joint distribution of the generation interval and the incubation period, we repeated our

analysis using a different functional form using an adjusted logistic TOST model following 3. Ferretti et al.

modelled the transmission by assuming a TOST distribution with a skewed-logistic shape that is

dependent on the incubation period (only on the left side).
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We use our maximum likelihood framework to estimate the generation interval distribution of the

adjusted form based on our compiled dataset. Furthermore, we fitted both our models and the adjusted

model to the serial interval dataset provided in Ferretti et al. supplementary Figure S1. Results of the

comparison are presented in Figure S9.
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