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Abstract	

Introduction: Currently, sub-second monitoring of neurotransmitter release in humans can only be 

performed during standard of care invasive procedures like DBS electrode implantation. The 

procedure requires acute insertion of a research probe and additional time in surgery, which may 

increase infection risk. We sought to determine the impact of our research procedure, particularly 

the extended time in surgery, on infection risk.  

Methods: We screened 607 DBS electrode implantation procedures performed at Wake Forest 

Baptist Medical Center between January 2011 through October 2020 using International 

Classification of Diseases (ICD) codes for infection. During this period, 116 cases included an IRB 

approved 30-minute research protocol, during the DBS electrode implantation surgery, to monitor 

sub-second neurotransmitter release. We used Fisher’s Exact test (FET) to determine if there was a 

significant change in the infection rate following DBS electrode implantation procedures that 

included, versus those that did not include, the neurotransmitter monitoring research protocol.  

Results: Within 30-days following DBS electrode implantation, infection was observed in 7 (1.43%) 

out of 491 procedures that did not include the research procedure and 2 (1.72%) of the 116 

procedures that did include the research procedure. Total infection rates (i.e., not constrained by 30-

day time window) for all non-research cases was 28/491 (5.70%) and only 4/116 (3.45%) for research 

inclusive cases. Notably, all types of infection observed were typical of those expected for DBS 

electrode implantation.  

Conclusion: Total infection rates are not statistically different in patients who performed the research 

procedure (3.45% vs. 5.70%; p = 0.4872, FET) and not statistically different across research and non-

research groups within 30-days following the research procedure (1.72% vs. 1.43%; p = 0.684, FET). 

Our results demonstrate that the research procedures used for sub-second monitoring of 

neurotransmitter release in humans can be performed without increasing the rate of infection.  
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Introduction 

There is great promise in leveraging opportunities in the operating room (OR) to conduct human 

neuroscience research. Deep Brain Stimulation (DBS) in particular lends itself to research, as the 

procedure typically entails intraoperative electrophysiological assessments of neural targets; thus, 

research data can be acquired with relatively minor protocol changes [1–5]. This has allowed 

research teams to make breakthrough discoveries using data collected in the OR during DBS 

electrode implantation procedures [1–16]. Notable innovations include first-of their kind 

measurements of neurotransmitters [1–5,7,8], including dopamine [1,2,4,5,12], serotonin [3,4,12], 

and adenosine [7,8] in humans. Other advances include single unit recordings from substantia nigra 

[6] and expanding DBS targeting to provide symptom relief in treatment-refractory depression, 

substance use disorder, Alzheimer’s disease, and obsessive-compulsive disorder [9–11,13–16].  

One potential limiting factor in conducting translational research in the OR is the possibility that the 

added OR time necessary to conduct experiments may increase infection risk [17,18]. Infection risks 

following DBS surgeries are well described and provide a good basis for comparison. A metanalysis 

covering 1354 patients across 23 articles reported a 6.9% overall risk of infection following DBS 

electrode implantation surgeries [19]. Similarly, one large single-center study of 447 DBS patients 

identified an overall infection rate of 5.82% (26 patients); this study also identified a 30-day infection 

rate of 2.01% (9 patients) [17]. This 30-day infection rate is corroborated by other large, single-

institution studies, including a study of 273 patients with a median time to infection of 1 month that 

reported an infection rate of 3.1% across procedures for primary DBS electrode placement [20]. To 

date, however, no study has investigated whether adding OR time due to a predefined research 

protocol increases infection risk after elective surgery. 

Our group has over a decade of data and experience measuring neurotransmitters while patients 

complete behavior tasks during DBS electrode implantation surgeries [1–5,12]. These experiments 

have added a maximum of 30 minutes to the scheduled OR time. Thus, we have ample research and 

surgical records to retrospectively explore whether there are group differences in post-operative 

infection rates between patients receiving DBS who participate in research (‘research’) and who do 

not participate in research (‘non-research). Here, we compare the 30-day and time unconstrained 
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post-operative infection rates of research (N=491) and non-research (N=116) groups at our 

institution to investigate whether these experiments increased infection risk.  

Materials	and	Methods	

The Institutional Review Board at Wake Forest University Health Sciences approved all procedures 

described for this retrospective study (IRB00064371) and for our ongoing research protocol in the 

DBS operating room (IRB00017138). Under IRB00017138, research participants gave their written 

informed consent prior to participation in the research study. The data reported in this manuscript 

are not publicly available due to containing identifying information that would compromise the 

privacy of patients and research participants whose data are deidentified and summarized in this 

study. 

Clinical Data 

We screened all DBS electrode implantation procedures performed at Wake Forest Baptist Medical 

Center between January 2011 through October 2020 using International Classification of Diseases 

(ICD) codes for infection. These ICD codes included: T85.731 (Infection and inflammatory reaction 

due to implanted electronic neurostimulator of brain); T85.734 ( Infection and inflammatory reaction 

due to implanted electronic neurostimulator, generator), 61867 (First Electrode with microelectrode 

recording, typical), 61868 (Second Electrode on same side with recording, other side), 95983 

(Intraoperative analysis / programming), 61885 (For single electrode), 61886 (For multiple 

electrodes), 61880 (Electrode removal / revision), 61888  (Generator removal / revision, use for 

attaching previously placed lead); Z45.42 (DBS Phase / Stage 3, generator change).  

We further screened the total number of DBS procedures using the medical record number (MRN) of 

all patients who received DBS and participated in our research protocol (Tab. 1). The research and 

non-research groups were examined separately. 

Our research protocol includes measuring neurotransmitters from a research microelectrode that is 

put in place prior to the Tungsten functional mapping microelectrode [1–4,12]. Our research targets 

(the caudate, putamen, and thalamus) are anatomically superior to therapeutic targets used in DBS 

(the STN, GPi, and thalamus), thus use of our research electrode is typically performed just prior to 

functional mapping with tungsten microelectrodes (provided by FHC inc.) [1–4,12]. While the 

research team measures neurotransmitter levels, participants complete behavioral tasks displayed 

on a computer monitor and input decisions using a standard gaming controller [1–4,12]. This 

research protocol is limited to 30 additional minutes maximum added to DBS surgery time and 

requires an informed consent process that takes place ahead of the surgery [1–4,12]. Research 
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records were also screened to determine the number of patients consenting to versus completing 

research protocols during their DBS surgeries. 

Statistics 

All statistical analyses were conducting using RStudio [21]. We used Fisher’s Exact test (FET) to 

compare overall and 30-day infection rates following DBS electrode implantation procedures across 

the cohorts that did and did not participate in our DBS research protocol.  

Results 

We identified 607 DBS electrode implantation procedures performed at Wake Forest Baptist Medical 

Center between January 2011 through October 2020 using our specific ICD codes for infection (Fig. 

1). Of those 607 cases, 491 procedures across 487 patients met criteria for DBS cases that did not 

include the research protocol (‘non-research’), and an additional 116 procedures across 116 patients 

met criteria for DBS cases that did include the research protocol (‘research’). For the non-research 

group, the average age was 70.65 +/- 12.64 years, with 36.46% female and 63.54% male. For the 

research group, the average age was 68.17 +/- 9.73 years, with 25.86% female and 74.14% male.  

Of the 491 non-research DBS cases, there were 7 infections within 30 days of the DBS procedure 

(1.43% of total cases) and 28 infections not constrained by 30-day time window (5.70%) (Fig. 2). Of 

the 116 research DBS cases, there were 2 within 30 days of the DBS procedure (1.72% of total) and 4 

infections not constrained by 30-day time window (3.45%) (Fig. 2). Using FET, we determined that 

there is no statistically significant difference between the non-research and research DBS groups in 

the 30-day infection rates (1.43% vs. 1.72%; p = 0.684, FET), or the overall infection rates (5.70% vs. 

3.45%; p = 0.4872, FET). 

The infectious pathogens in the research group were reported to be: Staphylococcus aureus, 

Methicillin-sensitive Staphylococcus aureus (MSSA), Coagulase-negative staphylococci (CoNS), and 

Serratia marcescens. All of these pathogens have been reported in the literature as potential causes 

of post-operative infections after DBS, with the Staphylococcus genus the most common culprit [22]. 

We also identified the yearly number of patients who were approached for consent to participate in 

research, and the actual number of patients who completed the research study starting in April 2012 

and continuing through December 2020 (Tab. 1). The diagnoses of consented patients were also 

identified (Tab. 2). Reasons for consenting but not completing a research protocol can be influenced 
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by the individual anatomy of each participant (i.e. no good trajectory connecting striatum and 

target).  

Discussion/Conclusion	

Our results investigating the infection rates of DBS surgery patients with and without a 30-minute 

invasive research procedure during DBS electrode implantation demonstrate that there is no 

difference in overall and 30-day infection rates between groups. This is consistent with the 

conclusion that these experiments can be performed without increasing the risk of infection in these 

patient populations. Further confidence in our results can be found in a comparison to studies 

reporting similar overall and 30-day infection rates to our results. Our 30-day infection rates of 1.43% 

for non-research and 1.72% for research procedures are comparable to—and even lower than—

similar studies reporting 30-day infection rates of 2.01% [17] and 3.1% [20] where intracranial 

research was not performed. Likewise, our overall infection rates of 5.70% for non-research and 

3.45% for research cases are comparable to, and lower than, similar studies reporting 6.9% [19] and 

5.82% [17]. The infectious pathogens reported for the research infections (Staphylococcus aureus, 

MSSA, CoNS, and Serratia marcescens) have all been reported as potential infectious causes in post-

operative DBS infections [22]. This provides further support that the 30-minute research period 

introduces no new infection related risks to patients.  

There are a number of potentially influential factors in maintaining low infection rates while 

conducting translational research in the DBS OR. First and foremost, all research electrodes in our 

study go through independently validated sterilization procedures typical of all surgical equipment 

requiring sterilization [1–4]. During the research procedure, the neurosurgeon leads the clinical staff 

and maintains the sterile field while handling all equipment within the sterile field. We have limited 

the research protocol to a maximum of thirty minutes of additional time in surgery. Should the 

research tasks be delayed or extended for any reason the research activities are to be prematurely 

terminated at the thirty-minute threshold. This is done primarily to avoid unbounded delays in the 

surgery so that patient safety and comfort are maintained as much as possible. All patients who are 

candidates for DBS-electrode implantation surgery are offered the opportunity to participate. Those 

that choose to volunteer may be among the most likely to be capable of post-surgical selfcare that 

would aide in minimizing post-surgical infections. In this retrospective analysis, we do not have the 

appropriate data to assess this possibility, but it is potentially a major factor in the low infection rates 

we observe. The similarly low infection rates in the non-research group suggests that if this were the 

explanation for low infection rates then the comprehensive process of screening potential candidates 

for DBS-surgery at our institution would be the causative factor.   
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Research, including this current study, that shares information about the risks of observational 

human research studies during DBS are necessary to verify the anticipated safety of new applications 

of intracranial research protocols in the neurosurgery setting. The DBS-electrode implantation 

procedure is a safe and relatively low risk procedure as has been demonstrated repeatedly in the 

past [1–6]; it also affords unique access to areas of the human brain that have not been accessible in 

the past. Measurements of neurotransmitters, single units, and local field potentials in the human 

brain may provide new information about brain function and the mechanisms underlying disorders 

that may aid in improving the efficacy of DBS treatment [1–4,6,11–13] or in the development of 

novel neurosurgical goals. In addition to basic knowledge generation, these studies may also lead to 

the development of novel biologic markers of disease and treatment management. Our 

demonstration that these kinds of research protocols can be performed without an increase in 

infection rates should – with appropriate expertise, care, and consideration – encourage further 

intracranial investigation of human brain function. Our results show that intracranial recordings of 

sub-second neurotransmitter release in a time-extending research protocol utilizing a novel research 

probe are possible without increasing infection rates.  
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Figures		

	

Fig. 1. Flowchart demonstrating the acquisition and filtering of deep brain stimulation (DBS) 

procedures (or cases) from the electronic medical record (EMR) using International Classification of 

Diseases (ICD) codes. 
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Fig. 2. Comparison of infection rates across the research and non-research groups after deep brain 

stimulation (DBS) neurosurgery. Infection rates are also compared across the 30-day and 

unconstrained time windows after neurosurgery. 
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Yearly Patients Consented for DBS Research Surgeries 

Sorted by patients who completed the study versus consented only 

Year Total 
Patients 

Consented 

Total 
Patients 

Completed 

Total 
Patients 

Consented 
Only 

% Patients 
Completed 

% Patients 
Consented 

Only 

2012 4 4 0 100% 0% 

2013 23 17 6 74% 26% 

2014 20 14 6 70% 30% 

2015 9 7 2 78% 22% 

2016 13 11 2 85% 15% 

2017 14 10 4 71% 29% 

2018 24 18 6 75% 25% 

2019 23 15 8 65% 35% 

2020 9 8 1 89% 11% 

 

Tab. 1. Total numbers of patients who are consented for, and ultimately complete, a research 

protocol during deep brain stimulation (DBS) neurosurgery. This data starts in April 2012 and 

continues through December 2020.  
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Diagnoses of Patients Consented for DBS Research Surgeries 

Sorted by patients who completed the study versus consented only 

Diagnosis Total Patients 
Consented 

Total Patients 
Completed 

Total Patients 
Consented 

Only 

% Patients 
Completed 

% Patients 
Consented 

Only 

Parkinson's 
Disease 

97 73 24 75% 25% 

Essential 
Tremor 

36 28 8 78% 22% 

Dystonia 6 3 3 50% 50% 

 

Tab. 2. Diagnoses of patients who are consented for, and ultimately complete, a research protocol 

during deep brain stimulation (DBS) neurosurgery. This data starts in April 2012 and continues 

through December 2020. 
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