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ABSTRACT 

In the present era, emergence of next generation sequencing approaches has revolutionized the 

field of gut microbiome study. However, the adopted DNA extraction step used in metagenomics 

experiments and its efficiency may play a critical role in their reproducibility and outcome. In 

this study, fecal samples from active and non-tuberculosis subjects (ATB/NTB, n=7) were used. 

Fecal samples of a subgroup of these subjects were subjected to Mechanical enzymatic lysis 

(MEL) and Phenol: Chloroform: Isoamyl Alcohol (PCIA) methods of DNA extraction and a 

third-generation sequencing platform i.e. MinION was employed for microbiome profiling. 

Findings of this study demonstrated that DNA extraction method significantly impacts the DNA 

yield and microbial diversity. Irrespective of the adopted method of DNA extraction, ATB 

patients showed altered microbial diversity compared to NTB controls. Also, the fecal microbial 

diversity details are better captured in samples processed by MEL method and may be suitable to 

be adopted for high-throughput gut microbiome studies.  
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INTRODUCTION 

Gut microbiota is composed of trillions of microorganisms belonging to diverse groups such as 

bacteria, virus and fungi.
1,2

 It also contributes and play a critical role in host metabolism, 

development and optimum function of the immune system to provide protection from pathogenic 

invasion.
3,4,5 

Profiling of this complex community brings useful information to understand the 

perturbed patho-physiology in diverse disease conditions.
6,7,8,9,10

 Identified targets may help to 

devise translatable solutions for optimum maintenance of gut homeostasis.
11,12,13,14,15

 

In the past few decades, development of metagenomics tools promoted compositional and 

functional analyses of gut microbiota which were previously an unrealistic undertaking.
16,17

 A 

typical metagenomics study involves sampling, storage, processing, genomics data acquisition, 

informatics analysis and further validation. Adopted DNA extraction methods are known to 

influence the outcome of metagenomics experiments.
18,19

 Therefore, it is important to select 

appropriate DNA extraction methods to explore diverse microbial communities including the 

minor contributors. 

In this pilot scale study, we aimed to capture the gut microbial diversity of active tuberculosis 

(ATB) and non-tuberculosis (NTB) subjects. The influence of the adopted DNA extraction 

method on the microbial diversity in a subset of samples processed by Mechanical Enzymatic 

Lysis (MEL) and Phenol: Chloroform: Isoamyl Alcohol (PCIA) methods were also monitored. 

Findings of this study may be useful to get reproducible inter- and intra-laboratory gut microbial 

profiling results by improving the coverage in different disease conditions.  

METHODS 

 

Ethics statement: This study is part of an ongoing project approved by the Institute Human 

Ethics Committees of the Agartala Government Medical College, Agartala (protocolF.4[6-

9]/AGMC/Academic/IEC Committee/2015/8965, dated 25 April 2018) and International Centre 

for Genetic Engineering and Biotechnology, New Delhi (ICGEB/IEC/2017/07).  

Subject recruitment and sample collection: Subjects presenting with symptoms of cough (> 2 

weeks), fever, weight loss and night sweat to the outpatient department of the clinical site were 

recruited after receiving signed informed consent. Subjects (n=7, male/female: 4/3; age 40.9 (30-
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57) in years) of both gender and above 18 years of age were included. Epidemiological details of 

these study subjects are presented in Table 1. Collected sputum samples (~5 ml) were subjected 

to acid fast bacilli microscopy by Ziehl–Neelsen staining, and cartridge based nucleic acid 

amplification test (GeneXpert).  Subjects with all positive test results grouped as active 

tuberculosis (ATB) and negative test results as non-tuberculosis (NTB). These NTB subjects 

were suffering from other respiratory disease conditions like pneumonia or lung cancer or 

asthma or chronic obstructive pulmonary disease (COPD) as established by clinical decisions 

(Figure 1). Fecal samples (~ 50 grams) were collected by the study subject using a sterile 

container without touching the surroundings. Within 60 mins of collection, fecal samples were 

stored at -80°C till further analysis. 

Genetic material extraction: Two different methods (Mechanical-Enzymatic Lysis method: 

MEL and Phenol: Chloroform: Isoamyl Alcohol method: PCIA) were used for genomic DNA 

extraction from fecal samples of the study subjects. The steps involved in both the methods are 

schematically presented in Figure 2.  

MEL method of fecal sample processing: Fecal samples were brought to room temperature and 

equal amount (150 mg) of it was transferred to pre-chilled micro-centrifuge tube and mixed with 

TE buffer (50 mM Tris-1mM EDTA, pH 8.0, 200 µl). To it, glass beads (n=4, 2.7 mm) were 

added and vortexed (~45 sec). After removal of glass beads, enzyme solution mix (lysozyme (50 

µl, 10 mg/ml), mutanolysin (6 µl, 2 KU/ml) and lysostaphin (3 µl, 4 KU/ml)) were added and 

incubated at 37˚ C for 1 hour. To the reaction mixture, Guanidinium thiocyanate (250 µl, 4M) 

was added and mixed gently for 45 seconds before adding N-lauryl sarcosine (300 µl, 10 %) and 

incubated at 37˚ C for 10 minutes at 300 rpm in a thermomixer. After vortexing, samples were 

centrifuged at 16,000 g for a few seconds and incubated at 70˚C for 1 hour. After adding 

Zirconia beads (300 mg, 0.1 mm) to the samples, bead beating was carried out in two cycles (30 

sec each) for 2 minutes. After adding PVPP (15 mg), the sample mixture was vortexed before 

centrifuging at 16,000 g for 3 min at room temperature. The supernatant was transferred to a 

fresh tube and the pellet was washed twice with Tris (50 mM)-EDTA (20 mM)-NaCl (100 mM)-

PVPP (1%) solution (500 µl) and pooled. To it, Isopropanol (2 ml) was added and after mixing 

for a few minutes, samples were incubated at room temperature for 10 minutes before 

centrifuging at 16,000 g for 10 minutes. The pellet was collected, dried at room temperature and 

phosphate buffer: potassium acetate (1 ml, 9:1) was added before incubating on ice for 90 
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minutes (or -20°C overnight). The sample was centrifuged at 16,000 g for 30 minutes at 4˚C and 

to the supernatant, RNaseA (4 µl, 10 mg/ml) was added and incubated at 37˚C for 60 minutes. 

Sodium acetate (3M, pH 5.2, 50 µl) was added to each tube followed by ice-cold ethanol (1 ml, 

96 %) and mixed by inverting the tubes a few times before incubating at room temperature for 5 

minutes. After centrifuging at 16,000 g for 15 minutes at 4 ˚C, the supernatant was discarded 

followed by washing the pellet twice with ice-cold ethanol (70%). The dried pellet was 

resuspended in Tris-EDTA buffer (200 µl, 10 mM-1 mM, pH 8.0) and extracted genomic DNA 

amount was measured using Qubit 3.0 fluorometer (Q33216, Thermo Fischer Scientific, United 

States). 

PCIA method of fecal sample processing: To fecal samples (100 mg each, after bringing to 

room temperature), normal saline solution (1 ml) was added and centrifuged at 645 g at room 

temperature for 2 minutes to collect the supernatant and centrifuged again at 7,168 g at room 

temperature for 1 min. The microbial pellet was resuspended with PBS (pH 7.4, 1 ml) and 

centrifuged at 645 g for 2 min at room temperature and the resulting supernatant was centrifuged 

at 7,168 g for 1 min at room temperature . To the microbial pellet, lysis buffer (500 µl) and 

proteinase K (2 µl, 20 mg/ml) was added and incubated for 10 min at 37°C with gentle shaking 

at 300 rpm. To the reaction mixture, SDS (50 µl, 10 %) was added and incubated at 65° C for 20 

min. The mixture was centrifuged at 12,114 g for 5 min at room temperature and to the 

supernatant, an equal volume of Phenol: Chloroform: Isoamyl Alcohol (25:24:1) was added. The 

reaction mixture was centrifuged at 7,168 g for 5 min at room temperature. The aqueous phase 

was collected and isopropanol (0.6 volume) was added before centrifuging at 12,114 g for 5 min 

at room temperature. To the DNA pellet, ethanol (ice-cold, 70 %, 1 ml) was added before 

centrifuging at 7,168 g for 5 min at room temperature. The dried pellet was re-suspended in TE 

buffer (pH 8.0, 50 µl) and extracted genomic DNA amount was quantified using Qubit 3.0 

fluorometer (Q33216, Thermo Fischer Scientific, United States). 

Library preparation: Isolated genomic DNA (~700 ng) from faecal samples of all study 

subjects belonging to ATB and NTB groups were taken for library preparation. Nuclease free 

water (12931S, NEB, United States) was added to each DNA sample to a final volume of 50 µl, 

followed by addition of end repair buffer (E7546S, NEB, 7 µl), end repair enzyme (E7546S, 

NEB, 3 µl) and incubated at 20˚ C for 5 minutes followed by incubation at 65˚ C for 5 minutes. 

To the AMPure beads (A63880, Beckman Coulter, United states, 60 µl), DNA prep was added 
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slowly and incubated at room temperature for 5 minutes. These tubes were placed in a magnetic 

rack (NEB, United States) till the solution becomes clear (~5 min). Carefully the supernatant was 

taken out without disturbing the pellet and washed twice with EtOH (70 %, 200 µl). These tubes 

were removed from the rack and nuclease free water was added (23.5 µl) and incubated at room 

temperature for 5 minutes. These tubes were kept on a magnetic rack for 5 minutes till the 

solution became clear and the supernatant was transferred to a separate micro-centrifuge tube. 

Barcodes (2.5 µl) were added to each tube followed by a blunt T/A ligase master mix (25 µl) and 

incubated at RT for 10 min. To this reaction mixture, AMPure XP beads (50 µl) were added and 

washed twice using ethanol (70 %). The pellet was resuspended with nuclease free water (NFW, 

20 µl) and incubated at room temperature for 5 minutes and kept in a magnetic rack for another 5 

minutes. Equal amounts of barcoded DNA from all samples were pooled in a tube (0.2 ml) and 

Barcode Adapter Mix (BAM, Oxford Nanopore, 20 µl) was added. Equal volume of Blunt/TA 

ligase (NEB, United States) was added to this reaction mixture and incubated for 20 minutes at 

20˚ C. Then AMPure beads (0.4 times of the resultant volume) were added to the reaction mix 

and incubated at room temperature for 5 minutes and kept in a magnetic rack for 5 minutes. To 

the pellet, ABB Buffer (140 µl) was added, kept in a magnetic rack for 5 minutes and repeated 

twice. The tubes were removed from the magnetic rack, using an elution buffer (16 µl) the pellet 

was resuspended and incubated at room temperature for 5 minutes followed by keeping them on 

a magnetic rack for another 5 minutes and the supernatant was transferred to a clean tube.  

Priming: Flow cell priming mix was prepared by mixing Running Buffer with Fuel Mix (RBF, 

576 µl) and nuclease free water (624 µl). The priming port was opened in the flow cell (FLO-

MIN107) 9.4.1 and after removing the buffer (20-30 µl), priming mix (800 µl) was loaded into 

the flow cell through the priming port by rotating the pipette anticlockwise. Then the flow cell 

was kept as such for 5-10 minutes. 

Library loading: Before loading, the library was prepared by adding Library Loading Beads 

(LLB, 25.5 µl) and Running Buffer with Fuel Mix (RBF, 35 µl) to the pooled library to a final 

volume (75 µl). The priming mix (200 µl) was added to the flow cell through the priming port. 

Then the prepared library (75 µl) was loaded into SpotON by drop by drop. Then the SpotON 

sample port cover was gently replaced followed by closing the priming port and replacing the 

MinION lid.  
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Sequence data processing: Upon completion of sequencing run, the reads generated in FAST5 

format were demultiplexed and converted to FASTQ using Albacore software with barcoding 

option. Base calling and analysis of the sequencing reads was performed in real-time using 

EPI2ME, a cloud-based analysis platform of Oxford Nanopore (Oxford Nanopore Technologies 

Limited, UK). 

Statistical analysis: Microbiota profiles generated after nanopore sequencing were plotted and 

visualized using Microsoft Excel 2019. Bland-Altman plots were made to explore the differences 

in the microbiota profiles generated by nanopore sequencing using two different methods for top 

seven prevalent genera. Venn diagrams were plotted using a web tool 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). 

 

RESULTS  

  

Tuberculosis patients showed altered gut microbiome profiles. 

Genetic material extracted from fecal samples of ATB and NTB subjects using PCIA method 

and metagenomics profiling by MinION platform showed disease specific differences. In 

majority of the study samples irrespective of ATB or NTB groups, Bacteroides, Bifidobacterium, 

Escherichia, Enterococcus, Lachnoclostridium, Parabacteroides and Fecalibacterium genera 

were commonly detected. Overall, Bacteroides (33%) was found to be most abundant followed 

by Escherichia (13.3%) and Enterococcus (12.5%) (Figure 3A). Taxonomic profile of identified 

bacterial genera in both the ATB and NTB study subjects showed quantitative variation (Figure 

3B). Higher abundance of Enterococcus in ATB (1.5-62.2%) compared to NTB subjects (<5.5%) 

was observed. Whereas higher Bacteroides abundance was observed in NTB subjects (40-

79.8%) than ATB (6-37.4%). Higher abundance of Lachnoclostridium and Bifidobacterium were 

observed in ATB subjects than in NTB subjects.  In one out of 4 ATB study subjects, 

Akkermansia (21.2%) and in a single NTB subject Acidaminococcus (5.8%) were identified.  

Gut microbiome profiling of ATB and NTB subjects processed by MEL and PCIA methods 

To monitor the contribution of DNA extraction methods on outcome of metagenomics study, 

fecal samples (n=2, ATB/NTB:2/2) were processed using two different genomic DNA extraction 

methods. The total genomic DNA yield from the study samples processed using the MEL (18.87-

112.23 ng/mg, n=4) method was tenfold higher than PCIA (1.18-9.54 ng/mg, n=4) (Figure 4A). 
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Upon analysis using MinION sequencing, a higher number of reads were identified in the 

majority of these samples processed using the MEL method (Figure 4B). Total number of taxa 

identified from the samples processed using MEL and PCIA methods showed limited overlap 

(<6.5%, n=4) (Figure 4C). Bacteroides (38%), Enterococcus (21.2%), Escherichia (18.1%), 

Bifidobacterium (3.2%), Akkermansia (9.8%), Parabacteroides (1.7%), Collinsela (0.7%), 

Fecalibacterium (0.5%) and Lachnoclostridium (0.5%) were the most prevalent genera captured 

by both these methods (Figure 4D). Bacteroides, Escherichia and Bifidobacterium were the most 

prevalent genera in samples processed using either MEL or PCIA method and identified in the 

majority of these samples. Whereas Akkermansia and Parabacteroides were detected in one out 

of four samples processed using PCIA and in all samples processed using MEL method. The 

overall abundance of Enterococcus, Bifidobacterium, Akkermansia, Parabacteroides, Collinsella 

and Lactobacillus were higher in samples processed using the MEL method as compared to 

PCIA. Higher Bacteroides abundance was observed in samples processed using PCIA (49.4-

94.4%) than MEL method (23.5-67.3%). Fecal samples processed using MEL yielded higher 

bacterial diversity at genus levels including identification of unique genus such as Penibacillus, 

Ruminoclostridium, Blautia, Ornithobacterium, Prevotella as compared to PCIA. Adopted DNA 

extraction methods influenced the outcome of metagenomic profiles of the same samples 

irrespective of their group and MEL method captures better microbial diversity (Figure 5). 

  

Further, the agreement between MEL and PCIA methods was evaluated for the top seven 

contributing genera (Bacteroides, Enterococcus, Bifidobacterium, Akkermansia, 

Parabacteroides, Lactobacillus and Collinsella) and Bland-Altman plots showed method 

specific differences (Figure 6A-H). Certain degree of biasness to the MEL method in detecting 

Enterococcus and Akkermansia was observed. The wide confidence intervals and higher mean 

differences variation are expected in studies involving small sample size (Figure 6). 

 

DISCUSSION 

Metagenomics studies capture detailed microbial diversity in varied samples and useful for a 

better understanding of the pathophysiology in healthy and perturbed conditions.
20,21

 In fact, in 

certain diseases, supplementation with probiotics provided a positive outcome in resolving the 
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perturbed conditions.
22

 However, it involves multiple critical steps such as sampling, storage, 

processing, sequencing and informatics analyses which can impact the outcome affecting intra- 

and inter-laboratory reproducibility. 

Several reports including the MicroBiome Quality Control project (MBQC) and the International 

Human Microbiome Standards (IHMS) group highlighted majority of experimental variability to 

the adopted DNA extraction methods.
23,24

 As expected, fecal samples contain a diverse group of 

microbes and selecting an appropriate DNA extraction method might minimize the over- or 

under- representation of specific microbes. A third-generation sequencing platform i.e. MinION 

was used for profiling the extracted DNA, due to its portability, speed of data production, ease of 

use and ability to generate long reads in real time. And MinION and Illumina platforms 

generated comparable results from different biofluids including human nasal samples.
25 

Many metagenomics studies adopt commercial kits for DNA extraction and reports demonstrated 

that manual method processed fecal samples better captures the microbial diversity.
26 

In this 

study we compared two manual methods of DNA extraction for further processing. Commercial 

method of DNA extraction has its own advantage of intra and inter-laboratory reproducibility but 

if it captures partial diversity, it will impact the study outcome. 

Like other disease conditions, infection also alters gut microbial diversity in humans. Few 

reports have demonstrated altered microbial diversity in pulmonary ATB patients with respect to 

NTB or healthy controls.
27,28

 In this pilot scale study, we employed the PCIA method of DNA 

extraction from ATB and NTB subjects and found differences in the gut microbiota composition 

between the groups. From the MinION results, higher abundance of Lachnoclostridium, 

Enterococcus and Bifidobacterium in the ATB subjects compared to NTB were observed and 

corroborated earlier findings.
29,30,31,32 

To further monitor the contribution and impact of the adopted method of DNA extraction, 

microbial diversity was monitored in fecal samples of ATB and NTB subjects processed using 

manual methods like MEL and PCIA, among other widely used commercial kits (QIAamp DNA 

stool MiniKit, Qiagen DNeasy kit, MoBio PowerFecal kit).
33

 The MEL method is a combination 

of enzymatic, mechanical and thermal treatment for disruption of bacterial cells and involves 

three different lytic enzymes namely lysozyme, lysostaphin and mutanolysin which targets both 
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Gram-positive and Gram-negative bacterial cell wall, whereas PCIA uses enzymatic (lysozyme) 

and thermal treatment.
26,34

 Lysozyme hydrolyses 1,4- glycosidic-linkages whereas lysostaphin 

acts on the polyglycine bridges present on the peptidoglycan layer of the cell wall and 

mutanolysin act against bacteria having O-acetylated peptidoglycan.
35,36,37,38,39,40

 

The total genomic DNA yield was higher in MEL than the PCIA method corroborating earlier 

reports.
26,34

 It seems that lysozyme alone does not efficiently lyse the diverse bacterial cells and 

mechanical disruption by bead beating has higher DNA extraction efficiency.
41,42,43

 We observed 

higher DNA yield as well as better coverage on bacterial diversity in the samples processed 

using MEL supporting earlier claims.
35,44,45,46

 In this comparative analysis, majority of identified 

taxa belonged to the class Bacteroidia, Gammaproteobacteria, Bacilli, Actinobacteria, 

Verrucomicrobiae,Methanobacteria and Clostridia irrespective of the adopted extraction 

methods. Interestingly, the relative abundances of these classes were higher in the majority of the 

samples processed using the MEL method as compared to PCIA. Flavobacteria class was 

identified in the majority of these samples processed using the MEL method. The gram-positive 

bacterial class Bacilli, Actinobacteria, Clostridia were more abundant along with the gram-

negative bacteria class Bacteroidia, Gammaproteobacteria, Verrucomicrobiae in samples 

processed using MEL method compared to those extracted using PCIA.  

   

The difference between the ATB and NTB subjects, if any, used for comparison of DNA 

extraction efficiency among the two methods was also explored. Higher abundance of 

the Bacteroidia class was observed in the ATB subjects as compared to NTB samples processed 

using MEL method corroborating earlier reports.
47

 We observed Bifidobacterium abundance 

associated with NTB controls whereas Faecalibacterium and Roseburia were enriched in ATB 

patients as reported earlier.
48

 In addition, the bacterial genus Enterococcus, 

 Akkermansia and Parabacteroides were enriched in the TB patients.  Prevotella  

and Eubacterium levels didn’t show any differences between ATB and NTB groups unlike 

reported earlier. 

Few limitations of this study include the small sample size used for these pilot scale comparative 

experiments. However, the observations of this study corroborated earlier reports which showed 

that altered microbial diversity is influenced by the adopted DNA extraction methods. So, it is 
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important to select an appropriate and efficient DNA extraction method for wider coverage of 

microbiome diversity to ensure reproducibility in microbiome profiling studies. Validation using 

complementary methods would be useful to substantiate these claims. Overall, in this study we 

demonstrated ATB subjects have different microbial diversity than NTB and DNA extraction 

method plays a critical role in capturing it. 

CONCLUSION 

Microbiome profiling study and their outcomes depend on several factors including adopted 

methods of sample collection, storage, processing steps, sequencing platforms used for data 

acquisition and bioinformatics tools used for such analysis. Our findings suggest that the MEL 

method yields a higher amount of DNA and MinIOn based data showed improved coverage of 

microbial diversity details than the PCIA method. Thus, the MEL method may be used as a 

preferred method to profile the differences between perturbed and control subjects for a better 

understanding of disease and underlying conditions.  
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Table1. Epidemiological details of the study subjects 

 

 

 

 

 

 

 

 

 

                             

  

                                

 

                                                         

   

 

 

 

 

 

   

   

 

  

Demographic details Total 

Active tuberculosis 

(ATB) 

Non-tuberculosis 

(NTB) 

Population size 7 4 3 

Mean age (range) in years 40.9 (30-57) 41 (32-57) 40.7 (30-50) 

Gender (Female/Male) 3/4 1/3 2/1 

Body mass index (kg/m
2
) 17.08 17.70 15.84 

Cough (y/n) 7/- 4/- 3/- 

Expectoration (y/n) 6/1 4/- 2/1 

Haemoptysis (y/n) -/7 -/4 -/3 

Chest pain (y/n) 4/3 2/2 2/1 

Breathlessness (y/n) 1/6 1/3 -/3 

Wheeze (y/n) -/7 -/4 -/3 

Body temp. (>37ºC/normal) 2/5 1/3 1/2 

Smoking (y/n) 4/3 3/1 1/2 

Alcoholism (y/n) 4/3 3/1 1/2 

Sputum AFB Test (+/-ve) 3/4 3/1 -/3 

GeneXpert test result (+/-ve) 4/3 4/- -/3 
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Figure 1: Study subject classification for fecal sample collection, processing and microbiome 

analysis using MinION. Study subjects with positive sputum microscopy and GeneXpert results 

were grouped as case (active tuberculosis: ATB) and with both negative results were grouped as 

non-tuberculosis (NTB) control groups. Methods (mechanical-enzymatic lysis method: MEL and 

Phenol: Chloroform: Isoamyl Alcohol: PCIA) adopted for fecal genomic material isolation.  
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Figure 2: Schematic presentation of the steps involved in the adopted fecal genomic DNA 

extraction methods (mechanical-enzymatic lysis method: MEL and Phenol: Chloroform: Isoamyl 

Alcohol: PCIA) used in this study. This image was generated using BioRender Software 

(http://www.biorender.com/).                                                                                                         
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Figure 3: Microbiota composition of ATB and NTB subjects processed using Phenol: 

Chloroform: Isoamyl Alcohol (PCIA) PCIA method. A. Pie chart showing the overall 

distribution of bacterial genera in ATB and NTB subjects. B. Taxonomic profile of bacterial 

genera identified in the gut microbiome of ATB and NTB subjects.  
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Figure 4: Effect of Mechanical-enzymatic lysis (MEL) and Phenol: Chloroform:Isoamyl Alcohol 

(PCIA) methods of DNA extraction on  microbiome composition. A. Total fecal genomic DNA 

yield was found to be higher when MEL method was used. B. Total number of classified reads 

generated from the genomic DNA of fecal samples from drug naive active tuberculosis and non-

tuberculosis cases extracted using MEL and PCIA method and analyzed using MinION platform. 

C. Venn diagrams representing the core unique and shared gut microbiomes at genus levels in 

processed samples. D. Pie chart showing overall distribution of bacterial genera in MEL and 

PCIA methods.  
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Figure 5. Taxonomic profile of bacterial genera identified in the gut microbiome of ATB and 

NTB subjects showed DNA extraction method specific differences. Fecal samples were 

processed using Mechanical-enzymatic lysis (MEL) and Phenol: Chloroform: Isoamyl Alcohol 

(PCIA) methods for DNA extraction.  
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Figure 6: Bland-Altman plots of seven main genera present in the gut microbiota. Bland-Altman 

plots were generated for the seven main genera: (A) Bacteroides (B) Parabacteroides (C) 

Entereococcus (D) Akkermansia (E) Bifidobacterium (F) Colinsella and (G) Lactobacillus. For 

each genus, the mean difference between the two extraction methods (MEL vs PCIA) and the 

limits of agreement (95% reference interval) were calculated and shown (H). 
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