1 Paratype: A genotyping framework and an open-source tool for Salmonella

2 Paratyphi A

- 3 Arif M. Tanmoy^{1,2*}, Yogesh Hooda^{1,3*}, Mohammad S. I. Sajib^{1,4}, Kesia E. da Silva⁵, Junaid
- 4 Iqbal⁶, Farah N. Qamar⁶, Stephen P. Luby⁵, Gordon Dougan⁷, Zoe A. Dyson^{7,8,9,12}, Stephen
- 5 Baker⁸, Denise O. Garrett¹⁰, Jason R. Andrews⁵, Samir K. Saha^{1,11, \$}, Senjuti Saha^{1,\$,#}

- ⁷ ¹ Child Health Research Foundation, Dhaka, Bangladesh. <u>arif.tanmoy@chrfbd.org</u>,
- 8 yhooda@chrfbd.org, saiful.sajib@chrfbd.org, samir@chrfbd.org, senjutisaha@chrfbd.org
- ⁹ ² Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical
- 10 Center, Rotterdam, the Netherlands.
- ³MRC-Laboratory Molecular Biology, Cambridge, UK.
- ⁴ Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,
- 13 Glasgow, UK.
- ⁵ Division of Infectious Diseases and Geographic Medicine, Stanford University School of
- 15 Medicine, Stanford, California, USA. <u>kesiaeds@stanford.edu</u>, <u>sluby@stanford.edu</u>,
- 16 jandr@stanford.edu
- ⁶Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
- 18 junaid.iqbal@aku.edu, farah.qamar@aku.edu
- ⁷Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
- 20 gd312@medschl.cam.ac.uk
- ⁸Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of
- 22 Medicine, University of Cambridge, Cambridge, United Kingdom.
- 23 <u>sgb47@medschl.cam.ac.uk</u>
- ⁹Department of Infection Biology, London School of Hygiene and Tropical Medicine,
- 25 London, UK. Zoe.Dyson@lshtm.ac.uk
- ¹⁰ Applied Epidemiology Team, Sabin Vaccine Institute, Washington, DC, USA.
- 27 <u>Denise.Garrett@Sabin.org</u>

¹¹ Department of Microbiology, Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka, Bangladesh. ¹² Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia. *, ^{\$} Equal contribution; [#]Corresponding author

51 Abstract

52	Background: Salmonella enterica serovar Paratyphi A (Salmonella Paratyphi A) is the
53	primary causative agent of paratyphoid fever, which is responsible for an estimated 3.4
54	million infections annually. However, little genomic information is available on population
55	structure, antimicrobial resistance (AMR), and spatiotemporal distribution of the pathogen.
56	With rising antimicrobial resistance and no licensed vaccines, genomic surveillance is
57	important to track the evolution of this pathogen and monitor transmission.
58	Results: We performed whole-genome sequencing of 817 Salmonella Paratyphi A isolates
59	collected from Bangladesh, Nepal, and Pakistan and added publicly available 562 genomes to
60	build a global database representing 37 countries, covering 1917-2019. To track the evolution
61	of Salmonella Paratyphi A, we used the existing lineage scheme, developed earlier based on a
62	small dataset, but certain sub-lineages were not homologous, and many isolates could not be
63	assigned a lineage. Therefore, we developed a single nucleotide polymorphism based
64	genotyping scheme, Paratype, a tool that segregates Salmonella Paratyphi A into three
65	primary and nine secondary clades, and 18 genotypes. Each genotype has been assigned a
66	unique allele definition located on a conserved gene. Using Paratype, we identified genomic
67	variation between different sampling locations and specific AMR markers, and mutations in
68	the O2-polysaccharide synthesis locus, a candidate for vaccine development.
69	Conclusions: This large-scale global analysis proposes the first genotyping tool for
70	Salmonella Paratyphi A. Paratype has already been released (https://github.com/CHRF-
71	Genomics/Paratype) as an open-access, command-line tool and is being adopted for large
72	scale genomic analysis. This tool will assist future genomic surveillance and help inform
73	prevention and treatment strategies.
74	

Keywords: Salmonella Paratyphi A; Paratyphoid fever; Paratyphi A genotyping; Genomics; Antimicrobial resistance; Global analysis; Epidemiology; Enteric fever; Neglected tropical disease.

96 Background

97	Paratyphoid fever, caused by Salmonella enterica subspecies enterica serovar Paratyphi A
98	(Salmonella Paratyphi A) is a systemic febrile illness that affects an estimated 3.4 million
99	people each year, and causes 19,100 deaths globally [1]. The disease is clinically
100	indistinguishable from typhoid fever, caused by Salmonella enterica subspecies enterica
101	serovar Typhi (Salmonella Typhi). Much like typhoid, paratyphoid fever is also endemic in
102	many low- and middle-income countries of South Asia and Sub-Saharan Africa, due to fecal
103	contamination of water, food and the environment. However, barring a few countries (e.g.,
104	China, Myanmar), paratyphoid fever is usually less prevalent than typhoid fever [2,3].
105	Salmonella Paratyphi A continues to be an inadequately studied pathogen [4] hampering the
106	implementation of evidence-based policies for the treatment and prevention of paratyphoid
107	fever.
108	

109	Relative to Salmonella Typhi, little genomic information is available on population structure,
110	antimicrobial resistance (AMR), and spatiotemporal distribution of Salmonella Paratyphi A.
111	The first Salmonella Paratyphi A genome was published in 2004 and had a size of 4.5 Mb,
112	with ~4,200 genes. To determine the global diversity of Salmonella Paratyphi A isolates,
113	Bayesian analysis was conducted on a set of 149 Salmonella Paratyphi A genomes, which
114	identified that the last common ancestor of all Salmonella Paratyphi A existed for at least 450
115	years prior to differentiating into at least seven distinct lineages (A to G) which have
116	circulated globally [5]. Whole genome sequencing was also used to characterize clonal
117	paratyphoid outbreaks in Cambodia [6] and China [7] and further extend the lineage scheme
118	to include sub-lineages within Lineage A and C. However, very few studies have
119	characterized isolates from countries in South Asia, which contributes over 80% of all
120	paratyphoid infections [8,9]. Available studies are sporadic, and either focused on genomes

121 from a specific geographical location or provide no information on antimicrobial resistance

122 markers, potential vaccine targets, and other virulence factors.

124	To address this data gap, we performed whole-genome sequencing of 817 Salmonella
125	Paratyphi A isolates collected from Bangladesh, Nepal, and Pakistan and combined them
126	with whole-genome sequence data of another 562 isolates reported in the literature to build a
127	global database of 1,379 Salmonella Paratyphi A isolates. To track the evolution of
128	Salmonella Paratyphi A over a century, we used the existing lineage scheme and found that
129	certain sub-lineages were not homologous, and many isolates could not be assigned a specific
130	lineage. This motivated us to develop a single nucleotide polymorphism (SNP) based
131	genotyping scheme, called Paratype. The scheme is phylogenetically informative and
132	successfully segregates the global population structure into three primary, seven secondary,
133	and 18 distinct subclades/genotypes. We also identified the specific antimicrobial resistance
134	genes, mutations, and plasmids present in Salmonella Paratyphi A genomes and correlated
135	these with the different genotypes.
136	
137	Results
10,	
138	Whole-genome sequencing and compilation of global Salmonella Paratyphi A genomes
139	The Child Health Research Foundation (CHRF) has been conducting typhoid and
140	paratyphoid fever surveillance in Bangladesh since 1999 and has generated a biobank of
141	1,123 Salmonella Paratyphi A isolates from 1999-2018 [10-12]. We selected 528 of these
142	isolates, covering all age groups, years of isolation, and hospitalization status
143	(hospitalized/out-patient), and performed whole-genome sequencing on these isolates
144	(Additional file 1: Table S1). Of these, 180 Salmonella Paratyphi A isolates were collected as

145	part of the Surveillance of Enteric Fever in Asia Project (SEAP, 2014 - 2019) study, a multi-
146	country international effort to better understand the epidemiology and impact of enteric fever
147	in South Asia [13]. In addition to Bangladesh, 133 isolates were sequenced from the SEAP
148	study conducted in Pakistan, and 156 from Nepal.
149	
150	To contextualize these genomes, we conducted a literature search to compile all publicly
151	available Salmonella Paratyphi A genomes (for which raw reads were available) to build a
152	database of 560 additional isolates from 10 studies (Additional file 1: Table S2). Two
153	reference genomes (ATCC 9150 and AKU 12601) were also included. The largest dataset

154 consisted of 254 isolates, published by Public Health England as part of their Salmonella

surveillance [8,14]; 164 of these isolates were linked to travel, most commonly to South Asia.

156 In our study, we assigned these isolates to the countries where the patient acquired the

157 infection. Our final data, including the genomes we sequenced, consisted of a total of 1,379

isolates from 37 different countries, spanning over 103 years - 1917 to 2019. Most of the

isolates (1,112/1,379; 81%) were from countries in South Asia (541 from Bangladesh, 268

160 from Nepal, 187 from Pakistan and 115 from India). South Asian countries also bear a

disproportionately high burden of paratyphoid fever; of the estimated 3.4 million global

162 paratyphoid infections in 2019, 2.8 (82%) million are estimated to have occurred in South

163 Asia [1].

164

Following assembly from raw reads, the pan-genome analysis identified 6,983 genes, of
which 4,114 (59% of all genes) were conserved in more than 95% of isolates (Additional file
1: Figure S1). The average genome size was 4.5 Mb with ~4,300 genes, and the pan genome
does not appear to be closed (decay parameter, alpha = 0.67). Overall, 2,550 genes were

found to be present in less than 15% of isolates, and these included genes often found in
prophages and other mobile regions, and genes encoding adhesins, antimicrobial resistance
markers, and several hypothetical proteins.

172

173 <u>Genotyping scheme for Salmonella Paratyphi A</u>

174 To investigate the genomic diversity of *Salmonella* Paratyphi A, we identified 8,346 single 175 nucleotide polymorphisms (SNPs) in the 1,379 isolates. These were used in RAxML [15] to 176 generate a Maximum-likelihood phylogenetic tree of the global collection of Salmonella 177 Paratyphi A isolates (Figure 1). A previously reported lineage scheme, proposed for 178 Salmonella Paratyphi A by Zhou et al. [5] and extended by subsequent studies [6,7,9,16,17] 179 was overlaid on the RAxML tree. This highlighted the insufficiency of the current lineage 180 scheme to fully capture the diversity of *Salmonella* Paratyphi A present. First, while the 181 isolates from lineages B & D - G clustered together, several isolates previously assigned to 182 lineages A and C in the scheme did not. Second, some sequences belonged to clades that 183 diverged from isolates before the exitance of the most recent common ancestor for lineages A 184 and B, indicating that these isolates should be considered to be in a different lineage. This 185 was not surprising considering that when this scheme was devised, there were limited number 186 of sequenced Salmonella Paratyphi A genomes available, particularly from South Asia.

187

To build a genotyping scheme based on a larger number of representative samples, first, we
used fastBAPS [18] to generate a potential list of clusters in the RAxML tree (Additional file
1: Figure S2). Next, we selected a set of 315 isolates that included two isolates per year for all
fastBAPS clusters selected randomly and performed phylodynamic analysis using the
Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software [19] (Figure 2). Based

on these analyses, we devised a genotyping scheme with three primary clades, nine secondaryclades, and 18 genotypes that have circulated globally in the last 100 years.

195

196	To aid further genomic epidemiological studies, we identified 18 additional alleles
197	(Additional file 1: Table S3) that are unique to each of the 18 Salmonella Paratyphi A
198	genotypes. These alleles were present in conserved genes involved in essential cellular
199	functions such as protein synthesis, DNA replication, or metabolism. Identification of these
200	genotype-specific alleles allowed us to write a Python script – "Paratype" – that assigns
201	genotypes to Salmonella Paratyphi A genomes using fastq, bam, or vcf files obtained during
202	whole-genome sequencing and variant calling. The Paratype software tool (available at:
203	https://github.com/CHRF-Genomics/Paratype/) has 100% sensitivity and specificity and was
204	able to assign the correct genotype to all the 1,379 genomes that were present in our database.
205	
206	Temporal and geographic distribution of different genotypes
207	Upon the establishment of the "Paratype" scheme, we considered the geographical

208 distribution of the different genotypes (Figure 3). Genotype 0.1 under primary clade 0 was

209 phylogenetically unique (matches with lineage H of Zhou et al [5]); there was only one

210 isolate belonging to this genotype/primary clade that was isolated in Hong Kong in 1971. The

211 genome of this isolate was distinct from all other genomes obtained thus far, contained 1288

212 unique SNPs, and may represent a lineage that is now extinct, or present at very low numbers

in areas that have not been sampled. The other two primary clades, clades 1 and 2, emerged

between 1700-1800 and contain genomes that have been collected in the last two decades.

215 Clade 1 contains strains largely from lineage F, and fastBAPS predicted two sub-clusters

216 within this clade. One of these clusters was largely found in Bangladesh and has been

217	assigned secondary clade 1.2, then sub-divided into genotypes 1.2.1 and 1.2.2 which appear
218	to have diverged in the 1950s. Both these genotypes are currently present in Bangladesh and
219	other South Asian countries (Figure 2). The other cluster with13 genomes from Bangladesh
220	that were first isolated in 1999 have been assigned to genotype 1.1. The remaining 10
221	genomes were obtained between 1917 to 1963 and have been assigned genotype 1.0.
222	
223	Most Salmonella Paratyphi A genomes (1254/1379; 91%) have been assigned to primary
224	clade 2, which contains genomes belonging to the lineage A-E of the previous scheme.
225	Genomes that belonged to lineages B, D, and E have now been assigned to genotypes 2.4,
226	2.2, and 2.0, respectively. Within genotype 2.0, 13 unique and recent isolates from Pakistan
227	were identified and have been assigned as genotype 2.0.1. Genotype 2.1 contains isolates
228	from Nepal that were sampled during the SEAP study, yet the genotype emerged in the 1800s
229	and is distinct from all other isolates in clade 2. Two clusters in fastBAPS, comprising of
230	strains largely from what was formerly C lineage are now assigned to genotype 2.3. Genotype
231	2.3 has been subdivided into genotypes 2.3.1 to 2.3.3, each of which belongs to a distinct
232	geographical location: 2.3.1 is found predominantly in Cambodia and South-East Asia; 2.3.2
233	and 2.3.3 are found largely in South Asia. An outbreak of paratyphoid fever in China during
234	2010 - 2011 [7] was caused by isolates of genotype 2.3.3, and these likely originated in
235	South Asia. The former lineages A and B have been assigned genotype 2.4, which is further
236	divided into 2.4.1 to 2.4.4. While genotypes 2.4.1 and 2.4.2 have been observed in different
237	countries in South Asia, genotype 2.4.4 is predominantly found in Bangladesh, and 2.4.3 is
238	largely present in Nepal.

240 Different countries in South Asia had unique genotype distributions. Predominant genotypes

241 present in Bangladesh were 2.4.4 (56%) followed by 1.2.2 (14%) and 2.3.3 (13%). In Nepal,

242 2.4.3 (47%), 2.3.3 (16%) and 2.4.1 (14%) were three most common genotypes. Pakistan had

243 genotypes 2.3.3 (25%), 2.3 (16%) and 2.4 (15%). In India, genotypes 2.4.2 (22%), 2.4 (20%),

244 2.4.1 (19%), 2.3.3 (17%), and 2.3 (16%) were commonly identified.

245

246 Antimicrobial resistance markers in Salmonella Paratyphi A

247 To characterize genomic determinants of antimicrobial resistance in Salmonella Paratyphi A,

248 we screened the 1,379 genomes for the presence of antimicrobial genes and markers using

ResFinder [20] (Figure 4a) and plasmids using PlasmidFinder [21] (Figure 4b). Of the 1,379

isolates, 1,015 (74%) isolates showed no predicted plasmids and 1356/1379 had no predicted

antimicrobial resistance genes. Five genomes with the IncHI1 plasmid were identified, two

252 genomes (both from India) contained resistance genes for trimethoprim and chloramphenicol,

and the other three genomes contained genes for trimethoprim, chloramphenicol and

ampicillin designated as MDR isolates (one each from India, Pakistan, and Thailand). All five

genomes belonged to genotype 2.3 and the strains were isolated between 1999-2004. We also

identified a genome belonging to genotype 2.4.4 containing *bla*CTX-M-15 and *bla*TEM-1B

on an IncI1-I plasmid; the originating strain was isolated from a patient who contracted the

infection in Bangladesh in 2017 [22]. There were 14 isolates from the genotype 2.3.1 that

contain *bla*TEM-116, which can lead to resistance to ampicillin; all 14 were reported from

260 Cambodia[6]. Another isolate from genotype 2.3.3 (from Pakistan, 2015) contained a *qnrB19*

261 gene on a Col(pHAD28) plasmid, which has been shown to lead to quinolone resistance in

262 other *Salmonella* species [23].

263

264	In addition to antimicrobial resistance genes, we also identified chromosomal mutations in
265	the <i>acrB</i> gene and the quinolone resistance determining region (QRDR) to identify isolates
266	resistant to azithromycin and ciprofloxacin respectively. Six of 1,379 genomes contained an
267	AcrB R717 mutation, all from Bangladesh and these belonged to genotypes 2.3.3 (1/6) and
268	2.4.4 (5/6) [24,25]. The first azithromycin resistant Salmonella Paratyphi A isolate was
269	identified in 2014, and this resistance has emerged independently at least twice in two
270	different genotypes. On the other hand, a majority (1177/1397; 84%) of genomes had
271	mutations in the QRDR region. The most commonly found single mutation was gyrA-S83F
272	(941/1379), followed by gyrA-S83Y (205/1379). Two isolates contained double mutations in
273	the QRDR region; one of them belonged to genotype 2.0.1 (gyrA-S83F & D87N, Pakistan,
274	2017) and another belonged to genotype 2.3.3 (gyrA-S83F & D87G, UK, 2016). Barring
275	genotype 0.1, 1.0 and 2.2, all other genotypes had at least one genome with a QRDR
276	mutation (Figure 4c). The first QRDR mutation was identified in 1997 in India in genotype
277	2.4 and their prevalence have increased over time. In 2012 and 2013, there was an outbreak
278	in Cambodia caused by a strain from genotype 2.3.1 that did not have any QRDR mutation
279	leading to a temporary increase in proportion of Salmonella Paratyphi A with no QRDR
280	mutations during these two years (Additional file 1: Figure S3).
281	

282 <u>Characterization of mutations in the O2-antigen biosynthetic gene cluster</u>

283 The majority of the vaccines being developed for Salmonella Paratyphi A use the O2-antigen

that is unique to this serovar conjugated to a carrier protein [26]. Recently, through in-silico

285 metabolic reconstruction, an 18.9 kb region containing genes involved in O-antigen

biosynthesis was identified as important for determining the specific molecular features of the

287 O2-antigen found in Salmonella Paratyphi A [27]. We identified the SNPs in the O2-antigen

biosynthesis genes found in the 1,379 genomes to investigate the conservation of this

289	genomic loci. In total, 84 SNPs were found, of which 13 were present in more than 10
290	genomes. The most common SNP was at genomic location 8,68,444 (G>C; synonymous
291	mutation in <i>prt</i> gene encoding paratose synthase), which was found in 17% (239/1,379) of all
292	isolates. Out of those 13 common SNPs ($n\geq 10$), seven led to non-synonymous mutations
293	(Additional file 1: Figure S4) that could potentially change the O2-antigen structure and
294	chemistry.

295

296 Discussion

Salmonella Paratyphi A is the causative agent of paratyphoid fever, a neglected tropical
disease with a high burden and mortality in low-and-middle-income countries. Limited
information is available regarding its genomic diversity, especially from South Asian
countries that collectively are responsible for over 80% of all paratyphoid cases. As genomic
surveillance becomes more prominent, there is a need for a coherent and easy-to-use scheme
that can be deployed by public health researchers that do not require extensive compute
resources.

304

313	housekeeping functions. We only found 8,346 SNPs from all 1,379 isolates, with minimal
314	recombination, and thus, this genotyping scheme based on SNP alleles can support robust
315	genotyping and accommodate future evolution of Salmonella Paratyphi A. And to assist with
316	that, we have developed Paratype, an open-source Python script for genotyping of Salmonella
317	Paratyphi A genomes. Paratype can detect the genotype of Salmonella Paratyphi A genomes
318	directly from raw fastq read data. It can also detect mutations in the acrB efflux pump
319	(determinant of macrolide resistance) and in the QRDR region (determinant of ciprofloxacin
320	non-susceptibility).

321

322 In this genotyping scheme, we propose three primary clades 0, 1, and 2, which diverged 323 before the 1800s (Figure 2). While only a single isolate of primary clade 0 was obtained in 324 1971, isolates belonging to clade 1 and 2 have been routinely identified over the past two 325 decades. Clade 2 is the most abundant and has been subdivided into four secondary clades: 326 2.1 - 2.4, which probably emerged in the 1800s or the early 1900s. Clade 2.3 could be 327 subdivided into 2.3.1 - 2.3.3, each with distinct geographic distribution. Clade 2.4 was also 328 sub-divided into genotypes 2.4.1 - 2.4.4. Genotype 2.4.4 was the most abundant and was 329 predominantly present in Bangladesh. This genotype emerged in the late 1990s to early 2000s 330 and possesses high rates of ciprofloxacin resistance (Figure 2). Five of the isolates from this 331 genotype also contained AcrB-R717Q mutation that leads to azithromycin resistance, while 332 one was found to harbor a plasmid containing extended-spectrum beta-lactamase gene 333 (blaCTX-M-15) [22].

334

In line with findings of previous studies, the rates of acquisition of antimicrobial resistance
markers in *Salmonella* Paratyphi A is lower relative to *Salmonella* Typhi (Figure 4) [6,9].

337	Although a few isolates did acquire the IncHI1 plasmid in the late 1990s to early 2000s
338	(Figure 4a), no massive spread across the globe was noted; this unlike Salmonella Typhi
339	lineage H58 (genotype 4.3.1) carrying the IncHI1 plasmid spread and became the dominant
340	lineage in the last 30 years[28]. This is also true for chromosomal mutations such as QRDR
341	and AcrB mutations, which are overall less prevalent in Salmonella Paratyphi A than in
342	Salmonella Typhi [28,29]. Considering the genetic similarities between Salmonella Typhi
343	and Paratyphi A, and the fact that they occupy the same environmental niche, the differences
344	in the presence of AMR genes between these typhoidal Salmonella serovars warrants further
345	investigation.
346	

347 The specific O-antigen in the Salmonella Paratyphi A is thought to be conserved (assigned to 348 serogroup O2) and several vaccine candidates are currently under development, utilizing the 349 O2 antigen conjugated to a carrier protein as the main vaccine antigen. We compared the 18.9 350 kbp region responsible for the synthesis of the O2 antigen in this serovar [27] and found 83 351 SNPs in this region, of which 7 non-synonymous mutations were present in >10 isolates. 352 While it is not clear if these mutations affect the O2-antigen chemistry, the low mutation rate 353 and no observed recombination events in the cluster suggests that the O2 antigen vaccine will 354 have a broadly protective response against all the Salmonella Paratyphi A genotypes sampled 355 thus far. However, any variations in this region should be carefully monitored through 356 genomic surveillance.

357

The conclusions that we can draw from this analysis are subject to certain limitations. First, the available genomes are an incomplete sample; *Salmonella* Paratyphi A is a neglected pathogen, and hence the available genomes and might not have broad representativeness

361	across geographies or time. Specifically, a small proportion of genomes were available from
362	countries in sub-Saharan Africa and India. Second, while the tool has high sensitivity and
363	specificity on our dataset, as more genomes become available over time and novel
364	mechanism of AMR emerge, this tool will require updates from the bigger scientific
365	community. Like all genotyping tools, Paratype is a living tool that will require updates. Our
366	diverse group of authors plans to continually monitor the library of publicly available
367	genomes, accept update requests via GitHub, and incorporate any required updates in the
368	Paratype scheme accordingly.
369	
370	Conclusions
370 371	Conclusions This study reports the first large-scale global analysis of Salmonella Paratyphi A genomes
370 371 372	Conclusions This study reports the first large-scale global analysis of <i>Salmonella</i> Paratyphi A genomes and proposes the first genotyping tool for this pathogen. Paratype, which has already been
370 371 372 373	Conclusions This study reports the first large-scale global analysis of <i>Salmonella</i> Paratyphi A genomes and proposes the first genotyping tool for this pathogen. Paratype, which has already been released (https://github.com/CHRF-Genomics/Paratype) as an open-access, easy-to-use,
370 371 372 373 374	Conclusions This study reports the first large-scale global analysis of <i>Salmonella</i> Paratyphi A genomes and proposes the first genotyping tool for this pathogen. Paratype, which has already been released (https://github.com/CHRF-Genomics/Paratype) as an open-access, easy-to-use, command-line tool, is being tested and adopted by researchers for large scale genomic
370 371 372 373 374 375	Conclusions This study reports the first large-scale global analysis of <i>Salmonella</i> Paratyphi A genomes and proposes the first genotyping tool for this pathogen. Paratype, which has already been released (https://github.com/CHRF-Genomics/Paratype) as an open-access, easy-to-use, command-line tool, is being tested and adopted by researchers for large scale genomic analysis (https://doi.org/10.5281/zenodo.5520408). This tool will assist future genomic
 370 371 372 373 374 375 376 	Conclusions This study reports the first large-scale global analysis of <i>Salmonella</i> Paratyphi A genomes and proposes the first genotyping tool for this pathogen. Paratype, which has already been released (https://github.com/CHRF-Genomics/Paratype) as an open-access, easy-to-use, command-line tool, is being tested and adopted by researchers for large scale genomic analysis (https://doi.org/10.5281/zenodo.5520408). This tool will assist future genomic surveillance studies and will help inform prevention and treatment strategies for this
 370 371 372 373 374 375 376 377 	Conclusions This study reports the first large-scale global analysis of <i>Salmonella</i> Paratyphi A genomes and proposes the first genotyping tool for this pathogen. Paratype, which has already been released (https://github.com/CHRF-Genomics/Paratype) as an open-access, easy-to-use, command-line tool, is being tested and adopted by researchers for large scale genomic analysis (https://doi.org/10.5281/zenodo.5520408). This tool will assist future genomic surveillance studies and will help inform prevention and treatment strategies for this neglected pathogen.

379 <u>Methods</u>

380 <u>Study site and isolate selection</u>

- 381 Child Health Research Foundation in Bangladesh has been preserving invasive *Salmonella*
- isolates since 1999 and maintains a biobank of >9000 typhoidal *Salmonella* isolates, largely
- from children ($<18\Box$ years of age) that were isolated from the blood of the patients in two
- different settings: in-patient (hospitalized), and out-patient (community) facility [30]. Clinical

385	and epidemiological data were collected for all hospitalized patients. From this biobank,
386	among 640 Salmonella Paratyphi A isolates collected till December 2016, 348 were
387	randomly selected for whole-genome sequencing (WGS) (Additional file 1: Table S1). A set
388	of 469 Salmonella Paratyphi A isolates were also added to this collection, isolated under the
389	Surveillance for Enteric Fever in Asia (SEAP) project from three different typhoid-endemic
390	countries, Bangladesh (n= 180), Nepal (n= 156), and Pakistan (n=133). The SEAP-
391	Bangladesh isolates (n=180) were selected using randomization to represent 483 isolates
392	collected between 2016 and 2018. In contrast, SEAP-Nepal isolates included all pre-SEAP
393	isolates (2014 – 2016) and randomly selected SEAP isolates (2017 – 2019). The SEAP-
394	Pakistan isolates were selected prioritizing the availability of geographic information and
395	susceptibility profile during 2016 – 2018.
396	
397	To add to all the isolates sequenced in this study, we also collected raw fastq data of 560
398	Salmonella Paratyphi A isolates from 37 different countries and 10 published articles
399	(Additional file 1: Table S2). Complete chromosomal sequences of Salmonella Paratyphi A
400	ATCC 9150 (NC_006511) and AKU_12601 (NC_011147) were also included [31,32]. For
401	travel-related paratyphoid cases, the country of "traveling from" was considered as the

402 country of origin. If no travel data is available, the country of "reported from" was considered

as the country. Overall, for globally distributed 562 *Salmonella* Paratyphi A, year and country

data were available for 507 and 536 respectively (Additional file 1: Table S2). In total, we

405 obtained a global collection of 1,379 Salmonella Paratyphi A covering a timeline of 1917 –

406 2019 and 37 countries [see Additional file 2 for more details].

407

408 <u>Whole-genome sequencing</u>

409	Salmonella Paratyphi A isolates from 1999-2016 (before the start of the SEAP project) from
410	Bangladesh (n=348) were subcultured on MacConkey agar media and kept overnight at 37°C.
411	In case of any visible contamination, a single colony was picked and subcultured again.
412	Later, all colonies were swapped and resuspended into 1 ml of water. From this suspension,
413	400 μ L was used for DNA extraction using the QIAamp DNA Mini Kit (Qiagen, Hilden,
414	Germany) and sent to Novogene (NovogeneAIT, Singapore) for WGS on Novaseq 6000
415	platform (PE150). All SEAP isolates were extracted using the same protocol and were
416	sequenced on Illumina HiSeq 4000 platform (PE150) at the Welcome Sanger Institute,
417	Cambridge, UK.
418	
110	Systematic literature review of existing Salmonalla Paratyphi A genomes
415	Systematic nerature review of existing Sumonettu I aratypin A genomes
420	To contextualize the genomes sequenced in this study, we conducted a systematic search to
421	compile all publicly available Salmonella Paratyphi A genomes (for which raw reads and
422	metadata were available) to build a database of 560 additional isolates from 10 studies
423	(Additional file 1: Table S2). First, the search terms "(Salmonella Paratyphi A) AND
424	(Molecular Epidemiology)" "Salmonella Paratyphi A genome" and "(Salmonella Paratyphi
425	A) AND (Genomic Epidemiology)" were used in PubMed advanced search builder. Next, the
426	hits were filtered by selecting dates between 1900 and 2019 and the total number of
427	publications remaining were 231. After screening the abstracts and titles manually and
428	eliminating duplicated, only 7 studies were found to have any kind of genome/metadata
429	available for further analysis. In addition, three studies [8,9,22] that meets our criteria
430	(published and both metadata and raw reads available) but missed/not published during the
431	initial PubMed search were incorporated from European Nucleotide Archive (ENA) database,
432	taking the final number of incorporated publications to 10.

433

434	Quality check, genome assembly, annotation, and pan-genome analysis
435	Raw fastq reads of all Salmonella Paratyphi A were quality-checked using FastQC and
436	trimmed using Trimmomatic if necessary[33]. All 1,377 sets of raw fastq reads were
437	assembled using Unicycler v0.4.8 (default withmin_fasta_length 200)[34]. The assembled
438	contigs ($n = 1,377$) and downloaded complete chromosomes ($n = 2$) were annotated using
439	Prokka (gcode 11mincontiglen 200) [35]. The annotated GFF files of all 1,379 isolates
440	were used to build a pan- and core-genome of Salmonella Paratyphi A using Roary v3.3 (
441	options: -t 11 -emafft -n)[36]. The gene_presence_absence matrix output was used to
442	perform the Heap's law analysis to understand the open/closedness of the pan-genome (heaps
443	function of micropan library on R; 1000 permutations).
444	
445	SNP-based phylogenetic analyses

446 For the complete "global+SEAP" raw data collection, fastq reads of 1,377 Salmonella

447 Paratyphi A and fasta of two RefSeq chromosomes (NC_006511 and NC_011147) were

448 mapped against the Salmonella Paratyphi A AKU_12601 (FM200053.1) using Bowtie2

449 v2.3.5.1 [37]. Candidate SNPs were identified using SAMtools (v1.10) and BCFtools

450 (v1.10.2) [38]. Only the homozygous, unambiguous SNPs with a Phred-quality score of >20

451 were selected using a customized Python script. SNPs were discarded if they had strand bias

452 p <0.001, mapping bias p <0.001 or tail bias p <0.001 (using vcfutils.pl script, from

453 SAMtools). SNPs located in phage or repeat regions (118.9 kb for Salmonella Paratyphi A

454 AKU_12601 as described in Sajib et al. [25]) were also excluded using a customized python

455 script. Gubbins v2.3.4 was used to detect the recombinant regions [39] and SNPs in those

regions were excluded as well using the same python script, resulting in a set of 8,346

chromosomal SNPs positions for the "global+SEAP" collection (n= 1,379). All SNP alleles
were extracted (fasta) using a customized python script and merged to produce SNP
alignment.

460

461	Maximum likelihood trees (MLT) were built from the chromosomal SNP alignments using
462	RAxML v8.2.12 (with the Generalized Time-Reversible model and a Gamma distribution to
463	model site-specific rate variation; GTRGAMMA in RAxML) [15]. Support for the MLT was
464	calculated using 100 bootstrap pseudo-analyses of the alignment. The MLT was outgroup-
465	rooted by including the pseudo-alleles from Salmonella Typhi CT18 (NC_003198.1) in the
466	alignment. Tree visualization was done using iTol v5.5 [40], including the previous Paratyphi
467	A lineages proposed by Zhou et al [5].
468	
469	Bayesian analysis and identifying phylogenetically informative clades and subclades
470	In addition to SNP-based MLT, we investigated the population structure of the global
471	Salmonella Paratyphi A collection using a Bayesian approach, implemented with the SNP
472	alignment using fastBaps ⁴⁰ . To maintain compatibility with the phylogeny, some minor
473	modifications were made to the clustering pattern proposed by the least conservative
474	Dirichlet prior hyperparameters on fastbaps, optimise.baps. This eventually resulted in a total
475	of 16 different clusters. A customized python script was used to randomly select two
476	isolates/year/cluster to represent this global collection of Salmonella Paratyphi A, leading to
477	two independent sample sets of 315 isolates each. The alignment of SNP-alleles for this
478	representative sample set was used to understand the evolutionary diverging pattern of
479	different Salmonella Paratyphi A clusters over time using BEAST v1.10.4 [19]. The
480	GTR+ $\Gamma(4)$ substitution model was selected for this analysis with the exponential unrelated

481	relaxed clock as clock type and Bayesian skyline coalescent model as tree prior. The analysis
482	considered the year of isolation as tip dates and continued for 500 million steps with
483	sampling every 50,000 iterations. The BEAST analysis was run twice each on the two
484	independently generated sets of isolates. The resulting log files and model parameters were
485	analyzed on Tracer v1.7.1. TreeAnnotator v1.10 was used to generate the maximum-clade-
486	credibility (MCC) tree [41]. The tree was visualized on FigTree v1.4.4 with a time scale. For
487	the model with the highest posterior values (joint effective sample size (ESS) of 544) used for
488	further analysis, time to last common ancestor (MRCA) was calculated to be 1407 AD (95%
489	highest posterior density (HPD) interval [721.0, 1637.3]). Based on the diverging patterns
490	suggested by the MCC tree, we assigned the clusters (defined as described above) into
491	primary clades, secondary clades, and subclades on the MLT. However, a few visible clusters
492	on the MLT could not be assigned to specific subclades due to a lack of clustering
493	information from fastBaps, likely due to the low number of SNPs unique to these clusters.
40.4	

494

495 <u>SNP-based genotyping scheme and paratype</u>

496 We further divided the 16 clusters obtained from fastBAPS into 18 genotypes and identified a 497 set of 18 SNP alleles, located in a coding sequence for conserved genes to define each 498 assigned secondary clade and sub-clades. Each SNP allele was unique to only one subclade 499 or, to one secondary clade and its corresponding subclades (if any). Therefore, we assigned 500 the term "genotype" to each of the 18 secondary clades or subclades. Sorted read alignment 501 (BAM) files generated during the SNP analysis were used to assign the genotypes for each 502 isolate using a customized Python script, named Paratype (available at 503 https://github.com/CHRF-Genomics/Paratype). Briefly, under BAM mode (--mode bam), 504 Paratype uses samtools index (if bam file is not indexed), samtools mpileup, and bcftools call 505 to extract the consensus base calls at those 18 SNP loci from the BAM file. The resulting

506	variant call format (VCF) file is then processed to identify the presence of the defining SNP
507	alleles and follow cladistic logic to assign the genotype of the isolate, as well as the primary
508	clade, secondary clades, and subclade information. Paratype only considers high-quality SNP
509	alleles (Phred score >20 and 75% read_ratio for the allele) to assign genotypes. Read_ratio is
510	calculated by the number of high-quality alternative-allele reads on both strands, divided by
511	the total number of high-quality reads. In addition, Paratype also has fastq mode (mode
512	<i>fastq</i>) where a user can provide a set of paired-end raw fastq data file (can be gzipped) and
513	Paratype performs reference mapping (against the Salmonella Paratyphi AKU_12601
514	genome) using Bowtie and SAMtools and follows the same steps described above to detect
515	the genotype of the isolates. Although the bam mode is the default for the tool, the fastq
516	mode is more accurate and should be user-friendly to non-coding specializing researchers;
517	however, it is more time-consuming. Paratype also runs on vcf mode (mode vcf) which is
518	faster, but also the least accurate if the provided SNPs are not highly trusted.
519	

520 Plasmid, resistance gene, and mutation analysis

All assembled contigs were screened with PlasmidFinder v2.1 [21] and ResFinder v3.2 [20] to detect plasmid amplicons and acquired AMR genes respectively. Both results were parsed using customized python scripts. To detect mutations in *gyrA* and *acrB* genes, we used the same Paratype script. It uses the same files used for genotyping and produces gene- and position-specific non-silent and silent mutation results.

526

527 We also explored the genomic region where the genes related to O2-antigen biosynthesis are

located (860,008 – 878,865 of AKU_12601 genome). We detected all SNPs in that region

529 with the number of isolates having those and their corresponding amino-acid changes using

- the Paratype. Two additional python scripts were used to count position-specific SNPs and
- 531 mutations for the 18.9 kbp region.
- 532
- 533 <u>Data visualization and statistical analysis</u>
- 534 R (v4.0.4) base function and several packages including dplyr, ggplot2, micropan and
- scatterpie were used for data visualization and statistical analysis.

536

537 **Declarations**

538 Ethics approval and consent to participate

- 539 Ethical approval for the parent studies were obtained from the Bangladesh Institute of Child
- 540 Health Ethical Review Committee, Nepal Health Research Council, Aga Khan University
- 541 Hospital Ethics Committee and Pakistan National Ethics Committee, Stanford University
- 542 Institutional Review Board, and U.S. Centers for Disease Control and Prevention. Informed
- 543 written consent and clinical information were taken from adult participants and legal
- 544 guardians of child participants.

545

546 Consent for publication

547 Not applicable (No data from individual person was used for analysis).

548

549 Availability of data and materials

- 550 The genome dataset supporting the conclusions of this article are available in the European
- 551 Nucleotide Archive (ENA) under study accession ERP132884. The genotyping tool for

- 552 Salmonella Paratyphi A, Paratype is available at https://github.com/CHRF-
- 553 <u>Genomics/Paratype (https://doi.org/10.5281/zenodo.5520408</u>). Customized Python scripts
- and color scheme used in the manuscript are available at https://github.com/CHRF-
- 555 <u>Genomics/CHRF Paratyphi scripts</u>. The metadata supporting the conclusions of this article
- is included in Additional file 2.

```
557
```

- 558 Competing interests
- 559 The authors declare no competing interests.

560

- 561 <u>Funding</u>
- 562 This study was supported by the Bill and Melinda Gates Foundation (grant numbers INV-

563 023821 and INV-008335). The funding body did not have any role in the design of the study,

analysis, and interpretation of data or, in writing the manuscript.

565

566 <u>Authors' contributions</u>

567 AMT, YH, MSIS, SKS and SS were involved in conceptualization and design of the study.

568 MSIS performed the DNA extraction for sequencing in Bangladesh and the literature review

- 569 for the global database construction. AMT, YH and MSIS performed bioinformatic analysis
- under supervision of SS and SKS. JRA provided continuous guidance during bioinformatic
- analysis. AMT and YH designed the genotyping scheme and AMT wrote the Paratype script.
- 572 YH and MSIS conducted the statistical analyses and visualization. KES, JI, ZAD, SB and
- 573 JRA reviewed the results. ZAD and SB reviewed genotyping scheme and the Paratype tool.
- AMT, YH, MSIS and SS wrote the first draft of the manuscript. KES, JI, FNQ, SPL, GD,

- 575 ZAD, SB, DOG, JRA and SKS reviewed the manuscript. All authors reviewed and approved
- 576 the final manuscript.
- 577
- 578 <u>Acknowledgements</u>
- 579 We are thankful to Mr. Hafizur Rahman, Mr. Dipu Chandra Das and Ms. Nusrat Alam of the
- 580 Child Health Research Foundation for their help with the wet-lab procedures. We are also
- thankful to the entire SEAP team for their unwavering support and coordination between the
- teams.

583

584 **<u>References</u>**

- 1. Stanaway JD, Reiner RC, Blacker BF, Goldberg EM, Khalil IA, Troeger CE, et al. The
- global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden
- of Disease Study 2017. The Lancet Infectious Diseases [Internet]. [cited 2019 Feb 28];0.
- 588 Available from: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(18)30685-
- 589 6/abstract
- 2. Crump JA, Mintz ED. Global trends in typhoid and paratyphoid fever. Clin Infect Dis.
 2010;50:241–6.
- 592 3. Lu X, Li Z, Yan M, Pang B, Xu J, Kan B. Regional Transmission of Salmonella Paratyphi
- 593 A, China, 1998–2012. Emerg Infect Dis. 2017;23:833–6.
- 4. Furuse Y. Analysis of research intensity on infectious disease by disease burden reveals
- 595 which infectious diseases are neglected by researchers. PNAS. National Academy of
- 596 Sciences; 2019;116:478–83.

597	5. Zhou Z. McCann A	. Weill F-X. Blin C. Nair S.	. Wain J. et al. Transient Darwinian

- selection in Salmonella enterica serovar Paratyphi A during 450 years of global spread of
- ⁵⁹⁹ enteric fever. Proc Natl Acad Sci U S A. 2014;111:12199–204.
- 600 6. Kuijpers LMF, Le Hello S, Fawal N, Fabre L, Tourdjman M, Dufour M, et al. Genomic
- analysis of Salmonella enterica serotype Paratyphi A during an outbreak in Cambodia, 2013–
- 2015. Microb Genom [Internet]. 2016 [cited 2019 Aug 25];2. Available from:
- 603 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320704/
- 7. Yan M, Yang B, Wang Z, Wang S, Zhang X, Zhou Y, et al. A Large-Scale Community-
- 605 Based Outbreak of Paratyphoid Fever Caused by Hospital-Derived Transmission in Southern
- 606 China. PLOS Neglected Tropical Diseases. Public Library of Science; 2015;9:e0003859.
- 8. Ashton PM, Nair S, Peters TM, Bale JA, Powell DG, Painset A, et al. Identification of
- 608 Salmonella for public health surveillance using whole genome sequencing. PeerJ. PeerJ Inc.;
- 609 2016;4:e1752.
- 610 9. Britto CD, Dyson ZA, Duchene S, Carter MJ, Gurung M, Kelly DF, et al. Laboratory and
- 611 molecular surveillance of paediatric typhoidal Salmonella in Nepal: Antimicrobial resistance
- and implications for vaccine policy. PLOS Neglected Tropical Diseases. 2018;12:e0006408.
- 10. Saha S, Islam M, Uddin MJ, Saha S, Das RC, Baqui AH, et al. Integration of enteric fever
- 614 surveillance into the WHO-coordinated Invasive Bacterial-Vaccine Preventable Diseases (IB-
- 615 VPD) platform: A low cost approach to track an increasingly important disease. PLOS
- 616 Neglected Tropical Diseases. 2017;11:e0005999.
- 617 11. Saha S, Islam M, Saha S, Uddin MJ, Rahman H, Das RC, et al. Designing
- 618 Comprehensive Public Health Surveillance for Enteric Fever in Endemic Countries:
- 619 Importance of Including Different Healthcare Facilities. J Infect Dis. 2018;218:S227–31.

12, 5 12 , 5 10 10 10 10 10 10 10 10	Sajib MSI, Saha S, Uddin MJ, Hooda Y, et al. Epidemiology of
--	--

- Typhoid and Paratyphoid: Implications for Vaccine Policy. Clin Infect Dis. 2019;68:S117–
 23.
- 623 13. Barkume C, Date K, Saha SK, Qamar FN, Sur D, Andrews JR, et al. Phase I of the
- 624 Surveillance for Enteric Fever in Asia Project (SEAP): An Overview and Lessons Learned. J
- 625 Infect Dis. 2018;218:S188–94.
- 626 14. Day MR, Doumith M, Do Nascimento V, Nair S, Ashton PM, Jenkins C, et al.
- 627 Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of Salmonella
- 628 *enterica* serovars Typhi and Paratyphi. Journal of Antimicrobial Chemotherapy.

629 2018;73:365–72.

- 630 15. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
- 631 large phylogenies. Bioinformatics. 2014;30:1312–3.
- 632 16. Britto CD, Dyson ZA, Mathias S, Bosco A, Dougan G, Jose S, et al. Persistent circulation
- 633 of a fluoroquinolone-resistant *Salmonella enterica* Typhi clone in the Indian subcontinent.
- Journal of Antimicrobial Chemotherapy. 2020;75:337–41.
- 17. Sherchan JB, Morita M, Matono T, Izumiya H, Ohnishi M, Sherchand JB, et al.
- 636 Molecular and Clinical Epidemiology of Salmonella Paratyphi A Isolated from Patients with
- 637 Bacteremia in Nepal. The American Journal of Tropical Medicine and Hygiene. The
- American Society of Tropical Medicine and Hygiene; 2017;97:1706–9.
- 639 18. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian
- analysis of population structure. Nucleic Acids Res. 2019;47:5539–49.
- 641 19. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees.
- 642 BMC Evolutionary Biology. 2007;7:214.

643 20. Bortolaia V. Kaas KS. Ruppe E. Roberts MC. Schwarz S. Cattoir V.
--

- for predictions of phenotypes from genotypes. Journal of Antimicrobial Chemotherapy.
 2020;75:3491–500.
- 646 21. Carattoli A, Hasman H. PlasmidFinder and In Silico pMLST: Identification and Typing
- of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol Biol.

648 2020;2075:285–94.

- 649 22. Nair S, Day M, Godbole G, Saluja T, Langridge GC, Dallman TJ, et al. Genomic
- 650 surveillance detects Salmonella enterica serovar Paratyphi A harbouring blaCTX-M-15 from
- a traveller returning from Bangladesh. PLOS ONE. Public Library of Science;

652 2020;15:e0228250.

- 653 23. Jibril AH, Okeke IN, Dalsgaard A, Menéndez VG, Olsen JE. Genomic Analysis of
- 654 Antimicrobial Resistance and Resistance Plasmids in Salmonella Serovars from Poultry in

Nigeria. Antibiotics. Multidisciplinary Digital Publishing Institute; 2021;10:99.

- 656 24. Hooda Y, Sajib MSI, Rahman H, Luby SP, Bondy-Denomy J, Santosham M, et al.
- 657 Molecular mechanism of azithromycin resistance among typhoidal Salmonella stains in
- 658 Bangladesh identified through passive pediatric surveillance. PLOS Neglected Tropical
- 659 Diseases. 2019;13:e0007868.
- 660 25. Sajib MSI, Tanmoy AM, Hooda Y, Rahman H, Andrews JR, Garrett DO, et al. Tracking
- the Emergence of Azithromycin Resistance in Multiple Genotypes of Typhoidal Salmonella.
- mBio [Internet]. American Society for Microbiology; 2021 [cited 2021 Feb 16];12. Available
- from: https://mbio.asm.org/content/12/1/e03481-20
- 26. Sahastrabuddhe S, Carbis R, Wierzba TF, Ochiai RL. Increasing rates of Salmonella
- 665 Paratyphi A and the current status of its vaccine development. Expert Review of Vaccines.
- 666 Taylor & Francis; 2013;12:1021–31.

- 667 27. Seif Y, Monk JM, Machado H, Kavvas E, Palsson BO. Systems Biology and Pangenome
- of Salmonella O-Antigens. mBio [Internet]. American Society for Microbiology; 2019 [cited
- 669 2020 Aug 11];10. Available from: https://mbio.asm.org/content/10/4/e01247-19
- 670 28. Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ, Feasey NA, et al. Phylogeographical
- analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter-
- and intracontinental transmission events. Nat Genet. 2015;47:632–9.
- 29. Wong VK, Baker S, Connor TR, Pickard D, Page AJ, Dave J, et al. An extended
- 674 genotyping framework for *Salmonella enterica* serovar Typhi, the cause of human typhoid.
- 675 Nature Communications. 2016;7:12827.
- 30. Saha SK, Baqui AH, Hanif M, Darmstadt GL, Ruhulamin M, Nagatake T, et al. Typhoid
- 677 fever in Bangladesh: implications for vaccination policy. The Pediatric Infectious Disease
- 678 Journal. 2001;20:521–4.
- 679 31. McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, et al.
- 680 Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of
- 681 *Salmonella enterica* that cause typhoid. Nature Genetics. Nature Publishing Group;
- 682 2004;36:1268–74.
- 683 32. Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R, Bhutta ZA, et al. Pseudogene
- 684 accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and
- 685 Typhi. BMC Genomics. 2009;10:36.
- 686 33. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
- 687 data. Bioinformatics. 2014;30:2114–20.
- 688 34. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome
- assemblies from short and long sequencing reads. PLOS Computational Biology. Public
- 690 Library of Science; 2017;13:e1005595.

- 691 35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics.
- 692 2014;30:2068–9.
- 693 36. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid
- large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3.
- 695 37. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods.
- 696 Nature Publishing Group; 2012;9:357–9.
- 697 38. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
- Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
- 699 39. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid
- 700 phylogenetic analysis of large samples of recombinant bacterial whole genome sequences
- vising Gubbins. Nucleic Acids Research. 2015;43:e15–e15.
- 40. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new
- developments. Nucleic Acids Research. 2019;47:W256–9.
- 41. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian
- phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution
- 706 [Internet]. 2018 [cited 2021 Mar 28];4. Available from: https://doi.org/10.1093/ve/vey016

708 Figure legends

709	Figure 1: Genotyping scheme for Salmonella Paratyphi A. The scheme is composed of
710	three primary, nine secondary and 18 genotypes on a phylogenetic tree of 1,379 isolates. The
711	9 secondary clades as highlighted by the coloring of the inner ring. 18 genotypes identified
712	and are shown in the colored middle ring of the figure. The previously proposed lineage
713	system is shown in the outer ring.
714	
715	Figure 2: Maximum clade credibility tree of 315 representative Salmonella Paratyphi A
716	isolates. The tree shows the last common ancestor of all Salmonella Paratyphi A existed at
717	least 600 years ago (tMRCA - 1407 AD). The different genotypes are temporally resolved.
718	Countries with greater than or equal to 5 isolates are also included.
719	
720	Figure 3: Geographical distribution of Salmonella Paratyphi A genotypes. The country
721	of isolation for 1378 sequenced Salmonella Paratyphi A isolates is shown. The distribution of
722	genotypes per country is shown as scattered pie charts. The size of the each pie chart
723	represents the number of sequences available. A difference in circulating genotypes is
724	observed indicating local populations differ in several endemic countries. Further details are
725	provided in Additional file 2.
726	
727	Figure 4: Presence of antimicrobial resistance genes, plasmids, and chromosomal
728	mutations linked to quinolone resistance across different Salmonella Paratyphi A
729	genotypes. The diversity of a) Antimicrobial resistance genes b) Plasmids and c) quinolone
730	resistance determining region (QRDR) mutations present Salmonella Paratyphi A is shown.

medRxiv preprint doi: https://doi.org/10.1101/2021.11.13.21266165; this version posted November 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Genotypes

0 .1	2.3
1 .0	2.3.1
1.1	2.3.2
1.2.1	2.3.3
1.2.2	2.4
2.0	2.4.1
2.0.1	2.4.2
2.1	2.4.3
2.2	2.4.4

Country (≥5 isolates)

Bangladesh Nepal Cambodia
 Pakistan China France ■ Myanmar
■ Senegal Morocco Indonesia Turkey ■ Others

Genotypes