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Abstract

Cerebral microbleeds (CMBs) are associated with white matter damage, various neu-

rodegenerative and cerebrovascular diseases. CMBs occur as small, circular hypointense

lesions on T2*-weighted gradient recalled echo (GRE) and susceptibility weighted imag-

ing (SWI) images, and hyperintense on quantitative susceptibility mapping (QSM) images

due to their paramagnetic nature. Accurate detection of CMBs would help to determine

the CMB lesion count and distribution, which would be further useful to understand the

clinical impact of CMBs and to obtain quantitative imaging biomarkers. In this work, we

propose a fully automated, deep learning-based, 2-step algorithm, using structural and

anatomical properties of CMBs from any single input image modality (e.g. GRE / SWI /

QSM) for their accurate detection. Our method consists of an initial candidate detection

step, that detects CMBs with high sensitivity and a candidate discrimination step using
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a knowledge distillation framework to classify CMB and non-CMB instances, followed

by a morphological clean-up step. We used 4 datasets consisting of different modalities

specified above, acquired using various protocols and with a variety of pathological and

demographic characteristics. On cross-validation within datasets, our method achieved

a cluster-wise true positive rate (TPR) over 90% with an average of less than 2 false

positives per subject. Our method is flexible in terms of the input modality and provides

comparable cluster-wise TPR and a better cluster-wise precision compared to existing

state-of-the-art methods. When evaluated across different datasets, our method showed

good generalisability with a cluster-wise TPR greater than 80% with different modalities.

Keywords: Deep learning, cerebral microbleeds, knowledge distillation, detection, SWI,

QSM, MRI

1. Introduction

Cerebral microbleeds (CMBs) are haemosiderin deposits due to micro-haemorrhages in

the brain. CMBs are found in subjects with cerebrovascular diseases, cognitive impair-

ment and dementia, and also found in healthy elderly subjects. CMBs have been associ-

ated with white matter damage, various neurogenerative diseases including Alzheimer’s

disease and cerebral amyloid angiopathy (CAA). The presence of CMBs has also been

shown to increase the risk of symptomatic intracerebral haemorrhage (ICH) and stroke

(Cordonnier et al., 2007). Identification of CMBs and determining their distribution

could help in obtaining important biomarkers for various diseases (e.g. lobar CMBs and

deep/infratentorial CMBs might indicate CAA and hypertensive vasculopathy respec-

tively (Greenberg et al., 2009)).

CMBs appear as small, circular, well defined hypointense lesions ranging from 2 to

10 mm in size on T2*-weighted gradient recalled echo (GRE) images. Due to the para-

magnetic susceptibility properties of the iron content in the CMBs, modalities such as
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susceptibility weighted imaging (SWI) (Haacke et al., 2004) and quantitative susceptibil-

ity mapping (QSM) images (Liu et al., 2015) are useful in the identification of CMBs.

While all the above modalities are derived from the same scan, they use different as-

pects of data - T2*-weighted GRE derived from magnitude only, QSM from phase only,

and SWI derived from a combination of phase and magnitude. When compared to T2*-

weighted GRE (T2*-GRE) images, CMBs appear more prominently on SWI images due

to the blooming effect (Greenberg et al., 2009; Charidimou and Werring, 2011). Unlike

T2*-GRE and SWI modalities, CMBs appear hyperintense on QSM images. Automated

detection of CMBs is highly challenging due to their small size, contrast variations, sparse

distribution and the presence of imaging artefacts (e.g. ringing effect, susceptibility arte-

facts at tissue interfaces). Additionally, the presence of various ‘CMB-like’ structures (or

mimics) with diamagnetic (e.g. calcifications) and paramagnetic (e.g. micrometastases

and haemorrhages) properties makes the accurate detection of CMBs very difficult (for

the list of mimics and their description, refer to Greenberg et al. (2009)). While the

use of SWI images generally improves the CMB contrast when compared to GRE mag-

nitude images (Nandigam et al., 2009; Shams et al., 2015), SWI also enhances mimics

with magnetic susceptibility differences (both diamagnetic and paramagnetic), making it

difficult to identify true CMBs (Greenberg et al., 2009). QSM could be useful to accu-

rately identify true CMBs since it allows to separate diamagnetic tissues (with negative

susceptibility, appearing hypointense) from paramagnetic tissues (with positive suscepti-

bility, appering hyperintense). On QSM images, CMBs appear hyperintense (unlike on

other considered modalities) while diamagnetic mimics (e.g. calcifications) will appear

hypointense (Rashid et al., 2021).

1.1. Existing literature

CMB detection: Various semi-automated and automated methods have been proposed

for CMB detection. Most of the methods follow a common pattern with two steps: CMB

candidate detection and post-processing to remove false positives (FPs). The first step

generally achieves high sensitivity, while the second step is more challenging and leads

to improvement in the precision. In the semi-automated methods, manual intervention
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has often been used in the cleaning-up step to remove FPs (Seghier et al., 2011; Barnes

et al., 2011; van den Heuvel et al., 2016; Morrison et al., 2018). Occasionally, candidate

detection (De Bresser et al., 2013; Lu et al., 2021a) and ground truth verification (Kuijf

et al., 2012, 2013) also involves manual intervention. Manual detection of CMB candidates

are extremely labour intensive, especially when done on large number of subjects (e.g.,

around 8000 subjects from the UK Biobank (Lu et al., 2021a)), and might increase the

risk of observer error, given the large number of scans and low prevalence rate. Fully au-

tomated methods, with high accuracy, could therefore be useful. Various fully automated

methods have been proposed, with the candidate detection step often using hand-crafted

shape (Bian et al., 2013; Fazlollahi et al., 2014), intensity (Fazlollahi et al., 2015) and

geometric features (Fazlollahi et al., 2014) within supervised classifier frameworks (Pan

et al., 2008; Fazlollahi et al., 2014, 2015; Dou et al., 2015; Ghafaryasl et al., 2012). The

FP reduction stage is typically based on supervised classifiers (Fazlollahi et al., 2015; Pan

et al., 2008; Dou et al., 2015) using local intensity features and shape descriptors (e.g.

Hessian-based shape descriptors (Fazlollahi et al., 2015)). Among the shape descriptors,

the radial symmetry transform has been most commonly used (Bian et al., 2013; Liu et al.,

2019b), exploiting the circular shape of CMBs. Hence, using structural (e.g. intensity

and shape) and anatomical information in combination with the local characteristics (e.g.

local contrast) could aid in the reduction of FPs and more accurate detection of CMBs

(Dou et al., 2015).

Conventional machine learning (ML) methods require the extraction of meaningful

features capable of distinguishing CMBs from the background and mimics. However,

due to the small size and variation in shape and intensities of CMBs, designing robust,

descriptive and cost effective features is highly challenging. The use of deep learning

models, especially convolutional neural networks (CNNs) could overcome this challenge

and provide more accurate CMB detection, since they efficiently extract both local and

global contextual information. For instance, 3D CNN models have been used for feature

extraction (Chen et al., 2015) and patch-level CMB detection (Dou et al., 2016). Dou

et al. (2016) used a local region-based approach for segmentation of CMB candidates and

discrimination of CMB and non-CMB patches. They initially trained a 3D CNN with
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true CMB samples and randomly selected background samples, applied the initial model

on the training set and used the false positive patches for enlarging the training dataset in

the discrimination step. Another region-based CNN method using You Only Look Once

(YOLO) (Redmon and Farhadi, 2017) was proposed by Al-Masni et al. (2020) (using a

3D CNN was used for FP reduction). In addition to above methods, deep ResNets (He

et al., 2016) were used for patch-level CMB classification (Chen et al., 2018; Liu et al.,

2019b), along with a post-processing step using intensity morphological operations (Liu

et al., 2019b). Given the size and sparsity of CMBs, class imbalance between CMBs

and background is one of the major problems. Due to this, several methods used equal

numbers of CMB patches and non-CMB patches, selected using manually annotated CMB

voxels (and comparable number of non-CMB voxels) for training and evaluation purposes

(Zhang et al., 2016, 2018; Wang et al., 2019; Hong et al., 2020; Lu et al., 2021b). Note that

patches selected in these methods contained multiple CMBs, and therefore the patch-level

performance might not correspond to the lesion-level performance. While the methods

showed good performance at patch-level, the lesion-level performance is still more crucial

to obtain clinically useful information (e.g. CMB location and count).

Knowledge distillation: Deep neural networks have been rapidly developing over

recent years for accurate medical image segmentation tasks, including CMB segmentation,

as mentioned above. However, the improved performance is achieved at the cost of long

training times and using training resource-intensive complex models (Lan et al., 2018).

Hence, training small networks, that are computationally efficient and generalisable across

datasets, is highly desirable. With this aim of model compression (Bucilu et al., 2006),

knowledge distillation (KD) (Hinton et al., 2015; Ba and Caruana, 2013) aims to train a

smaller network (usually referred as student network) with the supervision (or distillation

of knowledge) from a larger network (referred as teacher network). In KD, the student

network is typically trained to match the prediction quality of the teacher network, and

has been shown to reduce overfitting (Hinton et al., 2015; Lan et al., 2018). KD methods

have been successfully used for various object detection tasks (Chen et al., 2017), including

lesion segmentation on brain MR images (Lachinov et al., 2019; Vadacchino et al., 2021;

Hu et al., 2020). The most commonly used distillation types include response-based
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(Hinton et al., 2015; Kim and Kim, 2017; Müller et al., 2019; Ding et al., 2019) and

feature-based distillation (Romero et al., 2014; Jin et al., 2019; Zhou et al., 2018). In

response-based distillation, the output logits from the softmax layer are softened (also

known as soft labels) using a temperature parameter that acts as a regularisation factor

(Hinton et al., 2015). In the feature-based distillation, outputs of intermediate layers of

the teacher model are used to train the student model (e.g. hint learning using outputs of

hidden layers (Jin et al., 2019; Romero et al., 2014) and parameter sharing of intermediate

layers (Zhou et al., 2018)).

Based on the training methods, offline distillation (using a pretrained teacher model

to train the student model) (Hinton et al., 2015; Romero et al., 2014), online distillation

(training teacher and student models together) (Guo et al., 2020; Zhou et al., 2018)

and self-distillation (where the student model from prior epochs becomes the teacher

for the subsequent epochs) (Zhang et al., 2019; Yang et al., 2019) are most commonly

used. Various techniques have also been proposed to improve the generalisability and the

performance of the student models including using noisy data (Li et al., 2017; Sarfraz et al.,

2019), adaptive regularisation of distillation parameters (Ding et al., 2019) and adversarial

perturbation of data for training (Xie et al., 2020). Multi-task learning methods have

also been shown to provide a good regularisation, reducing the risk of over-fitting (Liu

et al., 2019a; Ye et al., 2019). The auxiliary task could be a related task (e.g. auxiliary

classification network in lesion segmentation (Yang et al., 2017)) or an adversarial task

(e.g. adversarial training of domain predictor in domain adaptation networks (Ganin

et al., 2016)).

So far, KD has never been used for CMB detection to the best of our knowledge.

However, a complex teacher network that captures the subtle differences in the structural

pattern of CMBs would be highly beneficial to efficiently enhance the ability of a smaller

student model in differentiating CMBs not only from the healthy tissue, but also from

mimics. In this work we use a knowledge distillation framework, for the first time, for

accurate and fully automated detection of CMBs in a computationally light manner. We

propose a 2-step CMB detection - CMB candidate detection and discrimination of CMB

candidates into CMBs or non-CMBs - using 3D CNN models in both steps. We tested
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our approach in the presence of mimics, across different datasets with different modalities

and pathological conditions. Our main contributions are as follows:

• In the initial CMB candidate detection step (section 2.2), we utilise the radial sym-

metry property of CMBs for more efficient and accurate candidate detection.

• In the candidate discrimination step (section 2.3), we use a knowledge distilla-

tion framework to create a light-weight student model from a multi-tasking teacher

model, which overcomes the class imbalance between CMBs and the background,

leading to effective removal of false positives.

• We evaluated our method on 4 different datasets. The dataset details are provided

in section 3. Through the experiments described in section 4, we studied the con-

tribution of the individual steps on the CMB detection performance, and also the

effect of various modalities and different pathological conditions on the detection

results.

We also performed an indirect comparison of our results with existing methods at

various stages of detection.

2. CMB detection method

2.1. Data preprocessing

We reoriented the T2*-GRE, SWI and QSM images to match the orientation of the

standard MNI template, and skull stripped the images using FSL BET (Smith, 2002).

For T2*-GRE and SWI, we performed bias field correction using FSL FAST (Zhang

et al., 2001). We also inverted the intensity values of the input volume by subtracting

the intensity-normalised image (obtained by dividing intensity values by the maximum

intensity) from 1, so that CMBs have higher intensities (to facilitate our choice of CNN

layers). For QSM images, we only normalised the intensity values without inverting their

intensity values since CMBs already appear hyperintense with respect to the background.

We cropped the skull stripped images closer to the brain edges to make the FOV tighter.
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2.1.1. Removal of blood vessels and sulci

In the first step, we aim to remove the blood vessels, sulci and other elongated structures

in the input image to reduce the appearance of CMB mimics. For the removal of blood

vessels and sulci, we used the method described in Sundaresan et al. (2021). Briefly, the

method involves the extraction of edge and orientation-based features, using Frangi filters

(Frangi et al., 1998) and eigenvalues of the structure tensor (Förstner, 1994), followed by

K-means clustering to obtain the vessel mask. The masked regions were then inpainted

using the mean of intensity values from the immediate non-masked neighbouring voxels

(within a 26-connected neighbourhood). Figure 1 shows a few sample images (from various

modalities) after removal of vessels and sulci.

Figure 1: Sample images after removal of blood vessels and sulci (regions with major changes indicated
by circles in the bottom row) shown for (a) T2*-GRE, (b) SWI and (c) QSM modalities.

2.2. 3D CMB initial candidate detection

For the initial CMB candidate detection, in addition to the intensity characteristics, we

also use the radial symmetry property of CMBs. Hence, we performed a fast radial

symmetry transform (FRST) (Loy and Zelinsky, 2002) with four radii of 2, 3, 4 and 6

voxels. We computed the mean of the outputs at the above radii to obtain the final

FRST output (shown for different modalities in figure 2). For both the input modality
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Figure 2: Examples of the final fast radial symmetry transform (FRST) outputs for various image modal-
ities. The FRST outputs shown (in the right panel) for (a) T2*-GRE, (b) SWI and (c) QSM images.
Inset figures show the magnified versions of the regions indicated in the boxes.

and the FRST output, we split the 3D volumes into patches of size 48 × 48 × 48 voxels

and provided them as 2 input channels to the 3D patch-based encoder-decoder model for

initial candidate detection. We selected the patch-size of 48 voxels empirically - at this

scale, the patches were large enough to overcome the effect of local noise and assign higher

probabilities to CMB-like regions on experimented datasets described in section 3.

Figure 3 shows the block diagram of this step and the architecture of the 3D encoder-

decoder model used in the initial candidate detection. The architecture of the 3D encoder-

decoder network at a scale N is based on a shallow U-Net. We trimmed the U-Net to

a shallow architecture with 2 pooling layers, since CMBs are small and depend more on

local neighbourhood, rather than the global context. The input channels are converted

into 3 channels by the initial 1 × 1 × 1 projection layer, followed by 3 × 3 × 3 convolution
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Figure 3: CMB initial candidate detection step. Block diagram of the candidate detection step with the
architecture of the 3D encoder-decoder network based on shallow U-Net.

to get the initial filter channel depth of 64. The architecture consists of two consecutive

3 × 3 × 3 convolutional layers followed by the 2 × 2 × 2 max-pooling layer (in the case

of encoder) or 2 × 2 × 2 upsampling layer (in the case of decoder). We added a 1 × 1

× 1 convolutional layer before the final softmax layer for predicting the probability maps

PCdet.

2.2.1. Loss functions

We used a combination of cross-entropy (CE) and Dice loss functions as the total loss

function. In the CE loss function, we upweight the CMB voxels 10 times compared to

the non-CMB voxels during training to compensate for the imbalance in the classes. Dice

loss is based on the voxel-wise Dice similarity measure and aids in the accurate detection

of edges and small CMBs in the patches.

2.3. CMB candidate discrimination

The candidate discrimination step is more challenging than the initial candidate detection

step, since the discrimination step needs to learn the subtle features to detect CMBs

and discriminate them from other CMB mimics. To illustrate the complexity of the

problem, figure 4 shows instances of CMB and non CMB patches that were all identified

as CMB candidates in the initial detection step. In this step, we use a student-teacher

framework for classifying true CMB candidates from FPs. We use two networks: (1)

a teacher network that has a more complex architecture (and hence is computationally

expensive) and learns the task-based characteristics (in our case, CMB-related features)
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from a larger dataset; (2) a student model that has comparatively simpler architecture,

that enables faster training on different datasets, and is trained directly on the patches

centred at candidates detected from the initial candidate detection step (section 2.2). We

aim to improve the classification accuracy of the student model, by guiding its training

using the teacher model with response-based knowledge distillation. Figure 5 shows the

proposed overall architecture and details of the student-teacher architecture and training

are provided in the sections below.

Figure 4: Examples of initial candidates detected in the first step. (a) CMB and (b) non-CMB patches
are shown separately. Note that in most of the cases, non-CMB instances are quite similar to CMBs.

2.3.1. Teacher network with multi-task training

The teacher model uses a multi-tasking architecture consisting of three parts (1) feature

extractor (Tf ), (2) voxel-wise CMB segmentor (Ts) and (3) patch-level CMB classifier (Tc).

We took the pretrained network used for the initial CMB candidate detection and added

a patch-level CMB classifier arm to the model. While the architecture of feature extractor

+ segmentor is the same as that of the model used in the initial candidate detection stage,

the classifier arm consists of a projection layer with 1 × 1 × 1 kernel, followed by two

consecutive 3 × 3 × 3 convolutional layers followed by a pooling layer in each level of

abstraction. The output of the third layer of the encoder is fed into dense fully connected

layers (FC). Three fully connected layers (FC-1024, FC-128 and FC-32) with 1024, 128

and 32 nodes are then followed by a softmax layer. We added a dropout layer with drop

probabilities of 20% before the FC-128 layer. We extracted 24 × 24 × 24 adjacent patches

from the input modality and FRST images, and provide them as 2-channeled input for

training this model. While we used a patch-size of 48 for the detection stage, we used a

smaller patch-size of 24 for this stage. This is because our main aim was to fine-tune the
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Figure 5: CMB candidate discrimination using knowledge distillation. Top panel shows the multi-tasking
teacher model consisting of feature extractor Tf (orange), voxel-wise 3D CMB segmentor Ts (blue) and
patch-level 3D CMB classifier Tc (green). The bottom panel shows the student model S for classification
of CMB and non-CMB patches using the distillation of knowledge from the teacher model using the
distillation loss LKD(Tc, S).

pretrained segmentor model to determine the lesion-level characteristics of CMBs from the

local neighbourhood given the initial candidates, and use this contextual information to

train the patch-level CMB classifier arm. The Tf , made of a series of convolutional layers,

extracts features that are helpful for both Ts and Tc. Therefore, both Ts and Tc learn

to improve the CMB segmentation and classification in a progressive manner since both

are trained simultaneously with shared weights in Tf . This means that Ts assigns high

probability values to the CMB voxels in the CMB patches, while reducing the probability

values of CMB-like mimics on the non-CMB patches. At the same time, Tc detects the

patches with more CMB-like features (regions that are assigned higher probabilities by

Ts) as CMB patches with higher confidence and vice versa. In addition to the loss function
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to train Ts (specified in section 2.2.1), we used a binary cross-entropy loss function for Tc.

2.3.2. Knowledge distillation using student network

The student model consists of the feature extractor and patch-level classifier parts (Tf

+ Tc) of the teacher model. We trained the student model in an offline manner using

response-based knowledge distillation (KD). While we provided adjacent 24 × 24 × 24

patches for the teacher model, we extracted more meaningful input patches for the stu-

dent model, centred at the detected initial CMB candidates for quicker learning. For

determining the centroids, we thresholded PCdet from the first step at a specific threshold

ThCdet based on the performance values (for more details refer to section 5.2). During

testing, patches centred at candidates detected from the initial candidate detection step

are classified as CMB or non-CMB by the student model. Let the student model and

teacher model classifier be S and Tc respectively. For the distillation of knowledge from

the teacher model for training the student model, the loss function is given by

L = α ∗ LS + β ∗ LKD(Tc, S) (1)

where Ls is the student loss function, LKD(Tc, S) is the KD loss and α, β are weighing

parameters. We used the cross-entropy loss function as the student loss. For determining

the KD loss, the targets are the class outputs predicted by the classifier of the teacher

model (in the inference mode) on the same input as that of the student model. A tem-

perature (τ) parameter is used in the softmax function to soften the target distribution.

While τ = 1 provides the usual softmax outputs, higher values of τ softens the softmax

outputs (as shown in eqn. 2). The softmax function with τ is given by,

σ(zi, τ) =
exp(zi/τ)∑N
j=1 exp(zj/τ)

(2)

where N is the number of classes. Compared to hard target distributions (closer to 0 or 1

for individual classes), softer target distributions (between 0 and 1) have been shown to

aid in training generalisable student model (Hinton et al., 2015), however having very high

τ might also be counter-productive in some cases. The optimal value of τ and the level
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of softness in the target distribution depends on specific applications, student/teacher

network architectures and dataset characteristics. Temperature τ values between 2.5

and 4 have been shown to provide better results, while models with more units in the

hidden layers may require higher τ values (Hinton et al., 2015). Using the temperature τ

parameter, the KD loss is given by,

LKD(Tc, S) = KL(σ(zS, τ), σ(zTc , τ)) (3)

where KL is the KL-divergence (distance between the class probability distributions of

student and teacher classifier models). From eqn. 1, the loss function is,

L = α ∗ CE(yS, σ(zS, τ = 1)) + β ∗KL(σ(zS, τ), σ(zTc , τ)) (4)

where yS are the target labels of the student model and zS and zTc are the logits (inputs

to the softmax layer) of student and teacher classifier model respectively.

2.3.3. Post-processing

We applied a threshold ThCdisc on the patch-wise probabilities to discriminate CMB

and non-CMB candidates. We set ThCdisc values empirically based on the performance

metric values (refer to section 5.2). Additionally, we removed the noisy stray voxels by

filtering out the candidates with volume < 5 voxels, removed the tubular structures (e.g.

fragments of sulci near the skull) by filtering out candidates having higher ellipticity (>

0.2) and removed the CMB candidates that are closer to skull (< 5 voxels from the brain

mask boundary) to reject the FPs due to the sulci in the brain. The above values were

determined empirically based on the results on an independent dataset, as specified in

section 2.5.

2.4. Data augmentation

Due to the small size of CMBs, transformations such as rotation and down-scaling could

result in the loss of CMBs in the augmented data patches. Hence, we chose our data
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augmentation carefully, to inject variations in the data with minimal interpolation of in-

tensity values. For the initial candidate detection step, we performed augmentation on

the patches, increasing the dataset size by a factor of 10, using random combinations of

the following transformations: translation, random noise injection and Gaussian filter-

ing (with a small σ value). The parameters for the above transformations were chosen

randomly from the ranges reported in table 1. We used similar augmentation for the

discrimination step, increasing training data by a factor of 5.

TransformationsParameter ranges

Translation
x-offset: [-15, 15], y-offset:
[-15, 15] voxels

Random noise
injection

Distribution: Gaussian, µ
= 0, σ2 = [0.01, 0.04]

Gaussian filter-
ing

σ = [0.1, 0.2] voxels

Table 1: Transformations used for data augmentation and their parameter ranges.

2.5. Implementation details

For both CMB candidate detection and discrimination steps, we trained the networks

using the Adam Optimiser (Kingma and Ba, 2014) with epsilon (ε) value of 1 × 10−4.

We used a batch size of 8, with an initial learning rate of 1 × 10−3 and reducing it by

a factor 1 × 10−1 every 2 epochs, until it reaches 1 × 10−6, after which we maintain

the fixed learning rate value. For both candidate detection and candidate discrimination

training, we also empirically set the total number of epochs to 100 and used a criterion

based on a patience value (number of epochs to wait for progress on validation set) of

20 epochs to determine model convergence for early stopping. We used the truncated

normal variable (with σ = 0.05) for weights initialisation and the biases were initialised

as constants with a value of 0.1. For the student model in the discrimination step, we

used a temperature τ = 4, α = 0.4 and β = 0.6. We used a subset of a publicly available

dataset (https://valdo.grand-challenge.org/Data/) consisting of a random sample

of 20 subjects for hyper-parameter tuning and the empirical determination of parameter

values in the post-processing step and loss functions. Our experiments were completed

on NVIDIA Tesla V100 GPU and were implemented in Python 3.6 using Pytorch 1.2.0.
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3. Datasets used

We used following datasets for the evaluation of our proposed method. The datasets con-

sist of images from different modalities, that were acquired using different scanners with

variations in acquisition protocols and from subjects with different pathological conditions

and demographic characteristics.

3.1. The UK Biobank (UKBB) dataset

From 14,521 subjects (out of ≈ 20,000 subjects from the January 2018 release of UKBB),

we preselected 78 CMB candidate subjects using the method proposed in Sundaresan et al.

(2021). Manual segmentations in the form of coordinates were annotated on SWI images

for these 78 subjects by a trained radiologist (A.G.M). From those coordinates, the ground

truth segmentation for each CMB was obtained by a region-growing-based method that

in addition to a voxel’s intensity also takes into account its distance from the seed voxel,

and is constrained by a maximum radius of 5 voxels in-plane and 3 voxels through-plane.

The age range of subjects is 50.8 - 74.8 years, mean age 59.9 ± 7.2 years, median age

57.8 years, female to male ratio F:M = 37:41. For SWI, 3D multi-echo GRE images were

acquired using 3T Siemens Magnetom Skyra scanner with TR/TE = 27/9.4/20 ms, flip

angle 15o, voxel resolution of 0.8 × 0.8 × 3 mm, with image dimension of 256 × 288 × 48

voxels. The QSM images were generated using a multi-step post-processing of phase data

as described in Wang et al. (2021). Briefly, the method involved combination of phase data

of individual channels, phase unwrapping, background field removal, followed by dipole

inversion. Total number of CMBs in this dataset: 186, mean: 2.4 ± 7.0 CMBs/subject,

median: 1 CMB/subject.

3.2. The Oxford Vascular Study (OXVASC) dataset

The dataset consists of T2*-GRE images from 74 participants from the OXVASC study

(Rothwell et al., 2004), who had recently experienced a minor non-disabling stroke or

transient ischemic attack. The 2D single-echo T2*-GRE images were acquired using 3T

Siemens Verio scanner with GRAPPA factor = 2, TR/TE = 504/15 ms, flip angle 20o,
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voxel resolution of 0.9 × 0.8 × 5 mm, with image dimension of 640 × 640 × 25 voxels.

Age range 39.6 - 91.2 years, mean age 69.8 ± 14.6 years, median age 67.3 years, female

to male ratio F:M = 36:38. Out of 74 subjects, 36 subjects had CMBs, and manual

segmentations, labelled using T2*-GRE images, were available for all 36 subjects. Total

number of CMBs: 366, mean: 10.2 ± 33.3 CMBs/subject, median: 3 CMBs/subject.

3.3. The Tranexamic acid for IntraCerebral Haemorrhage 2 (TICH2)

trial MRI sub-study dataset

The dataset consists of a subset of the MRI data used in Dineen et al. (2018) obtained as

part of the TICH2 trial (Sprigg et al., 2018). The dataset consists of images with variations

in image dimension, spatial resolution and MR acquisition parameters (details in Dineen

et al. (2018)). The dataset used in this work consists of 115 SWI from the subjects

with spontaneous intracerebral haemorrhage (ICH). Age range 29 - 88 years, mean age

64.76 ± 15.5 years, median age 66.5 years, female to male ratio F:M = 24:26. Out of

115 subjects, 71 subjects had CMBs and manual segmentations for CMBs were available

for all 71 subjects. Additionally, microbleed anatomical rating scale (MARS, Gregoire

et al. (2009)) values were provided for the CMB subjects. For evaluation purposes we

included in the manual segmentation maps used in all our experiments all CMBs that

were labelled as either ‘definite’ or ‘possible’. Total number of CMBs: 849, mean: 11.9 ±

22.0 CMBs/subject, median: 3 CMBs/subject.

3.4. The stroke dataset from Hong Kong (SHK)

Originally, the dataset used in Dou et al. (2016) consisted of 320 SWI images in total,

out of which 126 are subjects with stroke (mean age: 67.4 ± 11.3) and 194 are from

normal ageing subjects (mean age: 71.2 ± 5.0). In this work, we used a subset of 20

subjects that were publicly available from this dataset. Manual annotations in the form of

CMB coordinates were available along with the dataset. From coordinates, ground truth

segmentations were obtained with the method used for the UKBB data (refer section 3.1).

Another rater independently provided the manual segmentations on SWI images on the
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dataset, and we considered the union of both manual masks as our final ground truth.

Total number of CMBs: 126, mean: 6.3 ± 8.8 CMBs/subject, median: 3 CMBs/subject.

4. Experiments

4.1. Performance evaluation metrics

We evaluated the CMB detection results using the following metrics for total number of

CMBs over the individual datasets, as done in the existing literature:

• Cluster-level TPR: the number of true positive clusters (i.e. CMBs) divided by

the total number of true clusters as given by,

cluster-wise TPR =
TPclus

(TPclus + FNclus)
(5)

where TPclus and FNclus are true positive (overlaps with a ground truth cluster by

at least one voxel) and false negative clusters respectively.

• Average number of FPs per subject (FPavg): for a given dataset D, FPavg

is defined as the ratio of the total number of detected FP clusters (FPclus, has no

overlap with a ground truth cluster) to the number of subjects (or images) in the

dataset, as given by,

FPavg =
Total number of FPclus

Number of subjects in D
(6)

• Cluster-wise precision: the number of true positive clusters divided by the total

number of detected clusters as given by,

cluster-wise precision =
TPclus

(TPclus + FPclus)
(7)

We used 26-connectivity to form the clusters. We used TPR and FPavg values for plotting

a free-response receiver operating characteristics (FROC) curve, which is a plot of cluster-

wise TPR versus the average number of false positives per image/subject.
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4.2. Ablation study: effect of knowledge distillation on CMB de-

tection

In this study, we evaluate the effect of individual steps, including the teacher-student

distillation framework and the post-processing step on the CMB detection performance

(using metrics specified in section 4.1) on the UKBB dataset (using a training-validation-

test split of 44-10-24 subjects, with 40 CMBs in the test data). To this aim, we obtain

the above performance evaluation metrics at the following stages: (i) after the initial

CMB candidate detection, (ii) after candidate discrimination using a classification network

trained without the teacher model (trained independently using only CE loss function

LS), (iii) after candidate discrimination with knowledge distillation using student-teacher

training and (iv) after final post-processing.

4.3. Cross-validation of CMB detection on T2*-GRE and SWI

images

We performed 5-fold cross-validation separately on T2*-GRE images from the OXVASC

dataset and SWI images from the UKBB dataset, and evaluated the cluster-wise perfor-

mance using the metrics specified in section 4.1. Note that for this cross-validation, we

used the hyper-parameters that were determined separately using an independent dataset

specified in section 2.5.

4.4. Evaluation of the generalisability of the proposed method

We trained the proposed method on SWI images from 78 subjects from the UKBB dataset

for this experiment (using the hyperparameters mentioned in section 2.5) and evaluated

the method on data from different domains (e.g. variations in intensity profiles, scan-

ners and acquisition protocols and demographics), using performance metrics specified in

section 4.1, under the following three scenarios:

Evaluation on the same dataset with different modality: We evaluated the

effect of change in the modality only on CMB detection by applying the method, that

was trained on SWI images from the UKBB dataset, to the QSM images from the same
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subjects from the UKBB dataset.

Evaluation on different datasets with same modality: We evaluated our method

on different test datasets to observe the effect of scanner-related and population-level

pathological variations on the CMB detection. We applied our method trained on SWI

images from the UKBB dataset to SWI images from 115 subjects with intra-cerebral

haemorrhages from the TICH2 dataset and SWI images from 10 healthy controls and 10

subjects with stroke from the SHK dataset.

Evaluation on different datasets with different modality: We evaluated our

method trained on SWI images from the UKBB dataset on the T2*-GRE images from

74 subjects from the OXVASC dataset. The OXVASC data is quite different from the

UKBB data not only in terms of modality, but also in terms of resolution, scanner and

demographic/pathological factors. Hence, this scenario would provide a better indication

of the method’s generalisability in real world clinical applications.

For the above experiments, for the CMB candidate detection and discrimination

steps, we used the threshold values (ThCdet and ThCdisc) determined during 5-fold cross-

validation on the UKBB dataset.

4.5. Comparison of our results with the existing literature

Finally, we performed an indirect comparison of our results from the UKBB and OXVASC

datasets with those of existing CMB detection methods in the literature.

5. Results

5.1. Ablation study: effect of knowledge distillation on CMB de-

tection

Figure 6 shows the FROC curves for the initial CMB candidate detection and candidate

discrimination steps of our method on the UKBB dataset. Table 2 reports the best

performance points at the ‘knee-point’ on the FROC curves for the 2 steps, along with the

performance metrics after post-processing. In the candidate detection step, the aim was
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to achieve higher cluster-wise TPR, to detect as many true CMBs as possible. Hence, the

number of FPs were higher at this step (with the highest cluster-wise TPR of 0.975 at the

ThCdet = 0.5), when compared to the subsequent steps. For the candidate discrimination

step (figure 6b), the FROC curves are shown for the comparison of the student network

trained with KD framework from the teacher model and classification network (with

same architecture as that of the student network) trained independently without KD.

The performance at the candidate discrimination step is better with KD (cluster-wise

TPR of 0.9 at ThCdisc = 0.3) than the model trained without KD (cluster-wise TPR of

0.75 at ThCdisc = 0.4), with the former showing an improvement of 0.02 in the cluster-wise

precision (see table 2).

The t-stochastic neighbor embedding (t-SNE) plots in figure 6c and 6d show the fea-

ture embeddings of the last fully connected layer (FC-32) in the classification network

(in the CMB discrimination step) for the CMB and non-CMB cases, trained with and

without KD. The feature embeddings for the student model using KD were quite sep-

arable between the CMB and non-CMB cases, indicating the capability of the student

model to learn the subtle differences in the features between CMB and non-CMB classes.

The classification model without KD, on the other hand, showed substantially more over-

lap between the feature embeddings. The postprocessing step improves the cluster-wise

precision. Upon visual inspection, the main reductions in FPs were near the skull (e.g.

sulci), penetrating blood vessels and stray noisy voxels. Regarding the contribution of

individual attributes (e.g. shape, area and proximity to the skull) in FP reduction, we

observed that around 65%, 25% and 15% of FPs after applying thresholds on distance of

candidates from the skull, area and shape of candidates successively. Since the individ-

ual thresholds were determined as a part of hyper-parameter tuning on an independent

dataset (section 2.3.3) and the interaction between the three attributes’ thresholds on

FPavg is difficult to visualise, a separate FROC curve for the post-processing step is not

shown. The majority of FPs rejected at this stage consists of candidates closer to the

skull - these candidates passed the discrimination step since most of the CMBs in the

training data (for the student model) were lobar CMBs and were closer to skull. Hence

the discrimination step (despite removing a large amount of FPs near sulci) allows false
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Figure 6: Results of the ablation study. (a) FROC curves at the CMB initial candidate detection stage,
(b) FROC curves comparing the classification performance of the student model trained using KD from
a teacher model (black solid •) and the same model trained independently without KD (green dashed
�). The horizontal and vertical dashed lines on the FROC curves indicate the best performance points
(reported in table 2) at ThCdet = 0.5 at the candidate detection step, ThCdisc = 0.3 and 0.4 for the
models with and without KD respectively in the candidate discrimination step. T-SNE plots showing
feature embeddings at the FC-32 layer for CMB (orange) and non-CMB (dark blue) cases for (c) the
student model trained using KD and (d) the model without using KD.

predictions in this region. Having said that, it is worth noting that, in the post-processing

step, a few true CMBs closer to the skull were also rejected as FPs, hence leading to a

slight decrease in the cluster-wise TPR values.
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Table 2: Ablation study: performance metrics after candidate detection, discrimination and postprocess-
ing steps. Cl. TPR and Cl. prec indicate cluster-wise TPR and cluster-wise precision respectively.

Steps Cl.
TPR

FPavg Cl. prec

Cand. det. 0.975 85.3 0.02
Cand. disc.
without KD

0.75 12.8 0.09

Cand. disc. us-
ing KD

0.9 14.7 0.11

After postproc. 0.83 0.5 0.74

5.2. Cross-validation of CMB detection on T2*-GRE and SWI

images

Figure 7 shows the FROC curves for CMB candidate detection and candidate discrimina-

tion steps of 5-fold cross-validation on the UKBB and OXVASC datasets. Table 3 reports

the best performance metrics at different steps of the cross-validation on the UKBB and

OXVASC datasets. The proposed method achieved cluster-wise TPR values of 0.93 and

0.90 with FPavg of 1.5 and 0.9 at ThCdet, ThCdisc = 0.3 and 0.2 on the UKBB and OX-

VASC datasets respectively. The method provides higher cluster-wise TPR and FPavg

values on SWI images (from the UKBB dataset) when compared to the T2*-GRE images

from the OXVASC dataset. Even though the FPavg values were comparable at the can-

didate detection step for both datasets, the student model at candidate discrimination

step provided much lower FPavg on T2*-GRE images from the OXVASC dataset, thus

providing higher cluster-wise precision value. The FPavg values reduced substantially

after the post-processing step with only slight reduction in the cluster-wise TPR values.

Table 3: Cross-validation on the UKBB and OXVASC datasets: performance metrics at candidate de-
tection, discrimination and post-processing steps. Cl. TPR and Cl. prec indicate cluster-wise TPR and
cluster-wise precision respectively. C. det - candidate detection, C. disc - candidate discrimination.

Datasets Steps
Cl.
TPR

FPavg
Cl.
prec

UKBB
(SWI)

C. det. 0.97 175.4 0.01

C. disc. 0.95 24.2 0.09

Postproc. 0.93 1.5 0.59

OXVASC
(T2*-
GRE)

C. det. 0.93 195.7 0.02

C. disc. 0.91 10.1 0.29

Postproc. 0.90 0.9 0.84
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Figure 7: Results of the 5-fold cross-validation. FROC curves at (a) the CMB initial candidate detection
stage and (b) the candidate discrimination stage on the UKBB (blue) and OXVASC (orange) datasets.
The dashed lines on the FROC curves indicate the best performance points (reported in table 3) at
specific threshold points (threshold = 0.3 and 0.2 for the UKBB and OXVASC datasets respectively for
both candidate detection and candidate discrimination steps.)

Figure 8 shows sample results of the cross-validation at various steps of CMB detec-

tion on the UKBB and the OXVASC datasets. In both UKBB and OXVASC datasets,

the main sources of FPs in the initial candidate detection step are sulci, minor inten-

sity/contrast variations in the brain tissue and small vessel fragments. While most of

the penetrating blood vessels are segmented correctly as part of the background even at

the candidate detection step (due to the vessel removal step, especially in the OXVASC

dataset), the remaining FPs on/near the vessels are removed at the discrimination step.

The post-processing step further reduced the stray noisy voxels (with volume < 5 voxels)

and sulci regions closer to the skull, resulting in very few FPs on both datasets.

5.3. Evaluation of the generalisability of the proposed method

Table 4 reports the performance metrics of the proposed method, when trained on the

UKBB dataset and applied on the same dataset but different modality (UKBB QSM
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Figure 8: Sample cross-validation results on the UKBB (top panel) and the OXVASC (bottom panel)
datasets. (a) Input image and (b) manual segmentations shown along with results at (c) CMB initial
candidate detection, (d) candidate discrimination and (e) after postprocessing steps. True positive and
false positive candidates are shown in yellow and red boxes respectively for each step.

data), different datasets but same modality (SWI from the TICH2 and SHK datasets)

and different dataset and modality (T2*-GRE from the OXVASC dataset). We used

ThCdet and ThCdisc values of 0.3 (determined from the cross-validation on the UKBB

dataset) on the probability maps at the candidate detection step and on the patch-level

probabilities at the discrimination step. Figure 9 shows sample results of the method,

when applied on various datasets at various steps of CMB detection.

Out of all datasets, the method achieved the highest cluster-wise TPR on the QSM

dataset. On this dataset, the results were on par with the cross-validation results on the

UKBB SWI data (with slight decrease in the cluster-wise TPR and precision on QSM

data). We obtained FPavg values of 1.8 FPs/subject - the FPs candidates were mainly

due to minor susceptibility changes in the tissue and penetrating small blood vessels.

The method gave a cluster-wise TPR of 0.82 on the TICH2 dataset, despite the pres-

ence of ICH lesions (third row in figure 9) in all subjects. The method provided the highest

FPavg values in the initial candidate detection step (FPavg = 289.3 FPs/subject), pos-

sibly due to ICH edges and texture. However, the candidate discrimination step reduced
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Figure 9: Sample results of the UKBB-trained method on the UKBB QSM, TICH2 (without and with
ICH), SHK and OXVASC datasets (from top to bottom panels). (a) Input image and (b) manual seg-
mentations shown along with results at (c) CMB initial candidate detection, (d) candidate discrimination
and (e) after postprocessing steps. True positive, false positive and false negative candidates are shown
in yellow, red and blue boxes respectively for each step.
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Table 4: Evaluation of the generalisability of the proposed method - trained on the UKBB SWI data and
evaluated on the UKBB QSM, TICH2, SHK and OXVASC datasets: performance metrics at candidate
detection, discrimination and post-processing steps. Cl. TPR and Cl. prec indicate cluster-wise TPR
and cluster-wise precision respectively. C. det - candidate detection, C. disc - candidate discrimination.

Datasets Steps
Cl.
TPR

FPavg
Cl.
prec

UKBB
(QSM)

C. det. 0.99 138.0 0.02

C. disc. 0.91 40.3 0.04

Postproc. 0.90 1.8 0.44

TICH2
(SWI)

C. det. 0.88 289.3 0.02

C. disc. 0.83 42.8 0.10

Postproc. 0.82 3.1 0.62

SHK
(SWI)

C. det. 0.98 254.7 0.01

C. disc. 0.94 43.6 0.09

Postproc. 0.87 0.5 0.89

OXVASC
(T2*-
GRE)

C. det. 0.88 147.1 0.03

C. disc. 0.85 53.7 0.07

Postproc. 0.81 2.0 0.71

the number of FPs and lowered the FPavg value to 42.8 FP/subject, which is comparable

with other datasets. Even then, we obtained the highest FPavg after post-processing

on this dataset with a cluster-wise precision of 0.62. Susceptibility artefacts at tissue

interfaces and sulci were mainly detected as FPs in this dataset.

On the SHK dataset, while the first two steps (CMB detection and discrimination)

provided consistently good cluster-wise TPR values (>0.90), the TPR value decreased

at the post-processing step. Even then, on this dataset our method provided the lowest

FPavg (0.5 FPs/subject) and the highest cluster-wise precision among all the datasets.

The FPs in the candidate detection step were mostly regions of intersections of blood

vessels closer to sulci, especially the central sulcus.

On the OXVASC dataset, the method achieved the lowest cluster-wise TPR of 0.81.

The high number of false negatives in this dataset, as suggested by the lower cluster-wise

TPR, could be due to the reduced contrast between CMBs and normal brain tissue, unlike

the SWI data used for training. Also, occasionally true CMB candidates quite close to
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the skull were removed in the post-processing step, having been mistaken as sulci.

5.4. Comparison with existing methods

Table 5 provides a comparison of the proposed CMB detection method with existing fully

automated methods. From the table, generally deep-learning-based methods performed

better compared to conventional machine learning methods. Also, the methods using

multiple modalities or using phase information in addition to SWI (Liu et al., 2019b;

Ghafaryasl et al., 2012; Al-Masni et al., 2020; Rashid et al., 2021) showed better results.

In fact, Al-Masni et al. (2020) showed that using phase in addition to SWI images improves

the cluster-wise TPR by 5.6% (with only SWI: 91.6% and with SWI and phase: 97.2%) and

Rashid et al. (2021) achieved the best CMB detection performance by using T2-weighted,

SWI and QSM modalities. However, our proposed method uses a single modality (SWI

or T2*-GRE), along with the FRST images (obtained from the input modality itself) and

gives comparable results to state-of-the-art methods such as Al-Masni et al. (2020) and Liu

et al. (2019b), and with lower FPavg compared to Dou et al. (2016). Also, our precision

values on both UKBB and OXVASC datasets are better than existing methods including

Dou et al. (2016); Bian et al. (2013); Fazlollahi et al. (2014, 2015). We have reported an

additional comparison of patch-level methods in the supplementary material. While the

methods using patch-wise evaluation (Chen et al., 2018; Lu et al., 2021b) provided good

patch-level sensitivity and accuracies (shown in the supplementary material), we cannot

compare the performance of our method with those, since they used preselected CMB

patches (from manually annotated CMB voxels) and comparable numbers of non-CMB

patches as inputs. Also the input CMB patches occasionally contained multiple CMBs,

which makes the comparison with cluster-wise metrics highly difficult.

6. Discussion and conclusions

In this work, we proposed a fully automated, deep-learning-based, 2-step method for ac-

curate lesion-level detection of CMBs on various datasets, irrespective of variations in

population-level, scanner and acquisition characteristics. Our method uses a single input
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Table 5: Comparison of the performance of the proposed CMB detection method with existing conven-
tional machine learning (ML) and deep learning (DL) methods. Cl.TPR - cluster-wise TPR, FPavg -
Average false positives per image/subject, Cl.Prec - cluster-wise precision, FPavgCMB - FPavg for CMB
subjects, FPavgnCMB - FPavg for non-CMB subjects, FPavgD - FPavg for ‘definite’ CMB subjects,
FPavgP+D - FPavg for ‘definite and possible’ CMB subjects.

Methods
Datasets Performance

Sequence(s)
(# test
subjects)

Total
#

CMBs

CMB
screening step

CMB
discrimination step

FP reduction
step

ML methods
Bian et al.
(2013) SWI (10) 304 FPavg - 287.7

Cl.TPR - 86.5%,
FPavg - 44.9

Fazlollahi
et al. (2014)

SWI (41) 103
Cl.TPR - 98%,
FPavg - 695

Cl.TPR - 92%,
FPavgCMB - 6.7
FPavgnCMB - 16.8

Fazlollahi
et al. (2015)

SWI (66) 231

Cl.TPR - 97%,
FPavgD - 669,
FPavgP+D -
1373

Cl.TPR - 87%,
FPavgD - 10.28,
FPavgP+D - 27.8

Ghafaryasl
et al. (2012)

T2*-GRE +
PD (81)

183
Cl.TPR - 98%,
FPavg - 705

Cl.TPR - 92%,
FPavg - 19

Cl.TPR - 91%,
FPavg - 4.1

Dou et al.
(2015)

SWI (19) 161
Cl.TPR - 100%,
FPavg - 807

Cl.TPR - 94%,
FPavg - 190

Cl.TPR - 80%,
FPavg - 7.7,
Cl.Prec - 49%

Chesebro et al.
(2021)

T2*-GRE,
SWI (78)

64

Cl.TPR - 95%,
FPavg - 9.7
(SWI), 17.1
(T2*-GRE),
Cl.prec - 11%
(SWI), 7%
(T2*-GRE)

DL methods

Chen et al.
(2015)

SWI (5) 55
Cl.TPR - 96%,
FPavg > 800

Cl.TPR - 89%,
FPavg - 6.4,
Cl.Prec - 56%

Dou et al.
(2016)

SWI (50) 117
Cl.TPR - 98%,
FPavg - 282

Cl.TPR - 93%, FPavg
- 2.74, Cl.Prec - 44%

Liu et al.
(2019b)

Phase + SWI
(41) 168

Cl.TPR - 99%,
FPavg - 276.8

Cl.TPR - 96%,
FPavg - 1.8

Al-Masni et al.
(2020)
(5-fold cross-
validation)

Phase + SWI
(72) 188

Cl.TPR -
93.62%, FPavg -
52.18

Cl.TPR - 94.32% of
candidates detected in
step 1, FPavg - 1.4,
Cl.Prec - 61.9%

Rashid et al.
(2021)
(Leave-one-out
cross-
validation)

QSM + SWI +
T2w (24) ≈172

Cl.TPR - 88%,
Cl.Prec - 40%

Proposed
method
(5-fold cross-
validation)

UKBB - SWI
(78)

186
Cl.TPR - 97%,
FPavg - 175.4

Cl.TPR - 95%,
FPavg - 24.2

Cl.TPR - 93%,
FPavg - 1.5,
Cl.Prec - 59%

OXVASC -
T2*-GRE (74) 366

Cl.TPR - 93%,
FPavg - 195.7

Cl.TPR - 91%,
FPavg - 10.1

Cl.TPR - 90%,
FPavg - 0.9,
Cl.Prec - 84%

modality and the radial symmetry property of CMBs for detection of CMB candidates

with high sensitivity in the initial candidate detection step. For the candidate discrimi-
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nation step, we trained a student classification network with the knowledge distilled from

a multi-tasking teacher network for accurate classification of CMB candidates from non-

CMB candidates. Our ablation study results show that the candidate discrimination and

post-processing steps drastically reduce the number of FPs, and that the use of the KD

framework improves cluster-wise TPR values at the discrimination step. Our method

achieved cluster-wise TPR values >90% with FPavg of <1.6 FPs/subject during initial

cross-validation on the UKBB and OXVASC datasets consisting of SWI and T2*-GRE

images respectively. On training the models on the UKBB dataset and applying them on

different datasets with different demographic and scanner-related variations, the method

showed a good generalisability across datasets, providing cluster-wise TPR values >80%

on all datasets.

The initial vessel removal preprocessing step helped in reducing the number of FPs,

since blood vessels (especially the small ones closer to sulci) are one of the common mimics

of CMBs. One of the main challenges in the vessel removal step is the potential removal

of true CMBs that are very close to vessels. Hence, we removed only linear segments with

low uniform width in this step. Therefore, this step removed the vessels and sulci that

were more prominent and could lead to obvious FPs. This was especially effective for the

SHK dataset, where the blood vessels and sulci had higher contrast and were distinctly

different from CMBs (figure 1b). While removing the linear, elongated structures from

the images, we also aimed to leverage the radial symmetry property of CMBs. Towards

that aim, using FRST maps, obtained from the input modality, as an additional input

channel helped the candidate detection model in learning contextual features, leading to

the detection of more true positive CMBs. This was particularly useful, given the lack of

location prior for the CMB distribution in the brain.

The main objective of the candidate detection step is to detect as many true positive

candidates as possible, with a trade-off of high FPavg, because any of the CMB candidates

missed in this stage cannot be recovered in the subsequent steps. From the ablation study,

given high FPavg in the candidate detection step, the student model trained using KD

reduced FPavg approximately by a factor of 4 with a smaller decrease in cluster-wise

TPR, when compared to the classification model trained without KD. The advantage
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of the teacher model in the proposed discrimination step was 2-fold: (1) its ability to

learn the contextual features that are salient for both voxel-wise CMB detection and

patch-level CMB/non-CMB classification and (2) the use of a multi-tasking framework

that provides a regularisation effect on the tasks, reducing the chance of over-fitting and

false classifications. We observed that the multi-tasking framework, together with the

upweighting of the CMB classes in the loss function, reduced the effect of class imbalance

between CMB and non-CMB patches (note that the model trained without KD is slightly

biased towards the non-CMB class, evident from the lower cluster-wise TPR and FPavg

values in table 2). Therefore, using the teacher model to train the student model further

enhanced the capability of the network in differentiating CMB and non-CMB patches

(as shown by feature embeddings in t-SNE plots in figure 6c, d). Additionally, we also

provided the input patches centered on detected initial CMB candidates to the student

model. This, in addition to the distilled knowledge from the teacher, enabled the model to

focus on the pattern at the centre of the patches for accurate classification of CMB patches.

This was especially useful to remove the fragments of blood vessels (e.g. intersections

and branching points) missed in the vessel removal step as seen in figures 8d and 9d.

Regarding the parameters used in KD, using a higher temperature (τ) results in softened

softmax values between classes and has been shown to typically provide the knowledge

(also known as dark knowledge) for training a generalisable student network (Hinton et al.,

2015). However, given the similarities in the characteristics of CMBs and mimics, having

a very high τ values could lead to misclassifications. Our main aim was to achieve a good

hard prediction to differentiate the CMB class from the non-CMB class, while at the same

time to transfer the knowledge from the teacher model to the student model. Hence we

empirically chose an optimal τ value of 4 (that provided smoother softmax values without

affecting the CMB/non-CMB prediction) based on manual tuning. Further removal of FPs

in the post-processing resulted in the drastic improvement in the cluster-wise precision.

Noise reduction or smoothing during preprocessing might lead to a loss of CMBs (even for

data augmentation, very small σ values were chosen carefully). Therefore, small intensity

and texture variations (mainly in the sub-cortical and lobar regions) led to detection of

FPs, which were removed in the post-processing step.
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As for the cross-validation results, the method achieved the highest cluster-wise TPR

values on SWI images (from the UKBB dataset), while providing the lowest FPavg and

the highest cluster-wise precision on T2*-GRE images (from the OXVASC dataset). This

could be due to fact that CMBs appear with a higher contrast on SWI compared to T2*-

GRE images due to the blooming effect. This also affects most of the CMB mimics as

well, increasing their contrast on SWI, leading to high cluster-wise TPR but also high

FPavg. Also, T2*-GRE images had a smoother texture when compared to SWI (figure 8),

resulting in less noisy FRST maps, hence leading to the improved performance metrics at

the candidate discrimination step in the OXVASC dataset. However, the FPavg value at

the initial candidate detection step was higher for the OXVASC dataset due to the lower

voxel resolution in the z-direction (5mm) in the OXVASC data, leading to partial volume

artefacts and making it highly difficult to differentiate between small sulci closer to the

skull and CMBs.

On evaluating the generalisability of our method on various datasets, our method

trained on the SWI data from the UKBB dataset showed good generalisability on QSM

images from the same dataset, with comparable performance to the cross-validation re-

sults on the SWI data. Regarding the performance after individual steps, in the initial

candidate detection step, the method provided the highest cluster-wise TPR values with

the lowest FPavg values on the QSM data (even lower than with UKBB SWI data) since

QSM shows better separation of diamagnetic mimics from CMBs. However, due to local

tissue susceptibility variations (which is quite different from the SWI training data), the

FPavg in the candidate discrimination step was higher that it was when using the SWI

data. Finally, the post-processing step effectively removed the stray voxels due to noisy

susceptibility variations (that were extremely small and hence were below the 5-voxel

threshold) and reduced the FPavg value to 1.8 FPs/subject. It is worth noting that, since

the same subjects were used for training (SWI data for training and QSM data for test-

ing), the results are likely to be biased. That is, the model could have learnt the overall

locations of CMBs for the training subjects, rather than the modality-invariant features.

However, we believe that the use of patches, rather than whole slices or volumes, at both

steps would reduce the chance of biased assessment.
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For the datasets consisting of the same modality as that of the training data (SWI)

but from different populations, the method was affected by the presence of additional

pathological signs (e.g. ICH in the TICH2 dataset). In the TICH2 dataset, the noisy

texture of the haemorrhage regions and their edges led to the highest FPavg value in the

initial candidate detection step. In terms of FPs, we found that additional pathological

signs, that were not the part of training, affected the method more than the modalities.

For instance, among the OXVASC (different modality from the training SWI data) and

TICH2 datasets (same modality), even though both are pathological datasets, the greater

prevalence of confounding ‘CMB-like’ signs in TICH2 resulted in higher FPavg in the

TICH2 dataset. Among all the datasets we used, the SHK dataset had high contrast,

low noise and a better than average resolution making vessels and sulci easy to remove

in this dataset. Moreover, this dataset has same modality as that of the training data,

and hence both candidate detection and discrimination step models performed well (and

cluster-wise TPR values comparable even with that on the UKBB SWI data). However,

during the post-processing step, a few CMBs near the sulci, closer to the skull were

misclassified as FPs resulting in lower cluster-wise TPR. The OXVASC dataset was quite

different from the training SWI data and from other datasets, since it shows lower contrast

between CMB and background as shown in figure 9. Hence, providing FRST as the second

input channel was particularly useful for this dataset, since the FRST relies more on the

radial symmetry nature of CMBs at different radii (we used 2, 3, 4 and 6 as specified in

section 2.2) rather than its intensity contrast with respect to the background. Hence, on

the OXVASC dataset the FRST maps had the same contrast as that of other modalities

(as seen in figure 2a) aiding in the detection of subtle CMBs. Since the estimation of

FRST maps does not require any additional modality other than the input modality,

our method effectively uses a single image modality and provided results comparable to

existing methods that use multiple modalities (Ghafaryasl et al., 2012; Al-Masni et al.,

2020).

Concluding, we proposed a fully automated method using deep learning for CMB

candidate detection, candidate discrimination with a knowledge distillation framework,

followed by post-processing filtering using structural and anatomical properties. Our
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method achieved cluster-wise TPR values of >90% with FPavg <1.6 FPs/subject on

T2*-GRE and SWI modalities, on par with the state-of-the-art, and gave better preci-

sion than existing methods. When the models were trained on SWI data and applied on

QSM images from the same dataset, the method achieved a cluster-wise TPR ≈90%. On

applying the trained method to other datasets consisting of data from different popula-

tions and acquired using different scanners and protocols, our method gave a cluster-wise

TPR >81%, despite the presence of other major pathologies. The python implementa-

tion of the codes for CMB candidate detection and discrimination steps are currently

available in https://github.com/v-sundaresan/microbleed-detection. One of the

future directions of this research would be to improve the generalisability of the proposed

method using various domain adaptation techniques, to overcome the effect of scanner-

and population-related variations. Another clinically focussed avenue of this research

could be to develop automated algorithms to rate the CMBs based on their size and

distribution, which would be useful in studying their clinical impact.
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