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Abstract: 

From a comprehensive and systematic search of the relevant literature on signal data signature 
(SDS)-based artificial intelligence/machine learning (AI/ML) systems designed to aid in the 
diagnosis of COVID-19 illness, we identified the highest quality articles with statistically 
significant data sets for a head-to-head comparison to our own model in development. Further 
comparisons were made to the recently released “Good Machine Learning Practice (GMLP) for 
Medical Device Development: Guiding Principles”  and, in conclusions, we  proposed 
supplemental principles aimed at bringing AI/ML technologies in closer alignment GMLP and 
Good Clinical Practices (GCP). 
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1. Introduction 

Artificial intelligence and machine learning (AI/ML) technologies have the potential to augment 
and democratize health care by providing analysis and insights into the vast amount of health-
related data collected pertaining to individuals, as well as their communities. The promise of 
AI/ML solutions to realize these goals, however, has been hampered by the failure of both 
Software as Medical Device (SaMD) and Software in Medical Device (SiMD) manufacturers to 
employ medical device industry standards for design, documentation, testing, manufacturing and 
deployment across the Total Product Life Cycle (TPLC).  

We prospectively planned a PRISMA 2020 systematic review of the relevant literature to 
demonstrate reproducibility of the published models by building each COVID-19 diagnostic 
software system for which sufficient details were reported and to conduct head-to-head 
evaluations both across the completed models and in comparison, to our own AI/ML system. As 
a secondary objective, our intent was to determine a literature-derived performance goal (PG) for 
the completed models for comparison to our device with the same intended use. 

2. Background 

Poor data quality leading to poorly trained AI/ML models that cannot perform in a clinical 
setting has been described extensively in the literature [1-4]. Inadequate sample sizes for 
training, validation, and testing are often secondary to the lack of availability of datasets that 
results in a lack of statistical significance and subsequent rejection by informed clinicians. 
Furthermore, authors within the current literature have not utilized a prospective plan for the 
total product life cycle (TPLC) of their device - a necessity for regulatory approval and 
deployment in the clinical world - promoting a lack of prospective objectives for intended use. 
The literature also demonstrated a lack of ability of the current models to meet minimum 
standards set forth by the U.S. Food and Drug Administration (FDA) and the World Health 
Organization (WHO) for safety and performance. Along with the risks of bias stemming from 
socioeconomic disparities in data collections, each of these gaps echo statements made in current 
editorials presenting the challenges of advancing AI/ML technology to aid in the diagnosis of 
COVID-19 [1] [4]. 

On 29 October 2021, FDA, CanadaHealth and the Medicines and Healthcare products 
Regulatory Agency (MHRA) jointly developed and published 10 guiding principles for “Good 
Machine Learning Practice (GMLP) for Medical Device Development: Guiding Principles,”  for 
the TPLC of SaMDs and SiMDs [5]. The GMLP is a companion to the 13 guiding principles for 
Good Clinical Practices (GCP) for medical device clinical trials published by the International 
Conference on Harmonization (ICH) and endorsed by FDA in 1997 [6-7]. With the GCP, 
standards were set for the design, conduct, and reporting of clinical trials and is key to bringing 
new medical devices to market. This article will discuss how these principles can be applied to 
the TPLC to align AI/ML development with clinical trial design and endpoints. 
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3. Materials and Methods: 

Prior reporting of our methodology and results were detailed in K. Kelley et al. [K. Kelley et. al. 
2021 – Manuscript Submitted for Publication] and have been reproduced below in part for ease 
of reference. 

As previously described by our team, we conducted systematic searches of the relevant literature 
on 12 October 2021 and updated on 7 November 2021, for the purpose of presenting a 
comparative evaluation of AI/ML systems designed to aid in the diagnosis of COVID-19 from 
FCV. Searches of the peer-reviewed literature were prioritized but, given the collaborative 
“shareware” culture of the AI/ML and Data Science communities, pre-print servers were 
searched for possible contributions. EndNote 2020 was the designated reference manager and 
PubMed was searched via this software. Serial searches of “Any Field” in PubMed, “Full Text 
and Metadata” in the IEEE Xplore digital library of the Institute of Electrical and Electronics 
Engineers, (ieeexplore.ieee.org), “All Fields” in the arXiv open-access archive (arxiv.org), and 
“Full Text or Abstract or Title” in bioRxiv and medRxiv (medrxiv.org) were performed using the 
identical search terms as listed below: 

• covid and classifier 
• covid and neural network 
• covid and cough and artificial intelligence 
• covid and cough and AI  
• covid and cough and machine learning 
• covid and cough and ML 
• covid and cough and classifier  
• cough and neural network  
• forced cough vocalization 

 

The results from these serial searches were combined and systematically filtered to achieve a 
final article pool from which all references would be evaluated for contribution to the stated 
objectives. Following a basic PRISMA 2020 workflow, our search methodology is illustrated 
below in Figure 1: 
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Figure 1 - PRISMA 2020 Flow Diagram for New Systematic Reviews  
                (inclusive of Databases, SDS Libraries, and Other Sources) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

   

 
4. Results: 

From the final pool of 64 references, the remaining 33 peer-reviewed articles and 24 pre-print 
server records were read and evaluated in full across a multidisciplinary team of Data Scientists,  
Biotechnical Engineers, Healthcare Clinicians, Product Development and Clinical/Regulatory 
Affairs professionals. Although each of 57 references purported to include a fully-detailed 
AI/ML solution, only 14 contained enough information for us to attempt building the stated 
solution. Of those 14 references, only two peer-reviewed articles demonstrated statistical 
significance consistent with the requirements for a regulatory pathway. 
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4.1. Primary and Secondary Objectives 

No single reference included sufficient details to build a complete model or system, rendering 
comparisons across models (including our own) unattainable. The primary objectives of the 
review, therefore, could not be met.  

Determination of a literature-derived Performance Goal (PG) was the secondary objective of the 
original review and is a familiar endpoint in regulatory pathways. None of the references met all 
inclusion criteria, however, rendering the secondary objective unattainable.  

Since the intended objectives of our original systematic review could not be met, we undertook 
to compare the two peer-reviewed articles [8-9] that demonstrated statistically significance data 
sets consistent with the requirements for a regulatory pathway and to our model in development.  
These comparisons will be presented in relationship to two frameworks: the principles of the 
recently released GMLP and the predicate principles of the GCP for Medical Devices.  

4.2. GMLP Analysis 

The new proposed primary objective was to compare the two articles previously identified as 
having Level 2a design, Moderate Grade data, and a statistically significant test set size for head-
to-head comparison to each other and also to our model in development.  

Table 1: Comparisons to GMLP 

 Good Machine 
Learning Practice 

Andreu-Perez et al. 
[8] 

Verde et al.  
[9] 

Our Model 

1 Multi-Disciplinary 
Expertise is Leveraged 
throughout the                    
Total Product Life Cycle 

NR 
 

Author list includes      
1 RN. 

NR 
 

All authors are 
biomedical 
engineers or 

software engineers 

1) Involvement of a Clinical 
and Regulatory Team early in 
planning phase of SaMD 
 
2) Medical Advisory board to 
meet needs of front-line 
clinicians 
 
3) Employing and consulting 
subject matter experts for 
AI/ML systems, quality 
management, and statistic 

2 Good Software 
Engineering and 
Security Practices Are 
Implemented 

1) Utilized an in-house 
registry that was 
collected in 
accordance with Level 
2a - Moderate Grade 
Data 
 
2) Bench tested 
several neural network 
architectures 
ultimately yielding a 
single, most accurate 
model for the final 
software system. 

1) Utilized 
Coswara library 
that was collected 
in accordance with 
Level 2a design 
and Moderate 
Grade Data 
 
2) Bench tested 
several neural 
network 
architectures 
ultimately yielding 
a single, most 

1) Merged best practices for 
software, audio, and 
biotechnical engineering.  
 
2) Clear, comprehensive 
documentation of software 
engineering practices used is 
key.   
 
3) All data scientists trained 
in-house for biotechnical 
engineering certification.   
 
4) Use of Agile software 
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3) Engineered app and 
software to be GDPR 
compliant for privacy 
and cybersecurity 

accurate model for 
the final software 
system. 

development practices to 
support iterative nature of 
SaMD development.   
 
5) Use of device and user 
FMEAs to promote quality  
 
6) Establishment of 
cybersecurity policy and 
procedure.   

3 Clinical Study 
Participants and Data 
Sets are Representative 
of the                                   
Intended Patient 
Population 

Participants from both 
Spain and Mexico to 
reduce bias. 

NR Benchtop testing data sets 
matched to intended clinical 
trial site populations by: 
 
1) Obtaining SDS registries 
from multiple nations. 
                                   
2) Prospectively planned 
descriptive statistical 
evaluation of outcome data 
based upon demographic 
subgroups.  
 
 3) Training sets at least 2-3 
times the size of the testing 
set.                        
 
4) Use of Exact Binomial 
Test to calculate training set 
size based on the N for the 
prospective testing set 

4 Training Data Sets Are 
Independent of Test Sets 

Data sets remained 
separate. 

Data sets remained 
separate. 

Data sets remained separate 
due to: 
1) Use of SDS adjudication to 
evaluate all registries for 
quality.                                      
 
2) Used of best quality data 
sets for training.                        
 
3) Removal of duplicate 
recordings within datasets.   

5 Selected Reference 
Datasets Are Based 
Upon Best Available 
Methods 

Prospective collection 
of cough sounds 
verified against RT-
PCR. 

Prospective 
collection of cough 
sounds verified 
against RT-PCR. 

1) Find highest level of data 
available in existing registries 
                               
2) Use of sound adjudication 
to improve the quality of data    
 
3) Prospective collection of 
cough sounds verified against 
RT-PCR and Sanger 
sequencing. 

6 Model Design is 
Tailored to the Available 
Data and Reflects the         
Intended Use of the 

Model design 
consistent with 
intended use of 
screening for COVID-

Model design 
consistent with 
intended use of 
diagnosing for 

Model design consistent with 
intended use of diagnosing 
for COVID-19 illness via 
mobile device and has the 
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Device 19. COVID-19 via 
mobile device. 

potential to diagnose other 
acute and chronic illnesses in 
the future. 

7 Focus Is Placed on the 
Performance of the 
Human-AI Team 

NR NR Patented HybridOps system 
allows the human to observe 
all drift and to be the 
gatekeeper for all 
development and 
deployment. 

8 Testing Demonstrates 
Device Performance 
During Clinically 
Relevant Conditions 

The machine was 
tested against RT-PCR 
and information was 
obtained from subjects 
on symptomology. 

Model was tested 
against RT-PCR 
and information 
obtained from 
physicians on 
symptomatology. 

1)  Benchtop tested against 
RT-PCR and information 
obtained from physicians on 
symptomatology.                    

2) RT-PCR and Sanger 
sequencing for clinical trial 
testing to ensure true positive 
and negative. 

9 Users are Provided 
Clear, Essential 
Information 

1) No usability data 
reported.  
 
2) Results are 
delivered as a 
probability of the FCV 
indicating COVID-19 
illness as a screening 
test. The system does 
not give a definitive 
diagnosis of COVID-
19. 

1) No usability data 
reported.    
 
2) Results are 
delivered as 
diagnostic for 
COVID-19. No 
clear description 
for the final app or 
reporting system. 

1) IFU created per regulatory 
standards                               

2) Clear, concise, step-by-
step instruction sheets for 
quick guide                             

3) Help function on every 
screen of the app                   

4) Instructional video 
available within the app            

5) Prospective usability data 
collection during clinical trial   

6) Prospective plan for 
reporting of results through 
LIMS system 

10 Deployed Models are 
Monitored for 
Performance and Re-
training Risks are 
Managed 

NR NR Hybrid OPS provides a three-
channel deployment and 
development environment 
that monitors for context 
drift, model drift and model 
performance compared to the 
originally approved system, 
reducing bias. 

NR = Not Reported 

 

4.3. GCP Analysis 

Once an AI/ML medical device is developed and ready for clinical testing, there are 13 Good 
Clinical Practice (GCP) principles that must be observed by international law. AI/ML is not 
universally accepted in healthcare and problems encountered along the way from inception to 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.13.21266289doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.13.21266289
http://creativecommons.org/licenses/by-nd/4.0/


 

Page 8 of 17 
 

deployment of a diagnostic SaMD are varied and many. Changing the level of acceptance will 
require adherence to Good Clinical Practice. Our next objective was to compare the same two 
articles head-to-head with our model evaluating GCP. 

Table 2: Comparisons to GCP 

 Good Clinical 
Practice 

Andreu-Perez et al. 
[8] 

Verde et al.  
[9] 

Our Model 

 Ethics    
1 Clinical trials should 

be conducted in 
accordance with 
ethical principles that 
have their origin in 
the Declaration of 
Helsinki, and that are 
consistent with GCP 
and the applicable 
regulatory 
requirement(s). 

Stated compliance 
with the Declaration of 
Helsinki 
 

NR 
 
All authors are 
biomedical 
engineers or 
software engineers 

Stated compliance with the 
Declaration of Helsinki 
 

2 Before a trial is 
initiated, foreseeable 
risks and 
inconveniences 
should be weighed 
against anticipated 
benefit for the 
individual trial 
subject and society. A 
trial should be 
initiated and 
continued only if the 
anticipated benefits 
justify the risks. 

Risks NR 
 

Benefits well 
described. 

Risks NR 
 

Benefits well 
described 

Full QMS documentation to 
include user and device FMEA 
complete before trial initiated 

3 The rights, safety and 
well-being of the trial 
subjects are the most 
important 
considerations and 
should prevail over 
interest of science 
and society. 

No obvious violation 
of rights within the 
article; Not fully 
reported with no risk 
analysis. 

No obvious 
violation of rights 
within the article; 
Not fully reported 
with no risk 
analysis 

Full compliance with all 
international and United States 
provisions for subject 
protection, subject rights, 
minority and underserved 
access/inclusion and subject 
safety. 

4 Nonclinical and 
clinical information 
supports the trial. 

Review of literature 
and related work was 
completed 

Review of 
literature and 
related work was 
completed 

Detailed literature reviews 
undertaken throughout 
development of model. 
Benchtop testing to simulate 
clinical trial performed until all 
benchmarks for trial met on 
benchtop. 

 Protocol and 
Science 

   

5 Clinical trials should 
be scientifically 
sound, and described 
in a clear, detailed 

A detailed protocol 
was written prior to 
initiating the clinical 
trial 

No description of a 
clinical trial 

A detailed protocol was written 
prior to initiating the clinical 
trial 
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protocol 
 Responsibilities    
6 A trial should be 

conducted in 
compliance with the 
protocol that has 
received prior 
institutional review 
board (IRB) / 
independent ethics 
committee (IEC) 
approval/favorable 
opinion. 

The clinical trial was 
approved by local 
IECs. 

NR The trial was approved by 
clinical by a national IRB and 
accepted by the local IRB. 

7 The medical care 
given to, and medical 
decisions made on 
behalf of subjects 
should always be the 
responsibility of a 
qualified physician 
or, when appropriate, 
of a qualified dentist. 

NR 
 
No physician listed in 
author list. 

NR 
 

No physician listed 
in author list. 

Clinical trial with physician PIs 
and Nurse Site Coordinators 

8 Each individual 
involved in 
conducting a trial 
should be qualified 
by education, 
training, and 
experience to 
perform his or her 
respective task(s). 

RNs used to 
administer testing was 
appropriate.  No other 
reports of 
qualifications. 

NR 
 
All authors are 
biomedical 
engineers or 
software engineers 

RNs and trained clinical 
research assistants overseen by 
the trial site and responsible for 
appropriately obtaining the 
samples.  
 
Designated site and sponsor 
physician PIs for the entire 
trial. 
 
Site Coordinators on site 
throughout the trial. 

 Informed Consent    
9 Freely given 

informed consent 
should be obtained 
from every subject 
prior to clinical trial 
participation. 

Full informed consent 
obtained on all 
participants. 

NR Full informed consent obtained 
on all participants. 

 Data Quality and 
Integrity 

   

10 All clinical trial 
information should 
be recorded, handled, 
and stored in a way 
that allows its 
accurate reporting, 
interpretation and 
verification 

GDPR compliant data 
collection and storage 

NR All data collected and 
maintained in HIPPA 
compliant fashion, All results 
reported as HL7 compliant 
reports in HIPPA compliant 
fashion. System designed to 
meet all medical device and 
SaMD ISOs, standards, good 
practices, and cybersecurity 
benchmarks  

11 The confidentiality of 
records that could 

Researchers ensured 
patient confidentiality 

NR Researchers ensured patient 
confidentiality during the trial.  
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identify subjects 
should be protected, 
respecting the 
privacy and 
confidentiality rules 
in accordance with 
the applicable 
regulatory 
requirement(s). 

during the trial.  
GDPR compliant app 
developers designed to 
this end. 

HIPPA/HL7 compliant app and 
API developers designed to 
this end.   

 Investigational 
Products 

   

12 Investigational 
products should be 
manufactured, 
handled and stored in 
accordance with   
applicable Good 
Manufacturing 
Practice (GMP). 
They should be used 
in accordance with 
the approved 
protocol. 

 
  

See Table #1 
(GMLP) 

 
 

See Table #1 
(GMLP) 

 
 

See Table #1 
(GMLP) 

 Quality Control / 
Quality Assurance 

   

13 Systems with 
procedures to ensure 
quality of every 
aspect of the trial 
should be 
implemented 

NR NR Full QMS system in place and 
documentation complete before 
trial begin 

NR = Not Reported 

   

5. Discussion 

The publication of GMLP that has followed the GCP for Medical Devices raises the bar for the 
scientific rigor of SiMD/SaMD development, the associated benchtop testing, and clinical trials. 
Collectively, these principles reinforce that prospective design applies not only to the design of 
the software but also the testing and, ultimately, the evidence-based clinical trial of the device.  

Our review of 57 articles and reports describing FCV-SDS based COVID-19 diagnostic software 
components and systems found that only 2 of the 57 articles could meet Level of Evidence, grade 
of data and statistical significance of testing criteria. When these 2 articles were evaluated 
against the principles for GMLP and GCP, only the article by Andreu-Perez et al. demonstrated a 
degree of compliance with the guidelines [8]. 

Our own experience, albeit pre-clinical trial, found that the GMLP and GCP guidelines are well 
aligned with good engineering practices and good evidence-based medicine research practices. 
We respectfully submit the following supplements to the GMLP and GCP to include preclinical 
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benchtop testing principles, techniques to ensure AI/ML model consistency and guidance for 
overcoming data borders:  

• Prior to Clinical Trial, investigational AI/ML software devices should be trained and 
validated using a reference dataset that is clinically relevant to the proposed clinical trial. 
Furthermore, the model should demonstrate successful benchtop testing using a testing 
dataset that is clinically relevant and with testing endpoints that are identical to 
prospectively designed clinical trial. This will promote adherence to two of the current 
GMLP principles - separation of training and test sets and providing for the highest 
quality of data. 

• The trained and validated AI/ML models used in pre-clinical trial benchtop testing and 
for clinical trials should be reproducible by independent researchers. This requires that 
the source code for the complete model, including post training transfer learning, is made 
available as part of peer-reviewed published reports to facilitate replication of the 
benchtop testing and/or clinical trials. The use of original source code and transfer 
learning ensures that the replicated tests and trials are using the identical AI/ML model, 
making direct comparisons possible. 

• Clinical trials that cross data borders and parallel AI/ML models operating in different 
data boundary regions should implement the same source code and transfer learning in all 
data regions. Additionally, if the clinical trial crosses data borders, parallel AI/ML 
models operating in different data boundary regions should synchronize transfer learning 
using federated data and swarm learning. This approach would respect applicable data 
boundaries, which is essential for international operations. Without these considerations, 
data borders will impose healthcare inequities and limit access. 

6. Conclusion 

Adherence to GMLP and GCP by AI/ML SaMD and AI/ML SiMD developers will also serve to 
improve the confidence of healthcare providers and healthcare decision makers in these new and 
promising technologies. The newly released GMLP guidelines provide an ideal framework for 
AI/ML and SiMD/SaMD developers to guide their efforts throughout the TPLC, yielding more 
meaningful clinical outcomes. Data scientists, clinicians, and regulatory specialists must 
collaborate to ensure that good practices translate into a product that meets the needs of both 
healthcare providers and patients. Focusing on quality and incorporating regulatory guidance 
throughout the TPLC will allow AI/ML developers to bring a high-quality medical to market. 

GCP principles provide the guidance for clinical trials to be conducted ethically and 
scientifically with clear and detailed protocols. Care must be given by appropriately qualified 
personnel with adequate experience. Most importantly, documentation of adherence to these 
practices is key, with records easily accessible and retrievable for accurate reporting, verification 
and interpretation.  

In order to bring new AI/ML technology solutions to healthcare, developers must prospectively 
plan to use the GMLP and GCP principles from the beginning of the TPLC.  
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