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Abstract

The COVID-19 pandemic has called for swift action from local governments, which
have instated Nonpharmaceutical Interventions (NPIs) to curb the spread of SARS-
Cov-2. The quick and decisive decision to save lives through blunt instruments has
raised questions about the conditions under which decision-makers should employ
mitigation or suppression strategies to tackle the COVID-19 pandemic. More broadly,
there are still debates over which set of strategies should be adopted to control different
pandemics, and the lessons learned for SARS-Cov-2 may not apply to a new pathogen.
While curbing SARS-Cov-2 required blunt instruments, it is unclear whether a less-
transmissible and less-deadly emerging pathogen would justify the same response.
This paper illuminates this question using a parsimonious transmission model by
formulating the social distancing lives vs. livelihoods dilemma as a boundary value
problem. In this setup, society balances the costs and benefits of social distancing
contingent on the costs of reducing transmission relative to the burden imposed by
the disease. To the best of our knowledge, our approach is distinct in the sense that
strategies emerge from the problem structure rather than being imposed a priori. We
find that the relative time-horizon of the pandemic (i.e., the time it takes to develop
effective vaccines and treatments) and the relative cost of social distancing influence
the choice of the optimal policy. Unsurprisingly, we find that the appropriate policy
response depends on these two factors. We discuss the conditions under which each

policy archetype (suppression vs. mitigation) appears to be the most appropriate.
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1 Introduction

The COVID-19 pandemic has called for swift action from public health officials, who
have instated Nonpharmaceutical Interventions (NPIs) to curb the spread of SARS-Cov-
2. Because blunt NPIs (i.e., lockdowns) have far-reaching consequences, the question
of how society should use the available instruments to curb SARS-Cov-2 transmission
has been met with a deluge of research and controversy.

Broadly, two classes of strategies emerged from this debate: suppression and miti-
gation strategies. Suppression strategies - the strategy adopted in many countries - seeks
to reduce transmission as much as possible while treatments and/or vaccines are not
available through a variety of instruments, including lockdowns, social distancing
mandates, and mask-wearing. Countries known for their strong suppression strate-
gies include New Zealand, Australia, South Asian countries, and others. A mitigation
(a.k.a. herd immunity, also portrayed as "focused protection") approach attempts to
limit the impacts of the disease on the most vulnerable members of the population
while allowing the disease to spread, hoping to balance the costs and benefits of social
distancing measures [1]. The argument underlying this strategy is that social distanc-
ing would be too expensive to contain transmission relative to the cost of infection
for the average person. For COVID-19, suppression strategies have deserved and re-
ceived overwhelming support in the scientific community due to the high death rates
caused by the disease, as well as due to the imminent threat to the stability of health
systems and continued uncertainty about the duration of immunity acquired through
infection [2]. As the COVID-19 pandemic demonstrated, countries that relaxed sup-
pression strategies too soon (e.g., India, Brazil) did go through worst-case scenarios
where health care was severely impacted, and excess death soared [3, 4].

The importance of social distancing policies has motivated an emerging and grow-
ing stream of papers evaluating the “lives vs. livelihoods" tradeoffs imposed by pan-
demics [5-8]. Although empirical work has demonstrated that the short-term economic
impacts of NPIs can be limited [9], model-based research evaluating the health and
economic effects of NPIs have shown tradeoffs between economic and health outcomes
[5, 10-13], and have demonstrated that testing and quarantining can ease these trade-
offs [14]. Many of these articles consider the early stages of a pandemic when a vaccine
is not available, and social distancing measures are used to control the spread of the
disease. In this paper, we contribute to this literature by demonstrating the role of
varying time horizons and perceived costs of social distancing on the optimal social
distancing policy.

To better understand lives vs. livelihoods tradeoffs and how it shapes policy and the
course of a pandemig, it is useful to combine behavioral models of society with disease
transmission models describing the dynamics of how the virus spreads [15, 16]. In
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this paper, we investigate how the choice of the strategy to govern Nonpharmaceutical
interventions change depending on society’s assessment of the time-horizon of the
pandemic (i.e., the time it takes to obtain and distribute an effective vaccine) and the
costs of suppression measures relative to the social cost of infections. We developed
a model that considers the tradeoff between COVID-19 suppression and mitigation
strategies based on case counts and social mixing over a pre-specified time horizon.
This paper employs a deductive reasoning approach to modeling behavior in an
infectious disease model, where behavior is defined as the solution to a boundary value
optimization problem (BVP). This analytical structure (a deterministic SIR model) and
the optimization mechanism (optimization of a cost function using a BVP) implies that
the population modeled is a set of hyper-rational agents who have the same information
regarding the final time horizon of the pandemic (e.g., when effective vaccines will be
available) and relative costs of social distancing (e.g., how to value the cost of social
distancing relative to the burden of the disease). While this framework is not meant to
capture the complexity of heterogeneous human behaviors with bounded rationality
nor the stochasticity of epidemics, it does provide insight into how rational people
could behave if they had perfect foresight. In this setup, society’s time-varying social
distancing strategy is not an input to the analysis but an output that emerges from the
problem structure and model parameters. As we show later in the paper, we find that
strategies that could be interpreted as suppression and mitigation strategies emerge
from this simple model. There is a fast switch from mitigation to suppression strategies

as the cost of social distancing and the time-horizon of the pandemic decreases.

2 Approach Overview

Here we provide a brief outline of our approach. Section 6 provides mathematical
details that will be of interest to infectious disease modelers and mathematicians. We
use a variational analysis approach, which is a mathematical technique that can be
used to derive functions that minimize or maximize a quantity (such as a cost) over an
interval, to combine a standard Susceptible-Infected-Recovered (SIR) epidemic model
describing disease transmission with a cost function describing both costs of infections
and costs of social distancing specified over the time horizon of interest. The SIR model
is an evolutionary equation whereby the epidemiological state variables’ current values
determine their rate of change. As long as the parameters that enter the SIR model
remain constant, the present state variables determine the future evolution entirely.
Using variational principles, model parameters can change dynamically to reach a pre-
specified end state and time by selecting an epidemiological trajectory that minimizes
the total cost of infections and social distancing. This approach converts the SIR model
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to a fixed time horizon model.

The state variables of the SIR model include the population densities of the suscep-
tible (s), infected (i), and recovered (r) populations. The model parameters include a
constant per capita disease progression rate y from infected to recovered and the per
capita disease transmission rate 5. At the beginning of the epidemic without any be-
havioral adaptation, the transmission rate is constant o, and the ratio fo/y defines the
basic reproduction number Ry, which is an input parameter to our implementation of
the model. In our model, the transmission rate 3, and in turn the reproduction number,
changes over time as determined by the variational approach. This change in trans-
mission represents social distancing policies and behavioral changes. We define Rp to
be the reproduction number that is modified by social distancing policy and resulting
behavioral change. The variable R; is the effective reproduction number (R, = sRp)
that captures both the change in the reproduction number due to behavioral changes
and due to the removal of susceptibles from the population. We also define a cost
parameter ¢, which describes the relative cost of social distancing compared to the cost
of infection, and Tfna, which describes the time at which the epidemic is expected
to end. The time horizon can represent different types of prior expected durations,
such as when an effective vaccine is made available or when the population is close to
having reached herd immunity. Both ¢ and Tfina are additional inputs to our model.
The initial prevalence of the disease iy is the final input, which determines the initial
perceived risk of being infected, and together with ¢ and Tfina determines the initial
social mixing behaviors. Table 1 summarizes the input parameters to our model and

provides the values we used in this study:.

Input Parameter Description Value or
Range
Ro The basic reproductive number. 1.5
ig The initial prevalence expressed as a proportion | 1074
of the total population.
c The cost of social distancing expressed as a pro- | 0.025-0.4
portion of the cost of infection.
T final The duration of the fixed time horizon expressed | 5 to 80
as a proportion of the disease progression time
scale y 1.

Table 1: Input Parameters and their considered values.

2.1 Herd Immunity and Uncontrolled Epidemics

Interpretation of our final results is aided by understanding two conceptually important

values of s. The first is se. This is the proportion of the population that would

4
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remain in a susceptible state at the end of an uncontrolled epidemic given that the
epidemic started with a low initial infection rate (iy < 1) and that most individuals
were susceptible to start (no individuals were in the recovered state or already immune
to the disease at the start of the epidemic). The second important quantity is sy. This
is the maximum proportion of individuals who could be in the susceptible state in a
population that has achieved herd immunity. In other words, if sy individuals are
susceptible and the proportion of the population in the recovered state is 1 — sy, herd
immunity will have been achieved. In other words, if a small number of infectious
individuals were introduced into the population, the infection rate would decline
rather than increase exponentially. In any case that Ry > 1, sy > sw. In other words,
in an uncontrolled epidemic, fewer people will be in the susceptible state at the end
(uninfected) than would be required to achieve herd immunity. The state variables of
the model are summarized in table 2 together with those describing the time scales

and herd-immunity.

Variable Description

T Dimensionless time (in units of y~1).

i Proportion of population in infectious state.

s Proportion of population in the susceptible state.

SH Maximum possible proportion of population that remain in
the susceptible state after reaching herd-immunity.

Table 2: Model Variables.

3 Results

In this section, we first present results from our optimization analysis using the baseline
parameter values. We then present the main outcomes of a wide range of optimization
runs to characterize how the policy response is shaped by the time-horizon of the
epidemic considered and the perceived cost of social distancing.

3.1 Mitigation and Suppression strategies emerge from differ-

ent assumptions

In this paper, strategies are not an input to the analysis but an output and a result of the
optimization procedure and the underlying assumptions. Instead of pre-specifying
strategies to the model, we specify a theory-based mathematical description of how
the disease progresses in the population (the SIR model), an objective function that

includes the costs and benefits of social distancing, and let the optimization procedure
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determine the optimal time-varying distancing policy given relative costs and time-
horizons of the pandemic. We then explore how different assumptions can lead to
different strategies.

Figure 1 presents two different types of dynamics we observe as outcomes of our
optimization model, which, for simplicity, we label as "mitigation" and "suppression”
strategies. The left panel shows the disease dynamics of a mitigation strategy, and
the right shows the dynamics of a suppression strategy. In the mitigation result, the
levels of infection peak and then subside, and a substantial portion of the population
eventually becomes infected. The mitigation strategy results from a set of parameters
representing a relatively high cost of social distancing compared to infection cost.
The suppression strategy results from a set of parameters representing a relatively
low cost of social distancing compared to infection cost. Therefore, it is unsurprising
that the mitigation strategy results in more infections than the suppression strategy.
The final proportion of the population infected is less than what would occur if the
epidemic spread with no mitigation (i.e., the number of susceptibles remains above
the lower dashed red line). In addition, the total number of people who have become
infected and have recovered is sufficient to produce herd immunity (i.e., the number
of susceptibles is below the upper red line.) However, the suppression strategy does
not allow the pandemic to take off and therefore only results in a modest number of
infections towards the end of the time frame considered.

Figure 2 presents the same trajectories and policies discussed below but now
demonstrate the dynamics of the time-varying reproductive number Rp and the ef-
fective reproductive number R; as a function of time for a case with resulting in a
mitigation strategy and a case resulting in a suppression strategy. The mitigation
strategy results in a dynamic reproduction number Rp(7) systematically above one,
reflecting this policy’s unwillingness to control the epidemic, resulting from the rela-
tively high value of ¢, the cost of social distancing compared to the cost of infection.
Social distancing is the greatest (Rp is the lowest) approximately when infections peak
(see Figure 1). In contrast, the suppression strategy keeps Rp, and R; below one during
the beginning of the pandemic but ultimately allows Rp > 1 once infection levels have
become very low and once it is close enough to the end of the pandemic (Tfna) that
some growth in infections still results in very few infections throughout the pandemic.
These results align closely with the observed behaviors of countries as vaccines have
become increasingly available.

Figure 3 shows Rp for a range of values of T¢ina and c. For the values shown, when
T final 15 less than or equal to 32, the dynamics of Rp are consistent with a suppression
strategy. When T, increases to 64 and 128, solutions emerge that are consistent

with a mitigation strategy, as shown in Figure 2. Figure 3 shows that the switch from
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Figure 1: Mitigation vs. Suppression Disease Dynamics In both the left and right panels,
Ro=1.5,ip = 107%, and Tfina = 64. The panels differ only in the value of c, the relative cost
of social distancing compared to infections. The left panel shows the qualitative dynamics
of a mitigation strategy. In this case ¢ = 0.4. The right panel shows the qualitative dynamics
of a suppression strategy. In this case ¢ = 0.025. Recall that Rp is the social distancing
reproduction number and R; is the reproduction number that accounts for decreases in
the reproduction number due to both social distancing and removal of susceptibles from
the population.
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Figure 2: Mitigation vs. Suppression Strategies - Rp and R; In both the left and right
panels, Ro = 1.5, ip = 1074, and Tgina = 64. The panels differ only in the value of c,
the relative cost of social distancing compared to infections. The left panel shows the
qualitative dynamics of a mitigation strategy; in this case ¢ = 0.4. The right panel shows
the qualitative dynamics of a suppression strategy; in this case ¢ = 0.025.
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Figure 3: Optimal Distancing Policies In all cases shown, Ry = 1.5 and iy = 107%. Panel
names show the values of Tgna used in each analysis. Line colors show optimal social
distancing policies for different values of c.

mitigation to suppression strategy is fairly abrupt. For example, when T, = 64, the
dynamics of Rp when ¢ = 0.025 and 0.05 are suppression strategies and ¢ = 0.2and0.4
are mitigation strategies. Only c = 0.1 appears to not strictly be either a mitigation or
suppression strategy. In a “pure" mitigation strategy, herd immunity is achieved and

full re-opening can occur (i.e., Rp = Rg) before Tina. In this case, Rp(Tfinal) < Ro.

3.2 Optimal Strategy as a Function of Costs and Time-Frame

Figure 4 presents the epidemic size stemming from a range of policies when we vary
the cost of social distancing ¢ and the epidemic duration Tfinal and perform 741 op-
timization runs. We use the epidemic size at the end of the epidemic time frame to
indicate which policy was chosen. While we do not create or propose any artificial

policy category scheme, the figure exhibits a clear discontinuity. The yellow region of
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Figure 4: Final Epidemic Sizes for Optimal Policies This plot shows the final epidemic
sizes when optimal policies are followed for a range of values of time horizon, Tgna and
relative cost of social distancing, c.

the plot, with a long-time frame (e.g., vaccines take too long to develop) and high cost
of social distancing (e.g., no income support is provided to families, and families must
engage in infectious mixing to survive), result in a high epidemic size and thus reveal
a mitigation strategy. Conversely, society chooses a suppression strategy with either a
short epidemic time frame and/or low cost of social distancing. As figure 4 demon-
strates, a deterministic SIR coupled with an analytical optimization framework can

suggest very different strategies to manage an epidemic under alternative conditions.

4 Discussion

The results presented previously revealed the characteristics of optimal social distanc-
ing policies under a variety of conditions by formulating the social distancing policy
decision as a boundary value problem. In this set up, society decided to balance the
costs and benefits of social distancing contingent on the costs of reducing transmission
relative to the burden imposed by the disease. To the best of our knowledge, our paper
is unique in using this approach. Because this approach does not impose a constraint
in the functional form of the solution, social distancing strategies emerge from the
problem structure and parameters rather than being imposed a priori. The next para-
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graphs discuss the main findings from these computational experiments. We find that
the relative time-horizon of the pandemic (i.e., the time it takes to develop effective
vaccines and treatments) and the relative cost of social distancing influence the optimal
policy choice. We also find that optimal suppression and mitigation strategies have
characteristics that may seem counter-intuitive and can challenge common wisdom.

Perceived time-horizons and relative costs shape society’s response to the pan-
demic. The most salient finding from these experiments was that the perceived time-
horizon and costs of social distancing provoked a fast switch from suppression to a
mitigation strategy. The higher the costs of social distancing and the longer the epi-
demic time horizon, the higher the chance society will pursue a mitigation strategy
prioritizing livelihoods over saving lives. This sharp, non-linear switch from miti-
gation to suppression might be a challenging aspect to address in a pandemic with
characteristics that fall close to the edge of the frontier revealed in figure 4. Because
countries with different socioeconomic characteristics and populations with hetero-
geneous values may perceive or experience social distancing costs differently, any
pandemic that falls close to that frontier will inevitably result in disagreement and lack
of coordination.

Optimal Strategies were smooth and decisive in an idealized setting. In this
mathematical exercise, society’s response to the pandemic was smooth and decisive,
meaning that policymakers did not start with blunt lockdowns only to reverse course
a few weeks later and to instate restrictions again. Therefore, our model does not
reproduce results in policies seen in the real world, including adaptive policies that
imposed and lifted social distancing orders adaptively, which were tested in our pre-
vious work [17] or strategies that use fast periodic switching between suppression and
mitigation [18, 19]. One can interpret this result in two ways. One possibility is that our
analytical machinery cannot reproduce these policies, and they are indeed better than
the smooth, optimal policies we obtained. Alternatively, the smooth policies revealed
in this study are indeed optimal, and never have been tried. This is nuanced and may
be a stark finding. First, suppose decisive strategies have never been tried. In that case,
there is no chance that empirical analysis will reveal the true difference between current
strategies and ideal strategies because an appropriate counterfactual is not available
in the data. Second, modeling studies that simulated a limited set of heuristic policies
might present a menu of dominated options. This aspect should be investigated with
further analysis, specifically with more nuanced models that include heterogeneity
and stochasticity. Suppose such smooth policies are, in fact optimal even under more
challenging conditions. In that case, investigating the performance of these policies in
more realistic models could prove a useful and worthwhile exercise.

Optimal suppression strategies do not hold R; < 1 indefinitely, and optimal
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mitigation strategies do not allow completely uncontrolled epidemics. Early in
the COVID-19 pandemic, the common-wisdom view was that society ought to keep
COVID-19 cases from growing, and economists have gone a step further to propose
that society ought to maximize utility, keeping R; < 1 [20]. While this seems a
reasonable statement, our findings do not corroborate the idea that R, should be
below one indefinitely at all costs. As noted in figures 1 and 2, R, eventually surpasses
one before the end of the epidemic time-frame under a suppression strategy, even
under the scenarios that were most favorable to a suppression strategy. These results,
therefore, suggest that R; < 1 is not a permanent end-goal of optimal suppression
strategies. Instead, optimal suppression strategies balance the costs and benefits of
social distancing measures by keeping R; < 1 at the beginning of the epidemic and
only allow a controlled increase in infections when they are the least dangerous -
towards the end of the epidemic. Nevertheless, an indefinite zero-covid strategy
was not found to be desirable from a welfare maximization standpoint using this
simple model. Instead, the optimal strategy was contingent and time-varying - it did
imply near zero-infections at the beginning of the epidemic, and the latter led to a
modest and controlled rise in infections. This finding aligns with how New Zealand
and other countries that successfully adopted aggressive strategies to curb COVID-19
have proceeded. Countries that adopted zero-covid strategies at the beginning of the
COVID-19 pandemic later transitioned to relaxing their policies once vaccines were
widely available. This finding also is in line with other studies which found that
robust COVID-19 reopening strategies had time-varying reopening thresholds with
more stringent thresholds at the start of the pandemic and less stringent thresholds
towards the end of the pandemic [17, 21].

Our findings also revealed that no optimal mitigation strategies imply a completely
uncontrolled epidemic. This finding suggests that static transmissibility was never
found to be an optimal strategy. This result demonstrates that static transmissibility f;
is never an optimal policy. While this is a characteristic of the traditional SIR model,
these results demonstrate that a rational society will always seek to minimize the worst
costs of pandemics through some distancing, especially when mitigation measures are
inexpensive. This finding blurs the lines between mitigation and suppression strategies
in the sense that no optimal mitigation and suppression strategies found in this exercise
is the extreme version of those policies. Optimal "mitigation" strategies involved some
distancing measures, and optimal "suppression" strategies always involved some level
of infection.

Poor communication and misinformation will push society towards mass num-
bers of infections and deaths in a new pandemic. Assuming full rationality from

people is a strong, demanding assumption. However, we interpret and offer our re-
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sults in a positive rather than a normative tone. Instead of asserting which strategy
society should take, we claim that if agents behaved rationally, then under idealized condi-
tions, this is how they would behave. Under this positive interpretation, we find that even
a rational society will allow massive infections if they believe that the costs of social dis-
tancing are too high relative to the cost of infection, or that the pandemic and vaccines
will take too long to develop or may never be developed. We also find that infections
are allowed to rise towards the end of the pandemic even when a suppression strategy
is followed. This simple mathematical model, coupled with an optimization routine,
demonstrates that it is critical to properly communicate the timelines involved with
mitigation strategies and the relative costs of infection and social distancing.
Uncertainty, complexity, and heterogeneity make it difficult to use this frame-
work to support decision-making in the next pandemic. Based on our findings,
one might imagine that a simplified optimization framework such as the one used in
this paper will provide a rational approach to support decision-making during the
next pandemic. If the costs of social distancing relative to the costs of infection are
known and if the time-horizon to a vaccine and the disease parameters are set, and
if the model structure is correct, then this framework could provide rational decision
support to provide optimal policies. However, we warn the reader that none of these
assumptions will hold during the onset of the next pandemic. While the optimization
structure used in this paper allows for mathematical tractability, both the costs and
the time-horizon of a pandemic are uncertain, heterogeneous quantities. Pandemics
will be relatively more costly to societies that cannot mitigate the economic costs of
social distancing with income support policies financed by debt. Similarly, wealthy
nations will have access to treatments and vaccines before other nations. The result is
that different countries will be positioned at different regions in the parameter space
we presented. This heterogeneity predictably could cause countries to be forced into
different strategies. Moreover, within-country dynamics can also play an important
role, with different jurisdictions adopting different strategies. The corollary of these
factors is that the world will not adopt a single best social distancing strategy, and
chaotic behavior should be expected. In light of these findings, however, one can still
resort to decision-making approaches that seek to find policies that are robust to these

uncertain factors but achieve acceptable performance [17].

5 Conclusions

The COVID-19 pandemic has affected billions of people worldwide and has been un-
precedented in scale and duration. During the early stages of the pandemic and in the

absence of a vaccine, policymakers had to take extraordinary measures, implementing
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a range of nonpharmaceutical public health interventions (NPIs) to mitigate deaths
caused by the spread of the highly transmissible virus (SARS-CoV-2). These measures
included mask-wearing and social distancing policies that ranged from partial closings
of business to complete lockdown.

Despite the deluge of research on COVID-19 policy, the effectiveness of policies as
applied to COVID-19 will only partially inform the decision to suppress or mitigate
the next pandemic. A new pandemic may bring surprises, different epidemiological
characteristics, and the evidence created for COVID-19 might not translate directly
to new pathogens with different properties. The intuitive and potentially misleading
inclination is to learn what worked for COVID-19 and immediately apply those lessons
to a new pandemic. An alternative and complementary learning mode are to under-
stand the fundamental properties of the decision problem we faced in the COVID-19
pandemic and ask how epidemiological and economic parameters should determine
our choices in a new pandemic.

As we have seen in the COVID-19 pandemic, social distancing remains a critical
intervention to mitigate the spread and deaths caused by a novel, highly transmissi-
ble infectious disease. However, prolonged social distancing can lead to significant
declines in social well-being and widespread economic hardships and uncertainties.
Under these circumstances, policymakers need to make the discomforting decision of
social distancing intervention policies that make a tradeoff between lives and liveli-
hoods.

In this paper, we investigated how the choice of the strategy to govern Nonpharma-
ceutical interventions change depending on society’s assessment of the time-horizon
of the pandemic (i.e., the time it takes to obtain and distribute an effective vaccine)
and the costs of suppression measures relative to the social cost of infections. Even
assuming that society was uniform and governed by a rational, hyper-rational agent,
we have found that society could choose a suppression strategy if it believes that social
distancing is too costly or if the pandemic would take too long to curb with vaccines
or highly effective treatments. These results point to the importance of public mes-
saging. They could provide an internally consistent mathematical explanation of why
nonpharmaceutical interventions have enjoyed low popularity and adherence in some

areas of the world.
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6 Methods

6.1 The SIR Model

We use a standard Susceptible, Infectious, Recovered (SIR) model of disease transmis-
sion. The standard SIR model describes disease transmission in a well-mixed system in
which an interaction between any two individuals is equally likely. While the solutions
and non-dimensional form of the standard SIR model have been extensively studied,
we show the derivation of the dimensionless SIR model for clarity as we will later show
both the dimensional and dimensionless forms of cost functions and solutions to the
social distancing problems.

The differential equations describing the dynamics of the susceptible, infectious,

and recovered individuals in the population are:

d BSI

TN

d_ BSI

il U e 1
=5 o)
d

k=

where S is the number of the susceptible, I is the number of the infectious, R is the
number of the recovered, and N is the total number of individuals in the population.
The parameters  and y respectively represent the transmission and recovery rate and

have units of inverse time.

6.1.1 Non-Dimensionalization

As is typically done, we define the dimensionless unit of time 7, which is:

T = yt. (2)

In other words, in the dimensionless SIR model, 7 = 1 represents the average du-
ration an individual is infectious for. We further recast the state variables in their

dimensionless form where

s =S/N,
i =I/N, 3)
r =R/N.
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The dimensionless differential equations for the population dynamics become:

ii = Esi—i, 4)

B

By defining the reproduction number Ry = 5, these equations can be formulated as

d
ES = —ROSi,

d . .
El = Rosi — i, 5)
d

—r =1.
drt

6.1.2 Final Epidemic Size

Without mitigation measures, and under the assumption that the initial conditions for
the proportion of the population infected is very small (i.e., i(t = 0) < 1), and nearly
the entire population is initially susceptible (i.e., s(t = 0) = 1), the proportion of the
population that remains susceptible as 7 — oo is given by the solution to the equation
[22]

S0 = e Rol=s0), (6)

and the final epidemic size is 1 — Se.

6.1.3 The Effective Reproduction Number and Herd Immunity

The effective reproduction number R, describes the average number of infections
produced by each infected individual in the population at time 7. In the standard SIR

model without mitigation measures,
RT = SR(). (7)

Herd immunity occurs when the number of those susceptible in the population is
reduced either by natural infection or vaccination such that the effective reproduction
number is less than 1. Therefore, the maximum proportion of susceptible individuals
in a population with herd immunity is

1

SH = R_O (8)
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6.2 Time-Dependent Transmission

In classic SIR models, f and Ry are constant parameters. This paper considers the case
where the transmission rate, 8, is dynamic and influenced by behavioral changes. We
will use the notation that f is a dynamic variable and f is the transmission rate without
any behavioral mitigation. Similarly, we define Rp(7) as the dynamic reproduction
number, which is a function of social distancing behavior. Ry is the reproduction
number in the absence of any behavioral mitigation. In a dynamic framework, the

dimensionless SIR model, Equations 5 become:

d ,

ES = —RDSl,

d

2R . 9
d’tl DSt —1, ( )
%7’ =1.

In the framework with a dynamic transmission rate, the effective reproduction number
becomes:
R: =5Rp. (10)

6.3 Cost Functions

We want to find the social distancing policy that minimizes a total cost, which includes
the cost of social distancing and the cost of infections over a pre-specified time horizon
ranging from time t = 0 to t = tgna. The social distancing policy is described by B(t),
the transmission rate, that depends on social distancing behavior at time t. We further
define fp to be the infection rate for the disease in the absence of any behavioral change.
Therefore, f(t) is restricted to the interval (0, fo] The total cost is:

Total cost = (Social distancing cost) + (Cost of infections) (11)

tfinal

Hioai(t)dt = [ (Hat) + Hintou(1)] dt, (12)

tfinal
t=0
where Hgq(t) is the cost of social distancing per unit time, and Hinfect is the cost of

infections. As the transmission rate f(f) decreases, the cost of social distancing per unit

time, Hqq(t), increases, but the cost of infections per unit time Hinfect(t) decreases.

6.3.1 Cost of Infections
The number of new infections per unit time is ﬁWSI, which comes from the SIR equations.

If we define D to be the average cost of infection per infected individual. Then, the cost
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per unit time of infections is:

(H)S(H)I(t)
Hinfect(t) = DﬁT- (13)
Note that the total cost of infections is:
Cost of infections = D[R(tfina1) + I(ffina1)]- (14)

6.3.2 Cost of social distancing

We assume that the total cost of social distancing is proportional to the size of the
population N, and a cost parameter C, which has units cost per person per unit time.

Therefore, we define the cost per unit time of social distancing to be:

Hsa(t) = NCg(B(t)/Bo)- (15)

Here, g(x) is the function that defines the relationship between the relative cost of
social distancing and relative reduction in the transmission parameter. The function

g(x) should have the following properties:

1. g(x)is amonotonically decreasing function on the interval [0, 1]. The theoretical
setup of the problem determines this property. The cost of social distancing

should increase as the transmission rate is further decreased.

2. limy_,p+ g(x) = o0. In theoretical terms, it is not possible to stop all transmission
completely; therefore, the cost of decreasing transmission rates to zero should
be infinite. From a practical perspective, this restriction will prevent optimal
solutions to B(t) from passing through B(t) = 0, and if the initial condition for
B(t) is positive, the solution will remain positive.

3. %g(x)lle = 0. Theoretically, if there is no cost of infections, the optimal 3(t) = Bo.
Therefore, the cost of social distancing should be minimized when % =1. From
a practical perspective, combined with condition 2, this condition ensures that
solutions to () will be bounded to the interval (0, Bo] if correctly initialized to

the interval.

4. g(1)=0. When % = 1, there are no behavioral changes so the cost of social

distancing should be zero.

Based on these three required properties, we choose the function to have the form

gx)=-In(x)+x-1, (16)
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and thus, substituting this into equation 15, the cost per unit time of social distancing
is

He(t) = —=NCln (ﬁ) +NcE _ne (17)
o p

0

6.3.3 Dimensionless Cost Equations

We now derive the dimensionless form of the cost equation. We define a dimensionless

cost of social distancing, c to be:
C

c= D_y (18)
Effectively, c compares the cost of social distancing to the cost of infection. Recall that
C has dimensions of cost per individual per unit time, D has dimensions of cost per
individual, and y has units of inverse time. Therefore, c is dimensionless. When c is
small, people will more willingly social-distance as they feel that the cost of becoming
ill outweighs the benefits of mixing socially. Their preference favors their lives and
health compared to livelihoods and non-health-related well-being. When c is large,

people’s preferences are switched. We define the dimensionless cost:

H

h=—. 19
We can make the following substitutions in all equations:
Po = Ro,
; (20)
— =Rp.
)4
Then, the dimensionless cost of infection, Equation 13, becomes:
hinfect = RDSi- (21)
The dimensionless cost of social distancing, Equation 15, becomes:
hsp = cg(Rp/Ro)- (22)
We denote the cost function as h(s, i, Rp) which can be expressed as:
h(s,i,Rp) = cg(Rp/Ro) + Rpsi. (23)
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By setting Ttinal = ¥ Thinal, the total cost in its dimensionless form is
Tfinal
Total Cost = / [cg(Rp/Ro) + Rpsi] dt. (24)
0

6.4 Full Optimization

Calculus of variations is used to find the functions y;(t) that maximize or minimize

Ttinal
/0 L(y1(7), y2(1), ..., yn(1))dT. (25)

The functions y; [23] that satisfy the following conditions are extrema of the integral

in Equation 25. The conditions are given by:

9L d (oL)
i )= 0
dyi

where y/ indicated the derivative 5.

Our main objective is to solve for Rp that minimizes Equation 23. Because the
integrand is a function not only of Rp, but of s and i as well, we introduce the functional
Lagrange multipliers A; and A to ensure that the conditions of the differential equations
governing the infection dynamics (Equations 5) are met. Then, based on the constraints

provided by the SIR dynamics, the full Lagrangian becomes:

L(s,i,Rp,Ai,As) = h(s,i,Rp) + As (" + Rpsi)+ A; (i’ — Rpsi + i) 27)

Note that we do not need to include a differential equation constraint for r since the
equations for s and i ensure thatr =1 -5 —i.

We can now apply Equation 26 to all y; € {s,i,Rp, A;, As}.

yi = s yields:
Ay =Rpi(1+ A5 = Ay) (28)
yi = i yields:
Al =Rps(l+As —A) +A; (29)
yi = Rp yields:
Rp = ——— 0" (30)

c+ Rosi(1+As = Aj)
Note that applying y; = A; and y; = A; to Equation 26 returns the constraint differential

equations for s and i from Equation 5.
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The differential equations can then be solved as a two-point boundary value prob-
lem. For all cases presented in this paper, we set i(0) = i, s(0) = 1 — iy, As(Tfina1) = 0,
and A;(Tina) = 0. We set A5 and A; to be equal to zero at the end point of the interval
because s('Tfina1) and i(Tina1) are unconstrained. We solved the 2-point boundary value

problems in R using the bvpSolve package.[24]
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