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Abstract 

Background – Complex disorders are caused by a combination of genetic, 
environmental and lifestyle factors, and their prevalence can vary greatly across different 
populations. Genome wide association studies (GWAS) can help identify common 
variants that underlie disease risk. However, despite their increasing number, the vast 
majority of studies focuses on European populations, leading to questions regarding the 
transferability of findings to non-Europeans. Here, we investigated whether polygenic risk 
scores (PRS) based on European GWAS correlate to disease prevalence within Europe 
and around the world.  
  
Results – GWAS summary statistics of 20 different disorders were used to estimate 
PRS in nine European and 24 worldwide reference populations. We estimated the 
correlation between average genetic risk for each of the 20 disorders and their prevalence 
in Europe and around the world. A clear variation in genetic risk was observed based on 
ancestry and we identified populations that have a higher genetic liability for developing 
certain disorders both within European and global regions. We also found significant 
correlations between worldwide disease prevalence and PRS for 13 of the studied 
disorders with obesity genetic risk having the highest correlation to disease prevalence. 
For these 13 disorders we also found that the loci used in PRS are significantly more 
conserved across the different populations compared to randomly selected SNPs as 
revealed by Fst and linkage disequilibrium structure. 
  
Conclusion – Our results show that PRS of world populations calculated based on 
European GWAS data can significantly capture differences in disease risk and identify 
populations with the highest genetic liability to develop various conditions. Our findings 
point to the potential transferability of European-based GWAS results to non-European 
populations and provide further support for the validity of GWAS. 
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Background 

Complex disorders are caused by the interaction of genetic, environmental and lifestyle 
factors. Most disorders that are frequent in the human populations fall under this category 
(1) and their prevalence varies greatly around the world (2). Understanding the basis of 
this prevalence difference can help disentangle the interaction among different factors 
causing complex disorders and identify groups of people who may be at a greater risk of 
developing certain disorders. This could become the basis of the implementation of early 
intervention strategies for populations at higher risk with significant benefits for public 
health.  

The genetic component underlying complex disorders is not easy to quantify. It is highly 
polygenic in nature, possibly involving hundreds of genetic variants each with a very small 
effect on disease liability and occurrence (3).  To measure the genetic risk of developing 
a specific disorder, it is possible to combine the effects of genomewide individual variants 
deriving a polygenic risk score (PRS) to quantify the genetic liability of a disorder and 
compare the risk of developing complex disorders across various populations (4). PRS of 
an individual for a specific disorder is estimated by the sum of the number of risk alleles 
weighted by the effect size of a specific allele (5) which is obtained from genomewide 
association studies (GWAS). With the availability of large-scale datasets, thousands of 
GWAS have been performed for various traits and conditions thus providing a large 
database of effect sizes that can be used to estimate PRS for different complex disorders 
(6).  

PRS has become an increasingly powerful tool to identify individuals at higher risk of 
developing complex disorders and could help explain the proportion of genetic variance 
that seems to be missing when focusing only on genome-wide significant hits (7,8). 
However, to date, PRS-based research has been hampered by the lack of GWAS 
summary statistics data from diverse populations. It was recently highlighted that about 
70% of GWAS studies since 2008 have used samples solely from European populations 
(9). Previous studies have shown that the predictive power of PRS based on European 
GWAS is comparatively poorer in non-Europeans and this decline increases with 
divergence from European genetic structure (10). The loss in prediction accuracy could 
be due to linkage disequilibrium (LD) structure and allele frequency differences between 
populations which in turn could lead to differences in the effect size estimates from the 
GWAS based on one population compared to another (10–12). Overall, it is 
recommended to avoid cross-population PRS calculation and to use GWAS data from 
populations with similar population structure for the estimation of genetic risk scores,  
 
At the same time, systematic studies attempting to evaluate the degree to which PRS can 
predict disease prevalence in different populations have not been performed to date in 
Europeans or non-Europeans. If such correlation of PRS to epidemiology exists, it would 
significantly boost confidence in the validity of GWAS results and the potential for their 
use as a tool in the design of public health studies. In the case of non-Europeans, based 
on the above-mentioned observations and known differences in LD structure around the 
world, one would expect that such correlations would be very poor.  Here, we embark on 
a systematic exploration of the genetic architecture of 20 different complex disorders, 
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using European GWAS to estimate average genetic risk within Europe but also around 
the world. Intriguingly, we find that PRS correlates to disease prevalence difference 
around the world for multiple disorders and show that this correlation might be explained 
by conservation of genetic regions that have been implicated in disease susceptibility via 
GWAS. Our study highlights the value of GWAS results and the potential of the use of 
PRS to identify high-risk populations around the world. 
 

Results 

PRS of complex disorders in European Populations 

We began by exploring PRS across a dataset of nine different European populations 
(2,109 individuals) (supplementary table 1) for 20 different complex disorders for which 
recent large GWAS were available (see methods and supplementary table 2) (13–31)).  
Studied disorders can be grouped under five general categories (cardiovascular, 
neurological, autoimmune, metabolic, and psychiatric). As expected, principal component 
analysis (PCA) showed that the analyzed samples clustered based on their geography 
(Figure 1a). PRS was calculated using PRSice-2 and a simple clumping and p-value 
thresholding-based method to correct for LD and select SNPs used to estimate PRS (32). 
LD clumping was performed separately for each ancestral group with a threshold of r2=0.1 
within a 250kb distance and six p-value thresholds (5x10-8, 5x10-5, 0.001, 0.01, 0.05 and 
1) were used for this analysis. The final number of SNPs used at each threshold are 
shown in additional file 1.  

Figure 2 shows the overall results at threshold p-value<5x10-5. Individuals from southern 
European countries (Greece and Italy) were found to carry 1.5 – 2.7 times lower risk of 
developing most autoimmune disorders and 1.7 – 2.2 times higher risk of developing 
metabolic disorders compared to central and northern European populations. The highest 
risk for coronary artery disease (CAD) was observed in populations from central 
European countries like Hungary and Poland. These populations also showed two times 
higher genetic risk for Parkinson disease (PD) compared to other Europeans in this 
analysis. By contrast, we found that individuals from northern European countries like 
Denmark and the United Kingdom (UK) have lower risk for neurological disorders and 
higher risk for autoimmune diseases. Among the different psychiatric disorders that we 
analyzed, the highest PRS for autism spectrum disorders (ASD) and major depressive 
disorder (MDD) was observed in the Greek and Italian populations and the lowest PRS 
was seen in the Polish population, which inversely has the highest genetic risk for anxiety 
disorders (ANX), schizophrenia (SCZ) and bipolar disorder (BPD). The overall genetic 
risk of psychiatric disorders is lower in Northern European populations, except for ADHD 
for which Denmark has the highest risk score estimate among all the analyzed groups.  

Results for PRS calculated at other p-value thresholds revealed an overall similar 
distribution of disease risk in different populations. At higher p-value thresholds, the 
differences between populations became more distinct and stronger clustering was 
observed between countries in the same region (supplementary figure 1 and additional 
file 2)  
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Genetic Risk in Global Populations 

We continued to explore the use of European-GWAS PRS, expanding our analysis to 
global populations (1000 genomes phase 3 data (33)). The data set is made up of 3,953 
individuals from 24 different populations in five regions of the world – Africans (AFR), 
South Asians (SAS), East Asians (EAS) and Admixed Americans (AMR) (supplementary 
table 1). The PCA plot of the global data again showed that the populations are very 
tightly clustered based on their regions of origin except for the AMR samples which are 
distributed along a cline (fig 1b).   

Again, PRS scores were calculated for the global populations at six thresholds (additional 
file 3). In Figure 3, we compared the average PRS calculated at a threshold of p-
value<5x10-5 for 24 populations from five regions of the world. Genetic risk for the different 
studied disorders was observed to follow a pattern of distribution reminiscent of 
geography. Populations originating from the same region mostly tend to have a uniform 
genetic risk score as compared to risk between populations from different regions.  

African populations were found to have a 1.3 – 2.5 times higher PRS for obesity (OBY) 
and polycystic ovary syndrome (PCOS) compared to non-African populations. These 
populations also had 2.2 times lower risk of type 1 diabetes (T1D) and inflammatory bowel 
disease (IBD); and around 1.9 – 2.4 times lower risk scores for psychiatric disorders like 
ADHD, SCZ and MDD compared to the rest of the populations. East Asian populations 
were found to carry 1.8 – 2.3 times lower risk scores for autoimmune conditions like 
asthma (AST), multiple sclerosis (MS), rheumatoid arthritis (RA) and IBD; and 2.8 times 
lower PRS for psychiatric disorders like ASD and BPD compared to the other regions. 
They also had the highest risk for CAD, type 2 diabetes (T2D) and chronic kidney disease 
(CKD) which was 1.7 – 2.6 times greater than the other populations. Europeans were 
found to carry a 1.2 – 1.6 times higher risk of Alzheimer disease (AD) and moderately 
high risk for most autoimmune and psychiatric diseases compared to non-European 
populations. The lowest genetic risk for European individuals was observed for metabolic 
and cardiovascular disorders. South Asians followed a distribution pattern intermediate 
to that observed for East Asians and Europeans.  Along with their East Asians neighbors, 
populations from countries like India, Pakistan, Bangladesh and Srilanka were found to 
have a higher risk of T2D, and the lowest risk of obesity. They also had the highest PRS 
for PD and psoriasis (PSO) which was 1.3 times higher than the other populations. The 
AMR populations were found to carry the highest risk for ADHD which was 1.6 times 
higher than the rest of the populations and had risk estimates similar to Europeans for 
other psychiatric and metabolic disorders.  

We examined the distribution of PRS calculated at other p-value thresholds and observed 
that the genetic risk distribution for certain disorders changes at different thresholds. The 
most significant changes are observed for T2D, OBY, ANX and MS at threshold p-value<1 
(supplementary figure 2). The std. average scores at all thresholds are listed in additional 
file 3.  
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Correlation between PRS and prevalence of complex disorders around the world 

To determine whether the average PRS of the studied complex disorders could partly 
explain disease prevalence within Europe, we calculated the correlation between these 
measures. To test for statistical significance, we calculated an empirical p-value for 
significant associations based on random SNP sets as explained in the methods.   Results 
are shown in table 1 and supplementary table 3. We observed significant correlation 
between prevalence and PRS at different thresholds for seven disorders. We proceeded 
to explore the potential correlation of PRS based on European GWAS to disease 
prevalence in non-European populations. The mean prevalence of the disorders across 
the five ancestral populations that we studied is shown in figure 4, the prevalence of each 
country is shown in additional file 4, and the results of the correlation analysis are shown 
in table 2 and supplementary table 4. Of the 20 analyzed traits, we found significant 
correlation between the prevalence of 13 disorders with PRS calculated for at least one 
p-value threshold. We observed a significant correlation of PRS to disease prevalence 
for all studied autoimmune disorders except psoriasis with the strongest correlation seen 
for CRD (R2 = 0.6, p=0.001) and PRS calculated at a threshold of p-value<0.01. Among 
metabolic conditions, significant correlations between PRS and disease prevalence were 
observed for obesity (R2 = 0.73, p=0.001) and T2D (R2 = 0.55, p=0.003) PRS at the 
threshold of p-value< 0.001. The average PRS of PD at p-value<5x10-5 also had a 
significant genetic correlation with the prevalence of PD in different populations (R2 = 
0.39, p=0.026). Among psychiatric disorders, the average PRS at p<5x10-5 had a 
significant correlation to worldwide prevalence of ADHD (R2=0.46, p=0.008), BPD (R2 = 
0.42, p=0.013) and SCZ (R2 = 0.45, p=0.011).  

Next, we investigated whether disorders for which we found significant correlation 
between prevalence and PRS also had high SNP heritability using LD score regression 
(LDSC) (34) . Results showed that autoimmune disorders except MS had a high SNP 
heritability ranging from 0.14 – 0.86. Psychiatric disorders like ADHD, BPD and SCZ 
which have significant correlations with prevalence had heritability estimates 0.23 and 0.3 
and 0.157 respectively. PD, AD, and most metabolic disorders showed lower estimates 
of SNP heritability with less than 5% of variance explained (supplementary table 5). 
Although there was a positive relationship between the heritability estimates from LDSC 
and the correlations between PRS and prevalence, no significant associations were 
observed (supplementary table 6). 

Genetic architecture of disease associated regions used for PRS analysis 

The fact that we observed a significant association between worldwide disease 
prevalence and PRS calculated using European GWAS was quite unexpected. We 
hypothesized that this could be at least in part due to similarities in the genetic architecture 
across studied genomic regions around the world. To test this hypothesis, we explored 
the worldwide structure and allele frequency differences of genomic regions used in our 
PRS analysis: First, we calculated r2(35) for all pairs of variants within 100 kb of the PRS 
SNPs and performed pairwise comparisons between Europeans and individuals from 
other geographic regions. Second, we calculated the mean FST of the PRS SNPs, again 
performing pairwise comparisons between Europeans and other populations (36). The 
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empirical p-value was calculated using a statistical test based on random SNP sets as 
explained in the methods section.  

Results of our r2 analysis showed that for multiple studied disorders, the genetic regions 
used in PRS calculation show similar LD structure around the world compared to 
randomly selected regions (empirical p-value <0.05) (figure 5, supplementary table 7). 
For instance, the regions around the genome-wide significant SNPs used for OBY- and 
MS-PRS revealed similar LD patterns across all populations indicating that the associated 
loci have similar genetic structure across all populations. We saw similar LD structure 
between AFR and European individuals for regions used in PRS estimations for all 
autoimmune disorders except RA. The LD structure for regions used for PRS in SAS was 
significantly correlated to European structure for 6 disorders that included OBY, T1D, IBD, 
MS, ADHD and SCZ. East Asians and Europeans differed mostly with only 3 disorders 
having significant correlations.  Finally, the comparison of LD structure between AMR and 
Europeans for the studied genetic regions showed significant correlation for almost all 
disorders.  

FST analysis also revealed low genetic differentiation around the world for multiple of the 
genetic regions used for PRS estimations (figure 6, supplementary table 8). For instance, 
the SNPs used for PRS calculations of OBY, AST, T1D, IBD, CRD, MS, and ANX had a 
significantly lower FST between Africans and Europeans (empirical p-value <0.05). Same 
as what we observed in the LD analysis, East Asians were often differentiated to 
Europeans. The results of FST comparisons of SAS and AMR populations with Europeans 
were concordant with the results of the LD analysis although fewer significant outcomes 
were observed for both the populations.  

Discussion 

The prevalence of complex disorders across different populations is quite varied. This 
may be attributed to a combination of differences in genetic factors, lifestyle, and 
environment. Here, we explored the genetic component of this variation using PRS to 
determine and compare the average genetic risk of 20 disorders in individuals belonging 
to different populations from around the world. Analysis was focused on SNPs that were 
associated with disease based on European GWAS. Literature describing non-European 
GWAS is still scarce, thus there is a need to continue to evaluate the transferability of 
European-based findings to non-European populations as the genetics community works 
to address this gap through additional studies. As expected, we observed clear 
differences in the distribution of the average PRS estimates based on ancestry. Most 
unexpectedly however, for 13 out of the 20 studied disorders, we also showed significant 
correlation between the average PRS and disease prevalence, a result that indicates that 
European-based GWAS findings may in fact carry significant value for interpretation of 
genetic risk in non-European populations.  

The differences that we observed in the genetic risk of various disorders could explain 
greater frequency of specific disorders in different populations. For instance, the highest 
number of individuals with T2D in the world is reported to be in Asia. Here, we showed 
that the increased prevalence of this disorder is also accompanied by increased genetic 
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risk for T2D (37). It is also interesting that in Asian populations we found the genetic risk 
for obesity to be quite low which could explain the unique clinical presentation of diabetic 
phenotype in Asian populations with lower rates of obesity (38). In a similar fashion, 
individuals of African ancestry were observed to have a greater genetic risk for developing 
multiple metabolic disorders, Alzheimer disease, and CAD. Indeed, the prevalence of 
CAD has been reported to be higher in African Americans than Europeans, and studies 
have shown that African Americans have the highest risk of being diagnosed with AD and 
CAD (39–42). Epidemiological studies have also shown that Europeans have the highest 
lifetime prevalence of mental health conditions. In concordance with this observation, we 
found higher genetic risk of developing psychiatric conditions in European populations 
compared to people of other ancestry (43).  

The lack of non-European GWAS for the studied disorders is a limitation of this analysis, 
since there could be a decrease in prediction accuracy of PRS as previously described 
(9,11,44). However, despite this limitation, we found that average PRS of various non-
European populations calculated using GWAS based on Europeans can actually capture 
differences in disease prevalence across these populations. Intriguingly, we also showed 
low differentiation of LD structure and allele frequency for SNPs used in PRS calculations 
suggesting that GWAS may be identifying disease-causing loci that may be conserved 
across various populations.   

Using European GWAS as the basis of this analysis we were able to capture genetic risk 
differences and correlations to disease prevalence around the world. However, we may 
have also ignored variants that might be significantly associated with disease in non-
European populations (10,45). Another limitation of our analysis is that the awareness 
regarding various conditions, especially psychiatric disorders, may be low in developing 
countries and hence the prevalence data might be biased (46,47). This could also explain 
why not many significant associations were observed for psychiatric disorders in non-
European populations.  

Identification of populations that carry increased genetic susceptibility to disease could 
help inform clinical practice and public health strategies. Currently, non-European GWAS 
are scarce and our knowledge on the genetic architecture of complex disease relies 
almost solely on the analysis of European genomes. Here, we showed that disease loci 
identified via European GWAS may have a conserved structure around the world which 
could explain the correlation of PRS to worldwide disease prevalence that we also 
observed. However, future studies that include GWAS data based on trans-ancestral 
populations and use methods that can better adjust for differences in ancestry in base 
and target datasets by either modelling the LD structure or including annotation and fine-
mapping data would improve the prediction accuracy of the risk estimate even further 
(48–50). Ultimately, combining genetic risk along with information on lifestyle and 
environmental factors will help fully explain differences in disease prevalence around the 
world and inform the design of future public health strategies. 
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Conclusion  
 
We estimated the genetic risk of 20 complex disorders across five different continental 
regions to explore whether genetics might help explain disease prevalence distribution 
around the world. We found that PRS of world populations calculated based on European 
GWAS data can capture differences in disease risk and could thus be used to identify 
populations with the highest genetic liability to develop various disorders. Significant 
correlations were observed between genetic risk and disease prevalence for 13 disorders 
in different global populations. Intriguingly, the genetic loci around the disease-associated 
SNPs showed similar LD patterns and allele frequencies around the world. The results of 
these analyses highlight the potential transferability of GWAS results to non-studied 
populations and could help inform clinical decisions in populations with a higher genetic 
risk of developing different complex disorders. 
 

Methods 

Data sets 

We collected publicly available GWAS summary statistics for 20 complex disorders with 
no overlap with the target data. The data was cleaned to remove any duplicate and 
mismatched SNPs. The target dataset for the analysis consisted of 3,953 samples from 
24 different countries belonging to five different ancestral groups of the globe namely, 
Africans (504), Europeans (2109), South Asians (489), East Asians (504) and Admixed 
Americans (347). The European samples were collected from previous studies (51–56) 
and the samples from other populations were acquired from the publicly available 1000 
genomes phase 3 data (33). The detailed list or data sources are shown in supplementary 
table 1 and all appropriate informed consent, IRB approvals, and Data Use Agreements 
are in place for use of data as part of this study.  The final dataset was cleaned using 
Plink (57) to filter out variants with more than 2% missingness, minor allele frequency 
<0.01 and Hardy-Weinberg Equilibrium<1e-6. After QC, we included 3,953 samples and 
1,618,220 SNPs for PRS calculation.   

The prevalence data for 18 traits was collected from the Global Burden of Disease (GBD) 
database and the prevalence information for type 2 diabetes and obesity was collected 
from the International Diabetes Federation (IDF) and WHO database respectively 
(2,58,59) (Supplementary file 4). For certain conditions like AD, CRD and CAD for which 
specific data isn’t available, we used the prevalence data from broad traits like dementia, 
IBD and ischemic heart disease. In total we gather prevalence data for 20 diseases 

Principal Component Analysis 

We performed principal component analysis for both the European and Global dataset to 
visualize the genetic architecture of the different populations. EIGENSOFT software was 
used to run the analysis (60). The dataset was cleaned to remove the MHC and the 
chromosome 8 inversion region and LD pruned to select independent SNP to calculate 
the Principal Components (PCs).  
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Polygenic Risk Scores Estimation 

PRSice-2 was used for the estimation of PRS scores of the cleaned target dataset for 
each disorder with the average effect size-based scoring method (32). The tool uses 
Clumping and P-value Thresholding (C+T) method to select independent SNPs that are 
used to calculate the scores. We use a clumping threshold (r2) of 0.1 within a 250kb 
distance and 6 p-value thresholds to select the variants and calculate the scores for every 
individual. For the European data analyses, we clumped all the populations together, but 
for the global population analysis, we separated the data into five super populations as 
mentioned above and clumped each group separately. We then determined the 
standardized average PRS scores for the 24 countries that are used to visualize the 
distribution pattern of the various disorders and identify populations with higher genetic 
risk. We also used these scores to estimate the correlation between genetic risk and 
prevalence of a disorder.  

Correlations with prevalence and empirical p-value calculations 

To determine if the average genetic risk of a disorder in a population is associated with 
the prevalence of disorder, we estimated Pearson’s correlations between the Average 
scores and the prevalence data using MATLAB R2020b. The initial level of significance 
was obtained using a permutation test within the data. To calculate the empirical p-value 
and confirm the initial significance, we performed a statistical test using a random PRS 
method. We first picked 100 random SNP sets to compute PRS with the number of SNPs 
in each set equal to the number in the significant threshold. We then computed the 
correlation coefficients between each random SNP set and prevalence of target disorder 
and determined the empirical p-value for each of the sets. We finally identified the number 
of SNP sets that had significant correlation higher than the PRS scores at the actual 
threshold and returned the empirical p-value.  

SNP Heritability  

We calculated the SNP heritability of the disorders to assess whether traits with significant 
correlation with prevalence also have high SNP heritability. LD Score Regression (LDSC) 
software was used to calculate the values for each of the 20 disorders. Pre-calculated LD 
scores from 1000 genomes European data were used for the analysis (34). 

Linkage Disequilibrium analysis 

We first start by selecting SNPs that were used for PRS calculations of various disorders 
in European populations, specifically at the p-value thresholds for which we observed 
significant correlations between the risk scores and prevalence. To determine if the 
regions around these SNPs are conserved across populations, we extracted all variants 
within a 100 KB region around the PRS SNPs and calculated r2 for all pairs of SNPs within 
the region. This was done independently for each of the five ancestral populations and 
repeated for all disorders separately. We then compared the r2 values of the various pairs 
of SNPs in Europeans to the values of the same pair in each of the other four populations 
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to estimate the Pearson’s correlation for each disorder at the specific p-value threshold. 
To calculate an empirical p-value, we first started by making 100 SNP sets with each set 
having 1000 SNPs each. For each set, we then repeated the analysis as above and 
obtained a distribution of correlation estimates. We then used this distribution to 
determine if the correlations observed between Europeans and each of the other 
populations for different disorders are significantly higher (top 5th percentile) compared to 
the correlation distribution obtained from the random SNP sets. The estimation of r2 was 
done using the Plink tool (57) and the statistical analyses were performed in R. 

FST Analysis 

We selected SNPs that were used for PRS calculations of various disorders in European 
populations, at the p-value thresholds for which we observed significant correlations 
between the risk scores and prevalence. Then we analyzed four different groups 
composed of Europeans and Africans, Europeans and South Asians, Europeans and 
East Asians, and Europeans and admixed Americans. We calculated the FST of the 
selected SNPs in each group individually with each ancestry used as a sub-population 
and determined the mean FST of all SNPs in each pair. Analysis was repeated separately 
for all disorders at the specific p-value thresholds. To calculate an empirical p-value for 
both analyses, we created 100 sets of 1000 randomly selected SNPs and repeated the 
FST calculations to get a distribution. We used this distribution to verify if the mean FST of 
the PRS SNPs in each population pair is significantly lower (bottom 5th percentile) than 
the distribution of the random SNP sets. The FST calculation was done using the Plink tool 
and the statistical analyses were performed in R. 

 

References 

1.  Mitchell KJ. What is complex about complex disorders? [Internet]. Vol. 13, Genome 
Biology. BioMed Central; 2012 [cited 2021 Apr 28]. p. 237. Available from: 
/pmc/articles/PMC3334577/ 

2.  Abbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi 
M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 
1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. 
Lancet. 2020 Oct 17;396(10258):1204–22.  

3.  Dudbridge F. Polygenic Epidemiology. Genet Epidemiol [Internet]. 2016 May 1 
[cited 2021 Apr 28];40(4):268–72. Available from: 
https://pubmed.ncbi.nlm.nih.gov/27061411/ 

4.  Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, et al. 
Common polygenic variation contributes to risk of schizophrenia and bipolar 
disorder. Nature. 2009;  

5.  Choi SW, Mak TSH, O’Reilly PF. Tutorial: a guide to performing polygenic risk score 
analyses [Internet]. Vol. 15, Nature Protocols. Nature Research; 2020 [cited 2020 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.13.21265898doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.13.21265898
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sep 2]. p. 2759–72. Available from: https://doi.org/10.1038/s41596-020-0353-1 

6.  Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary 
association statistics. 2017 [cited 2021 Apr 28]; Available from: 
http://www.ibdgenetics.org/downloads.html 

7.  Khera A V., Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-
wide polygenic scores for common diseases identify individuals with risk equivalent 
to monogenic mutations. Nat Genet 2018 509 [Internet]. 2018 Aug 13 [cited 2021 
Jul 26];50(9):1219–24. Available from: https://www.nature.com/articles/s41588-
018-0183-z 

8.  Makowsky R, Pajewski NM, Klimentidis YC, Vazquez AI, Duarte CW, Allison DB, 
et al. Beyond Missing Heritability: Prediction of Complex Traits. PLOS Genet 
[Internet]. 2011 Apr [cited 2021 Jul 26];7(4):e1002051. Available from: 
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002051 

9.  Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. Analysis of 
polygenic risk score usage and performance in diverse human populations. Nat 
Commun. 2019 Dec;10(1).  

10.  Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of 
current polygenic risk scores may exacerbate health disparities. Nat Genet 2019 
514 [Internet]. 2019 Mar 29 [cited 2021 Jul 26];51(4):584–91. Available from: 
https://www.nature.com/articles/s41588-019-0379-x 

11.  Kim MS, Patel KP, Teng AK, Berens AJ, Lachance J. Genetic disease risks can be 
misestimated across global populations. Genome Biol 2018 191 [Internet]. 2018 
Nov 14 [cited 2021 Jul 26];19(1):1–14. Available from: 
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1561-7 

12.  Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, et al. Human 
Demographic History Impacts Genetic Risk Prediction across Diverse Populations. 
Am J Hum Genet. 2017 Apr 6;100(4):635–49.  

13.  Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. 
Genome-wide meta-analysis identifies new loci and functional pathways influencing 
Alzheimer’s disease risk. Nat Genet. 2019;51(3):404–13.  

14.  Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery 
of the first genome-wide significant risk loci for attention deficit/hyperactivity 
disorder. Nat Genet. 2019;  

15.  Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. 
Association analyses based on false discovery rate implicate new loci for coronary 
artery disease. Nat Genet. 2017;49(9):1385–91.  

16.  Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. Meta-analysis of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.13.21265898doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.13.21265898
http://creativecommons.org/licenses/by-nc-nd/4.0/


genome-wide association studies of anxiety disorders. Mol Psychiatry. 2016;  

17.  Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of 
common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;  

18.  Han Y, Jia Q, Jahani PS, Hurrell BP, Pan C, Huang P, et al. Genome-wide analysis 
highlights contribution of immune system pathways to the genetic architecture of 
asthma. Nat Commun. 2020;11(1):1–13.  

19.  Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V, et al. Genetic 
associations at 53 loci highlight cell types and biological pathways relevant for 
kidney function. Nat Commun. 2016;7:1–19.  

20.  De Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. 
Genome-wide association study implicates immune activation of multiple integrin 
genes in inflammatory bowel disease. Nat Genet [Internet]. 2017 Jan 31 [cited 2021 
May 11];49(2):256–61. Available from: https://www.nature.com/articles/ng.3760 

21.  Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. 
Genome-wide association analyses identify 44 risk variants and refine the genetic 
architecture of major depression. Nat Genet. 2018;  

22.  Sawcer S, Hellenthal G, Pirinen M, Spencer CCA, Patsopoulos NA, Moutsianas L, 
et al. Genetic risk and a primary role for cell-mediated immune mechanisms in 
multiple sclerosis [Internet]. Vol. 476, Nature. Nature Publishing Group; 2011 [cited 
2021 May 11]. p. 214–9. Available from: http://www.genome.gov/gwastudies/ 

23.  Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-
wide meta-analysis identifies 11 new loci for anthropometric traits and provides 
insights into genetic architecture. Nat Genet [Internet]. 2013 May [cited 2020 Sep 
2];45(5):501–12. Available from: https://pubmed.ncbi.nlm.nih.gov/23563607/ 

24.  Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, et al. Large-Scale Genome-
Wide Meta Analysis of Polycystic Ovary Syndrome Suggests Shared Genetic 
Architecture for Different Diagnosis Criteria. bioRxiv. 2018;106179472:1–20.  

25.  Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, et 
al. Expanding Parkinson’s disease genetics: novel risk loci, genomic context, 
causal insights and heritable risk. bioRxiv [Internet]. 2019 Jan 1;388165. Available 
from: http://biorxiv.org/content/early/2019/03/04/388165.abstract 

26.  Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. Identification 
of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat 
Genet [Internet]. 2012 Dec 1 [cited 2021 May 11];44(12):1341–8. Available from: 
https://www.nature.com/articles/ng.2467 

27.  Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid 
arthritis contributes to biology and drug discovery. Nature [Internet]. 2014 [cited 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.13.21265898doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.13.21265898
http://creativecommons.org/licenses/by-nc-nd/4.0/


2021 May 11];506(7488):376–81. Available from: /pmc/articles/PMC3944098/ 

28.  Ripke S, Walters JTR, O’Donovan MC. Mapping genomic loci prioritises genes and 
implicates synaptic biology in schizophrenia. medRxiv. 2020;  

29.  Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj 
JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for 
colocalization of causal variants with lymphoid gene enhancers. Nat Genet 
[Internet]. 2015 Apr 28 [cited 2021 May 11];47(4):381–6. Available from: 
http://www.immunobase.org/poster/type-1- 

30.  Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-
mapping type 2 diabetes loci to single-variant resolution using high-density 
imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505–13.  

31.  Stahl E, Bipolar Working Group of the Psychiatric Genomics Consortium. Genome-
Wide Association Study Identifies Twenty New Loci Associated With Bipolar 
Disorder. Eur Neuropsychopharmacol. 2019;29:S816.  

32.  Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale 
data. Gigascience [Internet]. 2019 Jul 1 [cited 2020 Oct 8];8(7):1–6. Available from: 
http://orcid.org/0000-0003-2215-3238; 

33.  Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. 
A global reference for human genetic variation [Internet]. Vol. 526, Nature. Nature 
Publishing Group; 2015 [cited 2021 Mar 2]. p. 68–74. Available from: 
https://www.nature.com/articles/nature15393 

34.  Bulik-Sullivan B, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD 
score regression distinguishes confounding from polygenicity in genome-wide 
association studies. Nat Genet. 2015 Feb 25;47(3):291–5.  

35.  WG H, A R. Linkage disequilibrium in finite populations. Theor Appl Genet 
[Internet]. 1968 Jun [cited 2021 Sep 13];38(6):226–31. Available from: 
https://pubmed.ncbi.nlm.nih.gov/24442307/ 

36.  Weir BS, Cockerham CC. Estimating F-Statistics for the Analysis of Population 
Structure. Evolution (N Y). 1984 Nov;38(6):1358.  

37.  Chan JCN, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, et al. Diabetes in 
Asia: epidemiology, risk factors, and pathophysiology. JAMA - Journal of the 
American Medical Association. 2009.  

38.  Shah VN, Mohan V. Diabetes in India: What is different? Current Opinion in 
Endocrinology, Diabetes and Obesity. 2015.  

39.  Wang L, Southerland J, Wang K, Bailey BA, Alamian A, Stevens MA, et al. Ethnic 
Differences in Risk Factors for Obesity among Adults in California, the United 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.13.21265898doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.13.21265898
http://creativecommons.org/licenses/by-nc-nd/4.0/


States. J Obes. 2017;  

40.  Muntner P, Newsome B, Kramer H, Peralta CA, Kim Y, Jacobs DR, et al. Racial 
differences in the incidence of chronic kidney disease. Clin J Am Soc Nephrol. 
2012;  

41.  Mayeda ER, Glymour MM, Quesenberry CP, Whitmer RA. Inequalities in dementia 
incidence between six racial and ethnic groups over 14 years. Alzheimer’s Dement. 
2016;  

42.  AHA (American Heart Association). Cardiovascular Disease : A Costly Burden, For 
America Projections Through 2035. Am Hear Assoc Fed Advocacy  Washingt DC; 
2017;  

43.  Alvarez K, Fillbrunn M, Green JG, Jackson JS, Kessler RC, McLaughlin KA, et al. 
Race/ethnicity, nativity, and lifetime risk of mental disorders in US adults. Soc 
Psychiatry Psychiatr Epidemiol. 2019;  

44.  AR M, CR G, RK W, GL W, BM N, S G, et al. Human Demographic History Impacts 
Genetic Risk Prediction across Diverse Populations. Am J Hum Genet [Internet]. 
2017 Apr 6 [cited 2021 Jul 26];100(4):635–49. Available from: 
https://pubmed.ncbi.nlm.nih.gov/28366442/ 

45.  Wang Y, Guo J, Ni G, Yang J, Visscher PM, Yengo L. Theoretical and empirical 
quantification of the accuracy of polygenic scores in ancestry divergent populations. 
Nat Commun 2020 111 [Internet]. 2020 Jul 31 [cited 2021 Jul 26];11(1):1–9. 
Available from: https://www.nature.com/articles/s41467-020-17719-y 

46.  Furnham A, Hamid A. Mental health literacy in non-western countries: A review of 
the recent literature. Mental Health Review Journal. 2014.  

47.  Ganasen KA, Parker S, Hugo CJ, Stein DJ, Emsley RA, Seedat S. Mental health 
literacy: Focus on developing countries. African Journal of Psychiatry (South 
Africa). 2008.  

48.  Márquez-Luna C, Loh PR, Price AL, Kooner JS, Saleheen D, Sim X, et al. 
Multiethnic polygenic risk scores improve risk prediction in diverse populations. 
Genet Epidemiol. 2017;  

49.  Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. 
Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am 
J Hum Genet [Internet]. 2015 Oct 1 [cited 2020 Nov 1];97(4):576–92. Available 
from: http://dx.doi.org/10.1016/j.ajhg.2015.09.001. 

50.  Weissbrod O, Kanai M, Shi H, Gazal S, Peyrot W, Khera A, et al. Leveraging fine-
mapping and non-European training data to improve trans-ethnic polygenic risk 
scores. medRxiv. 2021;  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.13.21265898doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.13.21265898
http://creativecommons.org/licenses/by-nc-nd/4.0/


51.  Paschou P, Yu D, Gerber G, Evans P, Tsetsos F, Davis LK, et al. Genetic 
association signal near NTN4 in Tourette syndrome. Ann Neurol [Internet]. 2014 
Aug 1 [cited 2021 Nov 5];76(2):310–5. Available 
from:https://onlinelibrary.wiley.com/doi/full/10.1002/ana.24215  

 52.  Stamatoyannopoulos G, Bose A, Teodosiadis A, Tsetsos F, Plantinga A, Psatha N, 
et al. Genetics of the peloponnesean populations and the theory of extinction of the 
medieval peloponnesean Greeks. Eur J Hum Genet 2017 255 [Internet]. 2017 Mar 
8 [cited 2021 Nov 5];25(5):637–45. Available from: 
https://www.nature.com/articles/ejhg201718  

53.  Paschou P, Drineas P, Yannaki E, Razou A, Kanaki K, Tsetsos F, et al. Maritime 
route of colonization of Europe. Proc Natl Acad Sci [Internet]. 2014 Jun 24 [cited 
2021 Nov 5];111(25):9211–6. Available from: 
https://www.pnas.org/content/111/25/921 

54.  Forde NJ, Kanaan AS, Widomska J, Padmanabhuni SS, Nespoli E, Alexander J, et 
al. TS-EUROTRAIN: A European-Wide Investigation and Training Network on the 
Etiology and Pathophysiology of Gilles de la Tourette Syndrome. Front Neurosci. 
2016 Aug 23;0(AUG):384.  

55.  Nöthlings U, Krawczak M. PopGen. Bundesgesundheitsblatt - Gesundheitsforsch - 
Gesundheitsschutz 2012 556 [Internet]. 2012 Jun 7 [cited 2021 Oct 11];55(6):831–
5. Available from: https://link.springer.com/article/10.1007/s00103-012-1487-2 

56.  Antoniak M, Pugliatti M, Hubbard R, Britton J, Sotgiu S, Sadovnick AD, et al. 
Vascular Factors and Risk of Dementia: Design of the Three-City Study and 
Baseline Characteristics of the Study Population. Neuroepidemiology [Internet]. 
2003 [cited 2021 Oct 11];22(6):316–25. Available from: 
https://www.karger.com/Article/FullText/72920 

57.  Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 
PLINK: A tool set for whole-genome association and population-based linkage 
analyses. Am J Hum Genet. 2007;81(3):559–75.  

58.  International Diabetes Federation. IDF Diabetes Atlas, 9th edn. Brussels, Belgium: 
2019 [Internet]. Available from: https://www.diabetesatlas.org 

59.  GHO | By category | Prevalence of obesity among adults, BMI ≥ 30, age-

standardized - Estimates by country. WHO.  

60.  Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in 
unrelated individuals. Genome Res. 2009 Sep;19(9):1655–64.  

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.13.21265898doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.13.21265898
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: Significant Pearson’s Correlations estimates for Average genetic risk of complex 
disorders and their Prevalence in European populations. The column headers indicate 
the p-value threshold for PRS calculation and the value in each cell represents correlation 
coefficient and p-value based on 1000 permutations (shown in parentheses). The (*) 
indicates empirical p-value<0.05 (based on statistical test)  

 

Disorder p<5x10-08 p<5x10-05 p<0.001 p<0.01 p<0.05 
 

p<1 
 

CAD 
0.72* 

(0.022) 

0.62* 

(0.019) 

0.74 

(0.017) 

0.51 

(0.077) 

0.47 

(0.137) 

0.46 

(0.136) 

T2D 
0.56* 

(0.05) 

0.38 

(0.173) 

0.21 

(0.281) 

0.57 

(0.065) 

0.55 

(0.069) 

0.48 

(0.106) 

OBY 
0.39* 

(0.145) 

0.36 

(0.172) 

0.65* 

(0.025) 

0.26 

(0.27) 

0.08 

(0.419) 

0.03 

(0.508) 

PCOS 
- 0.05 

(0.502) 

0.48 

(0.121) 

0.54* 

(0.044) 

0.63 

(0.038) 

0.64 

(0.022) 

RA 
0.47* 

(0.048) 

0.48 

(0.073) 

0.53 

(0.06) 

0.41 

(0.111) 

0.43 

(0.139) 

0.61 

(0.036) 

ADHD 
0.16 

(0.604) 

0.19 

(0.263) 

0.51* 

(0.043) 

0.41 

(0.111) 

0.05 

(0.456) 

0.2 

(0.294) 

SCZ 
0.38 

(0.152) 

0.6* 

(0.041) 

0.84* 

(0.002) 

0.8* 

(0.006) 

0.82 

(0.009) 

0.78 

(0.009) 
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Table 2: Significant Pearson’s correlations estimate for average genetic risk of complex 
disorders and their prevalence in 24 countries. The column headers indicate the p-value 
threshold for PRS calculation. The value in each cell represents correlation coefficient & 
p-value based on 1000 permutations (shown in parentheses).  The (*) indicates empirical 
p-value<0.05 (based on statistical test)  

 
Disorder 

 
p<5x10-08 p<5x10-05 p<0.001 p<0.01 p<0.05 p<1 

PD 
0.24 

(0.126) 

0.39* 

(0.026) 

0.61 

(0.99) 

0.22 

(0.85) 

0.05 

(0.393) 

0.2 

(0.194) 

T2D 
0.39 

(0.957) 

0.25 

(0.1) 

0.55* 

(0.003) 

0.45 

(0.011) 

0.48 

(0.013) 

0.55 

(0.006) 

OBY 
0.38* 

(0.039) 

0.18 

(0.805) 

0.73* 

(0.001) 

0.52 

(0.981) 

0.58 

(1) 

0.31 

(0.057) 

AST 
0.46* 

(0.001) 

0.4* 

(0.011) 

0.35* 

(0.039) 

0.4 

(0.011) 

0.32 

(0.048) 

0.55 

(1) 

T1D 
0.42* 

(0.009) 

0.39* 

(0.028) 

0.41* 

(0.022) 

0.31 

(0.076) 

0.42 

(0.022) 

0.18 

(0.226) 

RA 
0.05 

(0.402) 

0.58* 

(0.004) 

0.14 

(0.293) 

0.08 

(0.35) 

0.32 

(0.949) 

0.39 

(0.969) 

IBD 
0.41* 

(0.017) 

0.33* 

(0.007) 

0.34* 

(0.05) 

0.39 

(0.971) 

0.25 

(0.879) 

0.03 

(0.429) 

CRD 
0.4 

(0.985) 

0.44 

(0.98) 

0.32 

(0.06) 

0.6* 

(0.001) 

0.55 

(0.001) 

0.38 

(0.035) 

MS 
0.42* 

(0.014) 

0.19 

(0.183) 

0.09 

(0.645) 

0.49 

(0.001) 

0.49 

(0.001) 

0.71 

(0.001) 

ADHD 
0.05 

(0.586) 

0.46* 

(0.008) 

0.12 

(0.333) 

0.09 

(0.386) 

0.38 
(0.014) 

0.26 

(0.096) 

ANX 
- 0.14 

(0.764) 

0.01 

(0.519) 

0.5* 

(0.002) 

0.22 

(0.015) 

0.04 

(0.557) 

BPD 
0.28 

(0.1) 

0.42* 

(0.013) 

0.49* 

(0.004) 

0.15 

(0.763) 

0.28 

(0.863) 

0.07 

(0.376) 

SCZ 
0.71* 

(0.001) 

0.45* 

(0.011) 

0.141 

(0.723) 

0.32 

(0.967) 

0.18 

(0.784) 

0.19 

(0.798) 
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Additional Files legends 
 
Additional file 1: The tables show the number of SNPs used for PRS calculation of each 
disorder for each of the five ancestral groups. Each sheet shows the number of SNPs for 
each of the 6 p-value thresholds used for PRS calculation 
 
Additional file 2: The tables show the Std. Average PRS Scores of each disorder in the 
9 European populations. Each sheet shows the score at each of the six p-value thresholds 
used for PRS calculation.  
 
Additional file 3: The tables show the Std. Average PRS Scores of each disorder in the 
24 Global populations. Each sheet shows the score at each of the six p-value thresholds 
used for PRS calculation.  
 
Additional file 4: The table shows the age adjusted prevalence data of the 20 disorders 
in 24 global populations.  
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Figure 1: PCA plot of European and World Populations. The left panel shows 
distribution of 2,109 European samples based on top two PCs colored and shaped based 
on their country of origin. The right panel shows the distribution of 3,953 global samples 
based on top 2 PCs colored and shaped based on their region/ethnicity.  
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Figure 2: Heatmap of Average PRS Scores (p-value<5x10-5) of 20 Disorders across 
European Populations. The disorders are grouped based on the disease domain and 
the Populations are arranged based on their geographical location going from southern 
to northern countries. Shades of cells indicate the standardized avg. genetic risk of each 
disorder for each population. A higher risk is shown by red and lower risk is indicated by 
blue [SEU – South Europeans, CEU – Central Europeans, NEU – North Europeans.] 
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Figure 3: Heatmap of Average PRS Scores (p-value<5x10-5) of 20 Disorders across 
World Populations. The disorders are grouped based on the disease domain and the 
populations are arranged based on their geographical location and ancestry starting with 
Africans (AFR) and followed by Europeans (EUR), South Asians (SAS), East Asians 
(EAS) and Admixed Americans (AMR) Shades of cells indicate the standardized avg. 
genetic risk of each disorder for each population. A higher risk is shown by red and lower 
risk is indicated by blue. 
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Figure 4: Bar plot showing the mean prevalence of 20 disorders across 5 ancestral 
groups. The x-axis indicates the ancestral group starting with Africans (AFR) and 
followed by Europeans (EUR), South Asians (SAS), East Asians (EAS) and Admixed 
Americans (AMR). The y-axis is the mean prevalence (%) of each group calculated based 
on the different nationalities in each group.  
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Figure 5: Bar plot showing Pearson's correlation estimates of r2 between four pairs 
of populations. The x-axis indicates the disorder and the p-value threshold from which 
the SNPs were selected, and y axis is the correlation coefficient between each pair of 
populations. The dotted line shows the mean correlation value of the distribution based 
on 100 Random SNP sets. The (*) indicates empirical p-value < 0.05.  
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Figure 6: Bar plot showing the mean FST between four pairs of populations. The x-
axis indicates the disorder and the p-value threshold from which the SNPs were selected, 
and y axis is the mean FST of each pair of populations. The dotted line shows the mean 
FST value of the distribution based on 100 Random SNP sets. The (*) indicates empirical 
p-value < 0.05.  
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