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Abstract 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began proliferating 

widely throughout the world in late 2019/early 2020, creating a global pandemic and health 

crisis. Although vaccines became available to the public approximately one year after the onset 

of the pandemic, there still remains much hesitancy surrounding vaccination even two years into 

the pandemic. One key concern comes from reports of breakthrough infections among the 

vaccinated that show comparable levels of peak viral load as the unvaccinated, calling into 

question the ability of vaccines to slow or prevent transmission. Therefore young, healthy 

individuals who are at low risk of serious complications themselves have little incentive to 

receive a vaccine that they are not convinced will protect others around them. To address this 

important concern, this article analyzes COVID-19 incidence in the United States as a function 

of each state’s vaccination rate. Results show that states with higher percentages of fully 
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vaccinated individuals report fewer new cases among the remaining unvaccinated population. 

These data add to accumulating evidence that COVID-19 vaccinations can indeed slow the 

spread of SARS-CoV-2, and are an important tool in society’s arsenal to put this pandemic 

behind us. 
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Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory 

disease known as coronavirus disease 2019 (COVID-19). Symptoms include fever, difficulty 

breathing, loss of smell or taste, and a host of other ailments ranging from minor to severe. This 

is an urgent global health crisis, resulting in over 251 million infections and over 5 million 

deaths worldwide, with the United States alone contributing roughly 1/6 of these numbers (46.7 

million infections and 758,000 deaths). Fortunately, the recent  development and distribution of 

vaccines has done much to curtail this issue, with initial clinical trials showing remarkable 

efficacy in preventing hospitalizations and deaths (1,2). In fact, a few months after mass 

distribution of vaccines began in the United States, many states began to relax lockdown 

regulations such as removing mask requirements in order to allow some semblance of pre-

pandemic life to resume. However, with the recent surge of new mutations such as the Delta 

variant (3) and persistent vaccine hesitancy among a large portion of the population (4), this 

global health crisis is far from over. In fact, one prominent case in the highly vaccinated state of 

Massachusetts received national attention recently when an outbreak occurred in Barnstable 

county, despite the majority of infected individuals being fully vaccinated (5). Moreover, the 

Center for Disease Control (CDC) report on this case went on to find comparable levels of viral 

load in the nose and throat of vaccinated and unvaccinated individuals based on PCR cycle 

threshold values, which indicates the possibility that even vaccinated individuals carry a 

significant risk of transmitting the virus (5). 

 Based in large part on the results of this report, the CDC went on to adjust their guidance 

to re-recommend universal indoor masking. This series of news events, along with the CDC’s 

response, has caused understandable concern among many and has raised questions regarding the 
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true extent to which vaccines prevent individuals from contracting and spreading the virus. 

Claims have even arisen among those opposed to or hesitant about vaccines that vaccination only 

serves to increase the spread of SARS-CoV-2 since vaccinated individuals are running around 

with comparable viral load to the unvaccinated but fewer symptoms to indicate the presence of 

infection. Despite the abundance of evidence that has since come out suggesting that the 

vaccinated actually have lower overall infection rates, both symptomatic and asymptomatic (6–8) 

as well as faster recovery times that shorten the window of infectiousness (9,10), such beliefs 

about vaccine ineffectiveness still persist and stymie mass vaccination efforts (11). Although 

evidence that vaccines protect the individual from severe illness and hospitalizations (1,2,8,12) is 

generally accepted and relatively non-controversial, there has been less focus on the 

effectiveness of vaccines in preventing transmission to others (but see 12). However, this is a 

critical and timely issue to address, especially for the young and healthy unvaccinated 

individuals who are at the lowest risk of serious health complications from SARS-CoV-2 but 

have the highest propensity to transmit to others (14).  

The purpose of this report, therefore, is to conduct a large-scale, nation-wide analysis on 

the association between a state’s vaccination rate and the development of new COVID-19 cases 

(incidence) among the remaining unvaccinated population. To answer this question, I used 

empirical real-world data on COVID-19 incidence and vaccination rates provided by the CDC 

for each of the 50 states in the United States of America, as well as Washington D.C. For ease of 

readability, references to states or state-level analyses in the remainder of the manuscript will 

implicitly also include Washington D.C. Data were analyzed starting from June, approximately 1 

month after vaccines became widely available to the general public in the United States, through 

the present (September 2021 at the time of writing). Furthermore, several important confounds 
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were considered for inclusion in the model as controls (see Variable Selection in Methods), such 

as population density or willingness to comply with other pandemic policies that have been 

shown to reduce transmission such as staying at home (15,16) or wearing masks in public 

(17,18). Testing frequency was also considered, since states that conduct more random testing of 

asymptomatic individuals would be more likely to report higher overall case numbers. However, 

perhaps the most important variable to control was previous incidence during the same months in 

the preceding year. Since the same state-specific idiosyncrasies that contributed to case load last 

year, such as political attitudes (19), tourist hotspots, regional climate (20), demographics (21), 

and many others likely also contribute to case load this year, controlling for previous incidence 

allows for the model to account for the aggregated variation from these state-specific 

idiosyncrasies without the risk of overfitting the model by including each one individually.  

The main hypothesis of these analyses is that states with higher vaccination rates will also 

report fewer new COVID-19 cases, which would lend support to the idea that getting vaccinated 

can protect others as well as oneself. However, there are two other possible outcomes as well. 

There could be no relationship, which may indicate that the effect of vaccination on community 

transmission is too small or non-existent to be detected through the noise of the myriad other 

nation-wide factors that contribute to viral transmission. Or there could even be a positive 

relationship such that more vaccinated states report more new cases rather than less. This would 

lend support to the idea often promulgated by vaccine skeptics that vaccination does nothing to 

slow down spread or infection, but does alter the behaviors of the vaccinated by masking 

symptoms and making them more likely to resume life as normal. To foreshadow the results, the 

main hypothesis ended up being supported, as elaborated further below.  
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Methods 

Data Aggregation 

Primary Variables 

Data on vaccination rates (22) and COVID incidence (23), the primary independent and 

dependent variables of interest, respectively, were obtained using publicly available datasets 

from the CDC. Vaccination rate was defined as the percentage of a state’s population that was 

fully vaccinated at the beginning of a particular month. Incidence was defined as the proportion 

of new cases that arose in a particular state in a particular month per 100,000 unvaccinated 

individuals. Incidence for New York and New York City were reported separately in the CDC 

dataset, but were aggregated together in the current analyses to represent the incidence for the 

entire state of New York. A small, but unknown, number of the cases recorded in the CDC 

dataset consisted of breakthrough infections among the vaccinated. Since the CDC only tracks 

severe breakthrough infections that lead to hospitalizations or deaths, and do not report these at 

the state level, it is impossible to disaggregate the number of breakthrough infections from the 

total number of new cases each month within this dataset. I therefore estimated breakthrough 

rates based on partial data provided by the Kaiser Family Foundation (24). Unfortunately, these 

data are only limited to the first half of 2021, and are largely unavailable for the months of 

interest (June through September). Moreover, data from half the states are not reported. Thus, the 

number of breakthrough infections in the current analyses is only a crude estimate, extrapolating 

from the rate of breakthrough infections in the beginning of the year, and applying mean 

substitution to the states that did not report data. Although these assumptions are tenuous at best, 

I argue that this makes very little difference to the overall analyses, as the overwhelming 

majority of new cases reported to the CDC occurs among the unvaccinated. On average, only 
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1.7% of new reported cases occur among the vaccinated while 98.3% occur among the 

unvaccinated, based on the 25 states that reported data in the first half of 2021. Thus, I argue that 

any range of plausible breakthrough infection rates represents just a drop in the bucket when 

subtracted from the much larger pool of unvaccinated cases. To substantiate this argument, I 

provide sensitivity analyses where I run Monte Carlo simulations using randomly generated 

breakthrough infection rates for each state ranging from 0.4% to 12%, varying in increments of 

0.01%. These boundaries were chosen based on doubling the minimum and maximum reported 

breakthrough infection rates, in order to account for recent increases in transmissibility due to the 

surge of the delta variant. These values also match with breakthrough infection rates reported in 

the literature, which range from 0.02% to 13.3% (25–34), but mostly skew towards the lower end 

especially when taken from a random sample rather than vulnerable groups such as health care 

workers. 10,000 simulations were run.  

Finally, after calculating incidence in the preceding manner, a z-transformation was 

applied separately for each month. This transformation was critical in order to standardize values 

between months and make valid comparisons because of the surge in cases over time due to the 

increasing spread of the Delta variant. Without this transformation, a spurious correlation would 

occur in which incidence would appear to rise even as vaccination rates increase over the 

months.  

Control Variables 

Previous incidence from 2020 was calculated exactly as above, with the exception that 

cases were taken as a proportion of the entire population of a given state rather than the 

unvaccinated population since vaccines were not available then. The remaining control variables 

were extracted from various sources as follows. Population density, as well as the total 
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population of each state, were extracted from World Population Review (35) using 2021 

estimates, since the official US Census data for 2021 are not available at the time of writing. 

Testing frequency was measured as the number of PCR diagnostic laboratory tests performed in 

each state, expressed as a percentage of that state’s population. These data were obtained from 

the U.S Department of Health and Human Services (36). Mobility was determined via GPS data 

from mobile devices that tracked the number of individuals in each state who stayed home on a 

particular day, summed over the course of each month and expressed as a percentage of the total 

number of mobile phones tracked in that state. These data were extracted from the Bureau of 

Transportation Statistics (37). Finally, data on mask compliance were provided by the Delphi 

Research Group at Carnegie Mellon University, who in partnership with Facebook, administered 

massive daily surveys starting from September 2020 asking about whether an individual wore a 

mask most or all of the time in public over the last 5-7 days. On average, each day included 

roughly 3840 responses per state. The daily percentage estimates provided by the Delphi group 

were weighted by the demographic breakdown of a particular state in order to provide a 

representative sample from that particular state. I then weighted these daily estimates by the 

sample size of respondents on that day and averaged over the entire year from September 2020 to 

September 2021 in order to produce one time-invariant measure per state that reflected the 

general propensity to wear masks in public over the past year. This was done instead of 

calculating dynamic monthly estimates of mask use specifically for the months of June through 

September for two reasons. First, previous research has shown mask use to predict lower 

COVID-19 incidence in 2020 (17,18), but mask use has dropped off considerably since the 

widespread availability of vaccines in 2021, especially among the vaccinated. Thus, this variable 

might be measuring different things in 2021 compared to 2020, and averaging over the entire 
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year smooths out the signal. Second, doing so provided stronger correlations with the other 

variables, especially vaccination rate. A stronger correlation produces a more meaningful, and 

often more conservative, analysis because the regression partials out the correlated variable and 

estimates the unique variance of vaccination rate over and above mask usage.  

Variable Selection  

Although all control variables were selected on strong theoretical grounds, care was taken 

to avoid overfitting the model with too many unnecessary variables. Thus, an inclusion criterion 

was set such that a variable must be significantly correlated with either the dependent variable 

(incidence) or the primary independent variable (vaccination rate) in order to be included in the 

final model (38,39). A test of variance inflation factors (VIF) was also carried out to rule out 

multicollinearity. All variables were averaged across months to test their correlations during this 

model selection process. 

Statistical Analysis 

All statistical analyses were conducted using Stata version 13.0 (40). I first performed a 

series of simple ordinary least-squares regressions for each month from June, 2021 through 

September, 2021. The dependent variable was the untransformed COVID-19 incidence and the 

independent variable was vaccination rate. This analysis was conducted in order to establish the 

existence of a simple relationship between vaccination rate and incidence, uninfluenced by any 

other extraneous variables, as per previous recommendations (38).  

After establishing this simple relationship across all months of interest, I re-analyzed the 

data with a single model, while controlling for potential confounds. To do so, I used a random 
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effects panel regression using month-aggregated data as the within-unit estimator of time and 

state as the cross-sectional between-unit estimator, according to the following model: 

Incidenceit= β0 + β1VaxRateit + β2-4Monthit + β5-7VaxRateit*Monthit + β8Maskit + 

β9Testingit + β10Incidence2020it + ui+εit 

where the dependent variable, Incidenceit, refers to the z-transformed incidence for state i during 

month t. β0 represents the overall regression intercept, β1 represents the coefficient for 

vaccination rate, β2-4 represent a 3x1 vector of coefficients for each month dummy variable, 

omitting the first one, June, β5-7 similarly represent a 3x1 vector of coefficients for the interaction 

of vaccination rate and each month dummy, β8 represents the coefficient for mask usage, β9 

represents the coefficient for testing frequency, and β10 represents the coefficient for 2020 

incidence. ui+εit represents the composite error term where ui represents a random intercept for 

each state and εit is the idiosyncratic error of each state for each month. Hausman’s test (41) was 

used to test the existence of a correlation between ui and the other independent variables in order 

to determine the appropriateness of the random effects model.  

Results 

Descriptive Statistics 

 Incidence and vaccination rates are reported in Table 1 for each state, along with overall 

summary statistics. Raw data for all other variables can be found in supplementary table S1.  
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Table 1. Incidence and Vaccination Rates per State 

 

State 

June July August September Overall 

Vax % Incidence Vax % Incidence Vax % Incidence Vax % Incidence Vax % Incidence 

Alaska 39.40 196.39 43.00 962.60 45.50 2937.09 47.30 6349.43 43.80 2611.38 

Alabama 29.20 155.94 32.70 1206.35 34.40 4108.51 38.40 2325.37 33.68 1949.04 

Arkansas 31.20 369.65 34.30 1792.63 36.50 3324.44 41.80 2357.70 35.95 1961.11 

Arizona 36.10 262.89 43.10 711.64 45.30 1937.32 48.00 1965.04 43.13 1219.22 

California 43.30 142.70 50.00 924.27 53.00 2142.41 56.00 1478.43 50.58 1171.95 

Colorado 45.40 340.07 52.00 586.97 54.50 1490.16 57.00 1970.29 52.23 1096.87 

Connecticut 53.70 112.00 60.80 386.74 63.40 1394.62 66.20 1435.52 61.03 832.22 

Washington D.C 46.40 98.50 52.30 332.33 54.90 1442.73 57.40 1734.71 52.75 902.07 

Delaware 43.40 153.31 50.10 333.15 52.80 1788.59 55.40 2938.70 50.43 1303.44 

Florida 39.20 388.02 45.90 2420.71 49.00 5624.24 53.20 2943.48 46.83 2844.11 

Georgia 32.10 143.46 36.70 698.36 38.70 3261.88 41.90 2735.90 37.35 1709.90 

Hawaii 47.80 181.55 51.80 616.54 53.60 3119.46 55.40 2418.11 52.15 1583.92 

Iowa 43.90 134.79 48.00 380.27 49.60 1621.21 51.80 3041.64 48.33 1294.48 

Idaho 32.80 230.80 36.10 480.03 37.50 1752.02 39.30 3144.27 36.43 1401.78 

Illinois 40.20 124.93 46.30 433.12 48.60 1543.70 51.30 1679.13 46.60 945.22 

Indiana 35.50 220.32 40.00 443.32 44.30 2252.46 46.40 2826.21 41.55 1435.58 

Kansas 38.50 207.87 42.00 894.31 45.30 2314.48 48.40 2549.65 43.55 1491.58 

Kentucky 38.50 199.54 43.60 825.38 45.70 4166.96 48.70 4671.97 44.13 2465.96 

Louisiana 31.30 296.43 35.00 2088.90 37.00 4866.52 41.60 1849.13 36.23 2275.25 

Massachusetts 53.80 90.80 61.80 394.24 64.00 1567.03 66.00 2193.94 61.40 1061.50 

Maryland 48.20 75.40 56.10 238.73 58.90 1165.37 61.60 1497.95 56.20 744.36 

Maine 54.40 197.35 61.50 266.67 63.50 1163.08 65.90 3085.20 61.33 1178.08 

Michigan 42.20 106.64 47.20 243.95 48.90 897.29 50.60 1833.62 47.23 770.37 

Minnesota 46.20 125.35 52.00 270.69 53.90 1384.62 56.00 2393.18 52.03 1043.46 

Missouri 34.40 493.27 39.20 1611.54 41.50 2152.96 45.20 1775.36 40.08 1508.28 

Mississippi 27.10 190.41 29.80 1157.98 34.50 4696.25 38.40 2665.70 32.45 2177.58 

Montana 38.30 278.49 42.90 421.71 44.40 1728.65 46.00 3933.12 42.90 1590.49 

North Carolina 36.20 175.84 41.90 749.07 43.80 2842.75 46.50 2779.97 42.10 1636.91 

North Dakota 36.60 152.22 38.90 196.39 40.20 1344.20 41.70 3252.19 39.35 1236.25 

Nebraska 42.40 103.64 47.80 410.84 49.60 1637.14 52.10 2345.01 47.98 1124.16 
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New Hampshire 49.20 106.89 56.10 205.93 58.30 1189.26 59.70 2235.93 55.83 934.50 

New Jersey 48.90 155.44 55.30 401.47 58.50 1425.71 61.60 1833.40 56.08 954.00 

New Mexico 47.90 215.67 54.60 540.90 57.30 2400.65 60.10 2400.90 54.98 1389.53 

Nevada 37.00 469.18 42.10 1254.00 44.50 1854.38 48.00 1822.73 42.90 1350.08 

New York 47.00 121.20 54.20 407.58 57.20 1528.23 60.30 1902.35 54.68 989.84 

Ohio 40.30 127.62 44.80 269.22 46.60 1439.69 48.50 3145.71 45.05 1245.56 

Oklahoma 33.80 185.43 38.50 1058.53 40.30 2920.21 44.00 2695.51 39.15 1714.92 

Oregon 45.50 300.54 53.80 584.08 56.00 2903.00 58.10 2934.74 53.35 1680.59 

Pennsylvania 43.70 128.45 49.70 206.38 52.50 1120.21 55.20 2220.34 50.28 918.84 

Rhode Island 51.80 131.80 59.00 477.70 61.60 2016.55 64.90 2564.42 59.33 1297.62 

South Carolina 33.80 147.03 38.80 695.34 40.70 3664.97 43.50 3991.20 39.20 2124.63 

South Dakota 42.40 65.67 45.50 168.78 47.00 1424.00 49.30 2759.02 46.05 1104.37 

Tennessee 31.80 118.09 35.50 732.57 39.20 4243.67 42.00 3782.14 37.13 2219.12 

Texas 35.60 229.04 41.30 758.80 43.90 2643.47 47.60 2793.09 42.10 1606.10 

Utah 32.50 388.50 37.50 845.61 44.80 1652.95 47.80 2468.53 40.65 1338.89 

Virginia 45.30 104.80 51.90 391.15 54.70 1859.22 57.40 2695.27 52.33 1262.61 

Vermont 56.40 60.47 65.70 221.40 66.80 1498.93 67.90 2358.88 64.20 1034.92 

Washington 46.70 351.84 54.70 653.45 57.70 2611.71 60.20 2987.04 54.83 1651.01 

Wisconsin 44.60 97.07 49.60 342.28 51.80 1604.53 54.10 2789.16 50.03 1208.26 

West Virginia 34.00 196.12 37.30 283.42 39.10 2049.96 39.70 4681.33 37.53 1802.71 

Wyoming 31.80 492.11 34.50 761.62 36.70 2644.86 38.70 4267.96 35.43 2041.64 

Average  

(SD) 

40.94 

(7.26) 

198.85 

 (110.43) 

46.34 

(8.60) 

661.56 

(485.15) 

48.78 

(8.52) 

2281.65 

(1089.58) 

51.45 

(8.28) 

2696.07 

(925.66) 

46.88 

(8.12) 

1459.53 

(492.32) 
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Correlations between variables 

Table 2 shows a pairwise correlation matrix between the dependent and all independent 

variables considered in the model. Population density and mobility were dropped from the final 

model due to a lack of significant correlations with both incidence as well as vaccination rates 

(p’s > 0.081). All other variables were retained.  

Table 2. Correlation Matrix  

Variables (1) (2) (3) (4) (5) (6) (7) 

(1) Incidence 1.000       

        

(2) Mask Usage -0.265 1.000      

 (0.060) 
 

      

(3) Testing Frequency -0.116 0.472 1.000     

 (0.418) 
 

(0.000)      

(4) Mobility -0.010 0.503 0.529 1.000    

 (0.490) 
 

(0.000) (0.000)     

(5) Population Density -0.220 0.311 0.523 0.505 1.000   

 (0.121) 
 

(0.026) (0.000) (0.000)    

(6) Incidence2020 0.479 -0.376 -0.437 -0.334 -0.148 1.000  

 (0.000) 
 

(0.006) (0.001) (0.017) (0.301)   

(7) Vaccination Rate -0.611 0.603 0.452 0.248 0.183 -0.753 1.000 

 (0.000) (0.000) (0.001) (0.080) (0.198) (0.000)  
Incidence is the dependent variable and vaccination rate is the primary independent variable of interest. P-values 

are included in parentheses.  

 

Due to the significant correlations between the remaining variables, VIFs were tested in 

order to ensure multicollinearity was not present in the model. All variables had a VIF under 10 

– Vaccination rate: 3.19, 2020 Incidence: 2.48, Mask Rate: 1.78, Testing Frequency: 1.43, Mean 

VIF: 2.22. 

Simple Linear Regression 

 Simple ordinary least-squares linear regressions were run separately for each month, 

regressing incidence on vaccination rate (Fig 1). In order to facilitate interpretation, the 
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dependent variable was left untransformed in its natural units (cases per 100,000 unvaccinated 

people) for this analysis. All months showed significant negative associations: June (b = -6.530, 

p = 0.002, r2 = 0.184), July (b = -28.210, p < 0.001, r 2 = 0.250), August (b = -67.685, p < 0.001, 

r 2 = 0.280), and September (b = -44.010, p = 0.004, r 2 = 0.155).  

Panel Data Regression 

 Panel data regression was used to confirm the effects of the simple linear regression. 

Hausman’s test detected no significant endogeneity (χ2(9)= 10.13, p = 0.340), and thus the 

random effects model was chosen over fixed effects (41). In concordance with the simple linear 

Fig 1. Simple Linear Regressions. Significant negative associations between vaccination rate and COVID-19 

incidence were found during the months of June through September, with vaccination rate explaining between 

15.5% to 28% of the variance in COVID-19 incidence. For ease of interpretation, the y-axis is unstandardized 

in these analyses, and left in its natural units (number of new cases per 100,000 unvaccinated people).  
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regression models, the random effects panel regression model showed a significant partial effect 

of vaccination rate (b = -0.055, z = -2.79, p = 0.005) referenced to the month of June, with no 

significant interactions for the months of July (b = 0.004, z = 0.18, p = 0.856), August (b = -

0.0001, z = 0.00, p = 0.996), or September (b = 0.003, z = 0.14, p = 0.890), suggesting 

comparable effects of vaccination on COVID-19 incidence across all months. Previous incidence 

rates from 2020 were also predictive of current incidence rates (b =0.230, z = 2.73, p = 0.006), as 

was testing frequency (b = 0.028, z = 2.16, p = 0.031). The between R-squared value for the 

model was 0.399, suggesting almost 40% of the variation in COVID incidence between states 

can be explained by the variables in this model. 

 Given the lack of interactions with month, I re-ran the above regression without the 

interaction terms in order to arrive at a main effect of vaccination rate across all months: (b = -

0.050, z = -3.51, p < 0.001). See Table 3 for all regression coefficients. 

Table 3. Panel Regression  

Independent Variables b SE b p 

 
   

Vaccination Rate -0.055 0.020 0.005 

July 0.132 0.870 0.879 

August 0.273 0.905 0.763 

September 0.200 0.941 0.832 

Vaccination Rate X July 0.004 0.020 0.856 

Vaccination Rate X August 0.000 0.020 0.996 

Vaccination Rate X September 0.003 0.020 0.890 

Incidence2020 0.230 0.084 0.006 
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Mask Usage 0.011 0.014 0.423 

Testing Frequency 0.028 1.292 0.031 

The dependent variable is COVID-19 incidence, z-transformed by month. Each independent variable is expressed as 

a percentage, so coefficients can be interpreted as standard deviation changes in response to a 1% change in the 

independent variable. The exceptions are Incidence2020, which is also z-transformed, and the month dummies 

which are coded as 1’s and 0’s. June was omitted as the reference.  

 

Sensitivity Analyses 

 Re-running the above panel regression using a range of different estimates for 

breakthrough infection rate did not change the results. Across 10,000 Monte Carlo simulations, 

the partial effect of vaccination rate for June ranged between -0.049 to -0.062 standard 

deviations, with all p-values showing statistical significance ranging from p = 0.005 to p = 0.033. 

None of the interactions with any other month were significant (all p’s < 0.71) with coefficients 

ranging from -0.001 to 0.007, suggesting comparable effects of vaccination rate across all 

months. The same held true looking at the main effect of vaccination rate by removing 

interaction terms. Over 10,000 simulations, the main effect of vaccination rate ranged between -

0.044 to -0.056, with all p-values again in the significance range, from p < 0.001 to p = 0.002. 

Discussion 

 The present analyses provide compelling evidence for the real-world effectiveness of 

COVID-19 vaccines in reducing community transmission of SARS CoV-2 in the United States. 

Despite rising cases overall throughout the summer months due to the Delta surge and other 

factors, higher vaccination rates in a state at the beginning of each month still predicted fewer 

cases during that month relative to other states. Critically, COVID-19 incidence was calculated 

as a proportion of the unvaccinated population, not a proportion of the total population. Thus, 
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these results go beyond the already plentiful evidence that the various COVID-19 vaccines are 

generally effective at protecting vaccinated individuals from symptomatic infection (1,2,8,12), 

but also provide evidence supporting the effectiveness of vaccines in protecting the surrounding 

community as well. Moreover, results were robust against a variety of different specifications for 

breakthrough infection rates, which were subtracted from the total number of new cases before 

calculating incidence among the unvaccinated. Although these breakthrough rates were not 

reported in the CDC dataset used in the current analyses and had to be roughly estimated, they 

occur so infrequently and are reported even less often, that their presence makes very little 

difference in the overall analyses. This was substantiated by Monte Carlo simulations that 

randomly generated breakthrough infection rates for each state using a range of realistic values 

and found that not one of the 10,000 simulations changed the interpretation of the results or had 

any substantial effect on the regression estimates (+/- 0.006 standard deviations for the main 

effect of vaccination rate).  

Throughout the observation period during the summer of 2021 (June through September), 

each percentage increase in a state’s vaccinated population was associated with a reduction in 

new COVID-19 cases by approximately 0.053 standard deviations. To illustrate the real world 

implications of this, Table 1 shows that one standard deviation throughout these months 

averaged to about 492.32 infections per 100,000 unvaccinated people. Thus, in a hypothetical 

population of 100,000 unvaccinated people, each 1,000 (or 1%) of them who became fully 

vaccinated at the beginning of June would be associated with an average of 26.09 fewer cases 

per month among their unvaccinated peers. By the end of September, these same 1,000 

vaccinations would be associated with 104.37 fewer infections overall. More impressively, these 

results span a window of time during which the Delta variant was the predominant strain in the 
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United States, suggesting that vaccines may be effective at slowing spread even against this 

highly infectious strain.  

 Of course, the problem inherent with observational data is the lack of randomization to a 

treatment or experimentally-designed placebo group, without which it is difficult to make causal 

claims about the association between increased vaccination rate and decreased COVID-19 

incidence. However, these findings did not change even in the presence of a variety of important 

controls, including mask usage, testing frequency, and previous incidence. Therefore, alternative 

explanations relating to these variables can be ruled out. Most importantly, including previous 

incidence in the model serves as a powerful control because it effectively accounts for the 

aggregated variation due to state-specific idiosyncrasies that may influence the endemic spread 

of SARS-CoV-2 within a particular state. For example, a state that reported a high case load last 

summer due to large gatherings at popular beaches may also report a high case load this year due 

to the same beaches. Controlling for previous incidence accounts for the aggregated influences of 

these state-specific factors. In fact, Table 2 shows a fairly strong correlation between previous 

and current incidence (r=0.48, p < 0.001), supporting the existence of these state-specific factors. 

This is a particularly important consideration given that a random-effects model was used, which 

favors more precise coefficient estimates compared to a fixed effects model, but at the expense 

of possibly introducing some level of omitted variable bias due to correlations between the unit-

level (i.e., state) error terms and the other independent variables (42). Controlling for state-level 

idiosyncrasies partially mitigates this issue by reducing variation associated with state-level 

error, achieving some of the same goals as a fixed effects model in terms of offering some level 

of correction against omitted variable bias while maintaining the improved precision of a random 

effects model. 
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 An additional and important consideration is that summer incidence during 2020 was 

related not only to summer incidence during 2021, but also had a strong negative correlation with 

the primary independent variable, vaccination rate (r = -0.75, p < 0.001). Therefore, increased 

vaccination rate predicted lower incidence both this year and last. Ostensibly, this is problematic 

since vaccines clearly cannot have a retroactive effect; therefore, this independent variable must 

reflect more than just vaccination rate, but perhaps also the willingness to employ a constellation 

of other pandemic policies as well that may have influenced transmission over the last year. For 

example, Table 2 shows that states with higher vaccination rates this summer also wore masks 

more often throughout the last year (r = 0.603, p < 0.001), indicating that a part of the variation 

in vaccination rate (r2 = 0.364) overlaps with the variation in mask usage. Although there are 

likely other unmeasured variables at play, this is one important factor that could mediate the 

retrospective relationship between vaccination rate and 2020 incidence, especially given that 

mask usage has already been shown to predict lower COVID-19 incidence in 2020 (17,18). 

There are two important takeaways from all this. First is that vaccines are not the only tool in 

society’s arsenal to stem the tide of the pandemic. Although the present results say little about 

which specific policies and practices, other than vaccination, are helpful, they do suggest that 

states that tend to favor vaccination also tend to favor other recommendations and guidelines, 

and ultimately tend to fare better. Second, it is important to bear in mind that these correlations 

do not take away from the main message of the manuscript, which is that vaccinations, 

specifically, predict lower COVID-19 incidence. Rather, the results of the panel regression show 

that the effect of vaccination rates is robust enough to still uniquely predict current incidence, 

even above and beyond its relationships with mask usage and previous incidence.  
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Furthermore, these findings are in line with recent studies that show fewer symptomatic 

and asymptomatic infections among the vaccinated, as assessed by routine laboratory PCR 

testing (6–8,43). Thus, it’s no surprise that states with a more vaccinated populace seem to offer 

more protection from infection, even to its unvaccinated residents. In addition, evidence also 

shows that aside from being less likely to host the virus in the first place, vaccinated individuals 

with breakthrough infections also carry less overall viral load throughout the duration of 

infection, despite having similar peak levels as the unvaccinated at the beginning of infection 

(9,10,44).  Moreover, even for the same levels of viral load, less infectious virus was found in 

respiratory samples among the vaccinated, indicative of less viral shedding (45,46). Therefore, 

several mechanisms seem to be at play that limit the spread of virus from the vaccinated. Aside 

from the current study, this has also been borne out empirically in other recent large-scale studies 

in Israel that showed reduced transmission from vaccinated individuals to their households 

compared to the households of unvaccinated individuals (13,47).  

In totality, the evidence that COVID-19 vaccinations reduce the spread of SARS-CoV-2 

is quite strong and consistent. Although the public messaging from the government and other 

authorities so far has focused primarily on the effectiveness of COVID-19 vaccines in protecting 

the individual, enough evidence has accrued now that this message should shift to the 

effectiveness of vaccines in protecting the community. This message would be especially 

pertinent to young, healthy adults who are the least likely to suffer major complications if 

infected, and therefore have the least personal incentive to get vaccinated. Although the 

vaccination of older adults has done much to reduce hospital burden and save lives among the 

elderly, it is now the young and healthy that need to be prioritized for vaccination. In support of 

this, an enterprising study by Monod et al. (14) modeled infection dynamics across the nation 
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and correlated this to cell phone mobility data. They found that the contact patterns of younger 

adults, aged 20-49 were most predictive of COVID-19 transmission and deaths than any other 

age group. Although vaccine mandates may be one viable solution to increase vaccination rates 

among younger adults across the country, this has been met by severe pushback from many, 

especially by those who consider vaccination to be solely a personal health choice. Considering 

that the strongest and most publicized evidence of vaccine effectiveness so far has been the 

reduction of hospitalizations and deaths among the individual (1,2,6,8,12,48), and that the public 

health narrative from the government and CDC has accordingly focused on this, it is perhaps not 

surprising that many would cling to this personal choice argument. However, based on the 

present results as well as accumulating evidence from the literature of reductions in 

infectiousness and reductions in community transmission, it may be time to refocus this narrative 

to recognize that the benefits of vaccination are not solely personal, but also communal as well.  
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